The 20 years since the introduction of self-compacting/self-consolidating concrete (SCC) have given plenty of opportunities for researchers, designers, and contractors to become familiar with SCC innovative properties and structural effects. The workability and durability of SCC have been investigated extensively, together with the tendency of SCC members to spall in fire, because of pore pressure, thermal self-stresses, and applied stresses. The interest for the constitutive behavior of SCC at high temperatures, however, is relatively recent, as most of the studies (not more than a dozen in total) have been published in the last 10 years. Though limited in number, these studies shed sufficient light on the behavior of SCC at high temperatures, in quasi-steady conditions, as demonstrated in this paper. This paper describes 11 experimental campaigns carried out in Belgium, China, Croatia, France, Germany, Greece, Italy, Sweden, and the United States, each with its own specimens, mix designs, test procedures, and methods for the treatment of test results. The experimental results considered in this paper concern both normal-strength and high-performance/high-strength concretes, generally devoid of fibers, unstressed during the heating process, and tested in uniaxial compression. The conclusion of this comparative study is that at high temperatures, SCC tends to behave similarly to ordinary vibrated concrete (VC), and that American Concrete Institute (ACI)-ASCE provisions for ordinary calcareous or siliceous concrete at high temperatures or past cooling are also applicable to SCC.
High-temperature behavior of SCC in compression: Comparative study on recent experimental campaigns
BAMONTE, PATRICK;GAMBAROVA, PIETRO GIOVANNI
2016-01-01
Abstract
The 20 years since the introduction of self-compacting/self-consolidating concrete (SCC) have given plenty of opportunities for researchers, designers, and contractors to become familiar with SCC innovative properties and structural effects. The workability and durability of SCC have been investigated extensively, together with the tendency of SCC members to spall in fire, because of pore pressure, thermal self-stresses, and applied stresses. The interest for the constitutive behavior of SCC at high temperatures, however, is relatively recent, as most of the studies (not more than a dozen in total) have been published in the last 10 years. Though limited in number, these studies shed sufficient light on the behavior of SCC at high temperatures, in quasi-steady conditions, as demonstrated in this paper. This paper describes 11 experimental campaigns carried out in Belgium, China, Croatia, France, Germany, Greece, Italy, Sweden, and the United States, each with its own specimens, mix designs, test procedures, and methods for the treatment of test results. The experimental results considered in this paper concern both normal-strength and high-performance/high-strength concretes, generally devoid of fibers, unstressed during the heating process, and tested in uniaxial compression. The conclusion of this comparative study is that at high temperatures, SCC tends to behave similarly to ordinary vibrated concrete (VC), and that American Concrete Institute (ACI)-ASCE provisions for ordinary calcareous or siliceous concrete at high temperatures or past cooling are also applicable to SCC.File | Dimensione | Formato | |
---|---|---|---|
Bamonte_ASCE_2016.pdf
Accesso riservato
:
Publisher’s version
Dimensione
601.89 kB
Formato
Adobe PDF
|
601.89 kB | Adobe PDF | Visualizza/Apri |
11311-1000457 Bamonte.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
755.5 kB
Formato
Adobe PDF
|
755.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.