Montmorillonite with dimethyl di(hydrogenatedtalloyl) ammonium as the compensating cation was added to a silica based elastomeric composite and the hybrid filler system led to reduction of filler networking phenomenon, better stability of elastic modulus with temperature, enhancement of stresses at all elongations, improvement of ultimate properties. This composite was based on a blend of natural rubber, poly(1,4-cis-isoprene) and poly(styrene-co-butadiene) from anionic polymerization and contained 70 parts per hundred rubber (phr) of silica. The organically modified clay (OC) was below the threshold required to establish an hybrid OC-silica filler network. Such threshold (about 7 phr) was estimated by preparing silica based nanocomposites containing various amounts of OC and determining shear storage and loss moduli as a function of strain amplitude. This work demonstrates that exfoliated OC favour lower dissipation of energy of silica based elastomeric composites under dynamic mechanical stresses and paves the way for further large scale applications.
Reduction of filler networking in silica based elastomeric nanocomposites with exfoliated organo-montmorillonite
GALIMBERTI, MAURIZIO STEFANO;CIPOLLETTI, VALERIA ROSARIA;CIOPPA, SERENA;
2017-01-01
Abstract
Montmorillonite with dimethyl di(hydrogenatedtalloyl) ammonium as the compensating cation was added to a silica based elastomeric composite and the hybrid filler system led to reduction of filler networking phenomenon, better stability of elastic modulus with temperature, enhancement of stresses at all elongations, improvement of ultimate properties. This composite was based on a blend of natural rubber, poly(1,4-cis-isoprene) and poly(styrene-co-butadiene) from anionic polymerization and contained 70 parts per hundred rubber (phr) of silica. The organically modified clay (OC) was below the threshold required to establish an hybrid OC-silica filler network. Such threshold (about 7 phr) was estimated by preparing silica based nanocomposites containing various amounts of OC and determining shear storage and loss moduli as a function of strain amplitude. This work demonstrates that exfoliated OC favour lower dissipation of energy of silica based elastomeric composites under dynamic mechanical stresses and paves the way for further large scale applications.File | Dimensione | Formato | |
---|---|---|---|
02_ApplClaySci 135 (2017) 168-175.pdf
Accesso riservato
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
11311-1000583 Galimberti.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.