Reflectance anisotropy spectroscopy (RAS) is demonstrated to be particularly suitable for studying the deposition of organic epitaxial layers in ultrahigh vacuum by organic molecular beam epitaxy, thanks to its high sensitivity and applicability in situ. In the case of α -quaterthiophene, both homoepitaxy and heteroepitaxy have been monitored, demonstrating the crystallinity of the films up to tens of monolayers and the epitaxial relation to the substrate. In both cases, optical RAS data are compared to the results of ex situ characterization of the same samples by atomic force microscopy. © 2009 American Vacuum Society.
Reflectance anisotropy spectroscopy: A probe to explore organic epitaxial growth
BUSSETTI, GIANLORENZO;
2009-01-01
Abstract
Reflectance anisotropy spectroscopy (RAS) is demonstrated to be particularly suitable for studying the deposition of organic epitaxial layers in ultrahigh vacuum by organic molecular beam epitaxy, thanks to its high sensitivity and applicability in situ. In the case of α -quaterthiophene, both homoepitaxy and heteroepitaxy have been monitored, demonstrating the crystallinity of the films up to tens of monolayers and the epitaxial relation to the substrate. In both cases, optical RAS data are compared to the results of ex situ characterization of the same samples by atomic force microscopy. © 2009 American Vacuum Society.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.