The manuscript proposes a novel robust methodology for the model-based online optimization/optimal control of fed-batch systems, which consists of two different interacting layers executed asynchronously. The first iteratively computes robust control actions online via multi-scenario stochastic optimization while the second iteratively re-estimates the optimal scenario map after every single/every certain number of control action/actions. The novelty of the approach is twofold: (I) the scenario map is optimally computed/updated based on probabilistic information on the process model uncertainty as well as the sensitivity of the controlled system to the uncertain parameters; and (II) the scenario set is dynamically re-estimated, thus accounting for the effect of disturbances and changes in the operating conditions of the target process. The proposed approach is applied to a fed-batch Williams-Otto process and compared to an existing multi-scenario optimization/control algorithm as well as a non-robust optimization/control strategy to draw conclusions about which method is more effective. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3264–3284, 2016.

Multi-scenario robust online optimization and control of fed-batch systems via dynamic model-based scenario selection

MANENTI, FLAVIO;
2016-01-01

Abstract

The manuscript proposes a novel robust methodology for the model-based online optimization/optimal control of fed-batch systems, which consists of two different interacting layers executed asynchronously. The first iteratively computes robust control actions online via multi-scenario stochastic optimization while the second iteratively re-estimates the optimal scenario map after every single/every certain number of control action/actions. The novelty of the approach is twofold: (I) the scenario map is optimally computed/updated based on probabilistic information on the process model uncertainty as well as the sensitivity of the controlled system to the uncertain parameters; and (II) the scenario set is dynamically re-estimated, thus accounting for the effect of disturbances and changes in the operating conditions of the target process. The proposed approach is applied to a fed-batch Williams-Otto process and compared to an existing multi-scenario optimization/control algorithm as well as a non-robust optimization/control strategy to draw conclusions about which method is more effective. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3264–3284, 2016.
2016
optimization; process control; robust optimal control; stochastic programming; Biotechnology; Environmental Engineering; Chemical Engineering (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1003040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact