BACCHELLI, VALERIA

BACCHELLI, VALERIA  

Mostra records
Risultati 1 - 17 di 17 (tempo di esecuzione: 0.032 secondi).
Titolo Data di pubblicazione Autori File
A parabolic inverse problem with mixed boundary data. Stability estimates for the unknown boundary and impedance 1-gen-2014 BACCHELLI, VALERIADI CRISTO, MICHELE +
A problem of seakeeping 1-gen-1994 BACCHELLI, VALERIA
Corrosion detection in a 2D domain with a polygonal boundary. 1-gen-2010 BACCHELLI, VALERIA +
Determination of a source in a geophysical problem 1-gen-2000 PAGANI, CARLO DOMENICOBACCHELLI, VALERIA
Determination of a source in a geopysical problem 1-gen-2000 BACCHELLI, VALERIAPAGANI, CARLO DOMENICO
Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary 1-gen-2006 BACCHELLI, VALERIA +
Location of a gas source in a geophysical problem 1-gen-2000 BACCHELLI, VALERIAPAGANI, CARLO DOMENICO
On the stability of an inverse problem in potential theory 1-gen-1986 BACCHELLI, VALERIAVERRI, MAURIZIO
On the stability of an inverse problem in potential theory. 1-gen-1986 BACCHELLI, VALERIAVERRI, MAURIZIO
Parameter identification for the linear wave equation with Robin boundary condition. 1-gen-2018 V. BacchelliS. MichelettiS. PerottoD. Pierotti
Problemi singolari di Cauchy per l'equazione s=A(x,y)(z/((x+y)^{α}))+f(x,y,z) 1-gen-1975 BACCHELLI, VALERIA +
Stability of the level lines of solutions of a linear parabolic equation 1-gen-1997 BACCHELLI, VALERIA
Sull'esistenza della soluzione di un problema di Cauchy per un'equazione iperbolica con discontinuità rispetto all'incognita 1-gen-1976 BACCHELLI, VALERIA +
Sulla trasformata di Mellin negli spazi H^{l}(0,∞) e H^{l₀}(0,∞) 1-gen-1977 BACCHELLI, VALERIA
Uniqueness for the determination of unknown boundary and impedance with the homogeneous Robin condition 1-gen-2009 BACCHELLI, VALERIA
Uniqueness in the inverse conductivity problem for thin imperfections weakly or strongly conducting 1-gen-2003 BACCHELLI, VALERIAPAGANI, CARLO DOMENICOSALERI, FAUSTO EMILIO
Uniqueness in the inverse conductivity problem for thin imperfections weakly or strongly conducting 1-gen-2003 BACCHELLI, VALERIA +