We explore hierarchical refinement of NURBS as a basis for adaptive isogeometric and immersed boundary analysis. We use the principle of B-spline subdivision to derive a local refinement procedure, which combines full analysis suitability of the basis with straightforward implementation in tree data structures and simple generalization to higher dimensions. We test hierarchical refinement of NURBS for some elementary fluid and structural analysis problems in two and three dimensions and attain good results in all cases. Using the B-spline version of the finite cell method, we illustrate the potential of immersed boundary methods as a seamless isogeometric design-through-analysis procedure for complex engineering parts defined by T-spline CAD surfaces, specifically a ship propeller and an automobile wheel. We show that hierarchical refinement considerably increases the flexibility of this approach by adaptively resolving local features. © 2012 Elsevier B.V.

An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces

DEDE', LUCA;
2012-01-01

Abstract

We explore hierarchical refinement of NURBS as a basis for adaptive isogeometric and immersed boundary analysis. We use the principle of B-spline subdivision to derive a local refinement procedure, which combines full analysis suitability of the basis with straightforward implementation in tree data structures and simple generalization to higher dimensions. We test hierarchical refinement of NURBS for some elementary fluid and structural analysis problems in two and three dimensions and attain good results in all cases. Using the B-spline version of the finite cell method, we illustrate the potential of immersed boundary methods as a seamless isogeometric design-through-analysis procedure for complex engineering parts defined by T-spline CAD surfaces, specifically a ship propeller and an automobile wheel. We show that hierarchical refinement considerably increases the flexibility of this approach by adaptively resolving local features. © 2012 Elsevier B.V.
2012
Adaptivity with NURBS; Finite cell method; Hierarchical refinement; Immersed boundary analysis; Isogeometric analysis; T-spline CAD surfaces; Computer Science Applications1707 Computer Vision and Pattern Recognition; Computational Mechanics; Mechanics of Materials; Mechanical Engineering; Physics and Astronomy (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1002691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 418
  • ???jsp.display-item.citation.isi??? 348
social impact