The numerical approximation of partial differential equations (PDEs) posed on complicated geometries, which include a large number of small geometrical features or microstructures, represents a challenging computational problem. Indeed, the use of standard mesh generators, employing simplices or tensor product elements, for example, naturally leads to very fine finite element meshes, and hence the computational effort required to numerically approximate the underlying PDE problem may be prohibitively expensive. As an alternative approach, in this article we present a review of composite/agglomerated discontinuousGalerkin finite element methods (DGFEMs) which employ general polytopic elements. Here, the elements are typically constructed as the union of standard element shapes; in this way, the minimal dimension of the underlying composite finite element space is independent of the number of geometrical features. In particular, we provide an overview of hp-version inverse estimates and approximation results for general polytopic elements, which are sharp with respect to element facet degeneration. On the basis of these results, a priori error bounds for the hp-DGFEM approximation of both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally, we present numerical experiments which highlight the practical application of DGFEMs on meshes consisting of general polytopic elements.

Review of discontinuous galerkin finite element methods for partial differential equations on complicated domains

ANTONIETTI, PAOLA FRANCESCA;
2016-01-01

Abstract

The numerical approximation of partial differential equations (PDEs) posed on complicated geometries, which include a large number of small geometrical features or microstructures, represents a challenging computational problem. Indeed, the use of standard mesh generators, employing simplices or tensor product elements, for example, naturally leads to very fine finite element meshes, and hence the computational effort required to numerically approximate the underlying PDE problem may be prohibitively expensive. As an alternative approach, in this article we present a review of composite/agglomerated discontinuousGalerkin finite element methods (DGFEMs) which employ general polytopic elements. Here, the elements are typically constructed as the union of standard element shapes; in this way, the minimal dimension of the underlying composite finite element space is independent of the number of geometrical features. In particular, we provide an overview of hp-version inverse estimates and approximation results for general polytopic elements, which are sharp with respect to element facet degeneration. On the basis of these results, a priori error bounds for the hp-DGFEM approximation of both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally, we present numerical experiments which highlight the practical application of DGFEMs on meshes consisting of general polytopic elements.
2016
International Conference on Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, 2014
9783319416380
9783319416380
Modeling and Simulation; Engineering (all); Discrete Mathematics and Combinatorics; Control and Optimization; Computational Mathematics
File in questo prodotto:
File Dimensione Formato  
Antonietti_et_al_SURVEY_2016.pdf

Accesso riservato

Descrizione: articolo principale
: Publisher’s version
Dimensione 896.21 kB
Formato Adobe PDF
896.21 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1002771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 30
social impact