
Enabling the High Level Synthesis of Data Analytics Accelerators

Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, Marco Lattuada, Fabrizio
Ferrandi

Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, Marco Lattuada, and Fabrizio Ferrandi. En-
abling the high level synthesis of data analytics accelerators. In Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, CODES ’16, pages 15:1–
15:3, New York, NY, USA, 2016. ACM

The final pubblication is available via http://dx.doi.org/10.1145/2968456.2976764

c©ACM, 2016. This is the author’s version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in Proceedings of the
Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Syn-
thesis http://doi.acm.org/10.1145/2968456.2976764

Enabling the High Level Synthesis of Data Analytics
Accelerators

Marco Minutoli, Vito Giovanni
Castellana, Antonino Tumeo

High Performance Computing
Pacific Northwest National Laboratory

99352 Richland, WA, USA
{marco.minutoli, vitoGiovanni.castellana,

antonino.tumeo}@pnnl.gov

Marco Lattuada, Fabrizio Ferrandi
Dipartimento di Elettronica, Informazione e

Bioingegneria
Politecnico di Milano
20132 Milano, Italy
{marco.lattuada,

fabrizio.ferrandi}@polimi.it

ABSTRACT

Conventional High Level Synthesis (HLS) tools mainly tar-
get compute intensive kernels typical of digital signal pro-
cessing applications. We are developing techniques and ar-
chitectural templates to enable HLS of data analytics appli-
cations. These applications are memory intensive, present
fine-grained, unpredictable data accesses, and irregular, dy-
namic task parallelism. We discuss an architectural tem-
plate based around a distributed controller to efficiently ex-
ploit thread level parallelism. We present a memory in-
terface that supports parallel memory subsystems and en-
ables implementing atomic memory operations. We intro-
duce a dynamic task scheduling approach to efficiently ex-
ecute heavily unbalanced workload. The templates are val-
idated by synthesizing queries from the Lehigh University
Benchmark (LUBM), a well know SPARQL benchmark.

1. INTRODUCTION

Data Analytics applications, such as graph databases, of-
ten employ pointer or linked list-based data structures that,
although convenient to represents dynamically changing re-
lationships among the data elements, induce an irregular be-
havior [7]. These data structures, in fact, allows spawning
many concurrent activities, but present many unpredictable,
fine-grained, data accesses, and require many synchroniza-
tion operations. Partitioning the datasets without gener-
ating load imbalance is also very difficult. Conventional
general-purpose architectures are optimized for locality and
reduced access latency, and do not cope well with these
workloads, making application-specific accelerators (imple-
mented, for example, on Field Programmable Gate Arrays
- FPGAs) an appealing solution [6]. However, conventional
High Level Synthesis (HLS) flows traditionally perform well
with compute intensive workloads (i.e., digital signal pro-
cessing) that mainly expose instruction level parallelism, and
can be easily partitioned across replicated functional units.

ACM acknowledges that this contribution was authored or co-authored by an em-

ployee, or contractor of the national government. As such, the Government retains

a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-

ers to do so, for Government purposes only. Permission to make digital or hard copies

for personal or classroom use is granted. Copies must bear this notice and the full ci-

tation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN X-XXXXX-XX-X/XX/XX.

DOI: http://dx.doi.org/10.1145/0000000.0000000

They also usually assume a simple memory system focusing
more to reduce, rather than tolerate, access latencies.

Resource Description Framework (RDF) databases have
become one of the most prominent example of data ana-
lytics application. RDF is the metadata data model typi-
cally used to describe the Semantic Web. RDF databases
naturally maps to graphs, and query languages for these
databases such as SPARQL basically express queries as a
combination of graph methods (graph walks and graph pat-
tern matching operations) and analytic functions. Among
these, we consider GEMS, the Graph database Engine for
Multithreaded Systems (GEMS) [2]. GEMS implements a
RDF database on a commodity cluster by mainly employing
graph methods at all levels of his stack. To address the lim-
itations of HPC systems, GEMS employs a runtime (Global
Memory and threading - GMT) that provides: a global ad-
dress space across the cluster, so that data do not need to be
partitioned, lightweight software multithreading, to tolerate
data access latencies, and message aggregation, to improve
network utilization with fine-grained transactions. A graph
application programming interface (API) and a set of meth-
ods to ingest RDF triples and generate the related graph
and dictionary (collectively named SGLib) are built with
the functions provided by the runtime. On top of the whole
system, a translator converts query expressed in SPARQL
to graph-pattern matching operations in C/C++.

We have investigated acceleration of queries, as generated
for the GEMS software stack, on FPGAs. We have devel-
oped a set of architectural templates and HLS methodologies
to automatically generate specifications in hardware descrip-
tion language (Verilog) of graph methods starting from C
descriptions and have integrated them in a modified version
of an openly available High Level Synthesis tool, Bambu [1].
We have then interfaced GEMS with the modified Bambu,
and generated accelerators for SPARQL queries coming from
the Lehigh University Benchmark (LUBM) [5], a reference
benchmarks for Semantic Web Repositories.

2. ARCHITECTURE OVERVIEW

Figure 1 shows how the GEMS stack has been integrated
with Bambu. We have changed GEMS layer so that they are
not anymore dependent on the GMT runtime. We developed
a pure C version of the graph API that does not exploit any
of the functionalities of GMT. We modified the code emitter
accordingly, so that the C code generated from the SPARQL
queries only invokes the new C graph API to perform graph

Figure 1: Structure of the GEMS stack and interac-

tion with Bambu HLS

walks and matching and pure C functions to execute any
analytic operation. Such a C code in practice corresponds
to a set of nested loops, where each loop matches a particular
edge of the graph pattern that composes the query, and
becomes the input of Bambu for the synthesis. Note that
synthesizing full queries is not a limitation: in the many
analytics applications, once the query is defined, it remains
stable in time, while the dataset dynamically changes. So,
provided that the query execution provides a speed up, the
time required to synthesize the query on FPGA is affordable.

Bambu has been modified by progressively integrating
three architectural templates, and the corresponding method-
ologies to generate the instances of the templates. The three
components aim at providing better support for certain of
the typical structures and behaviors that characterize paral-
lel graph methods. These obviously include the graph pat-
tern matching methods employed in GEMS for the query
processing. The components include a Parallel distributed
Controller (PC) [3], a Hierarchical, multi-ported, Memory
Interface (HMI) [4], and a Dynamic Task Scheduler (DTS).

The PC allows to generate more efficient designs that ex-
ploit coarse grained (task level) parallelism than the typi-
cal centralized controllers of conventional HLS flows based
around the Finite State Machine with Datapath (FSMD)
model, in terms of performance and area utilization. This is
a key element in accelerating graph algorithms that basically
are composed of a varying number of nested loops, iterating
on vertices or edges, where each iteration could identify a
different task. By adopting the PC, it is easy to coordinate
parallel execution of tasks (one, or more iterations each) on
an array of replicated accelerators. The PC consists of a set
of communicating modules, each one associated with one, or
more, operations. Controller modules are called Execution
Managers (EMs). EMs start execution of the associated op-

Figure 2: High Level overview of an architecture

combining the parallel controller and the hierarchi-

cal memory interface.

erations as soon as all their dependencies are satisfied and
resource conflicts resolved. Other dedicated components,
named Resource Managers (RM), arbitrate execution of op-
erations on shared resources. EMs communicate through a
token-based schema: when a dependency is satisfied, a token
is passed to the next EM. When all dependency for an EM
are satisfied, it checks RMs for resource availability and, if
the resource is free, execution starts.

The HMI provides an easy way to dynamically disam-
biguate fine grained memory accesses to locations of a large,
multi-banked memory, while maintaining to the HLS flow
and the accelerator pool the abstract view of a shared mem-
ory. In cooperation with the PC, the HMI also enables
to easily support atomic memory operations. Graph algo-
rithms typically access unpredictable memory locations with
fine-grained transactions (i.e., the follow pointers), and their
implementation is much easier when considering a shared
memory abstraction. Also, they often are synchronization
intensive when parallelized, because the different tasks may
access the same elements concurrently. The HMI takes in
input memory access requests from N ports, which have an
address, a data and an operation type (load/store) line. The
MIC routes requests towards one of the B output ports,
corresponding to a different memory bank, by evaluating
their addresses. Each memory bank has non-overlapping ad-
dresses. Accesses are routed towards a specific memory port
at runtime, providing efficient support of the unpredictable
memory access patterns typical in irregular applications.
Furthermore, address can be scrambled across banks (i.e.,
consecutive addresses are interleaved on different banks) to
reduce hotspots. Control logic, synthesized according to the
specific scrambling function, performs the routing. Support
to atomic operations is provided through a mechanism sim-
ilar to the RMs, as access to the specific memory port is not
granted until termination of the atomic operation. Figure 2
provides a combined view of the PC and the HMI. RMs are
hidden in the datapath (at the front of shared resources)
and in the memory interface (at front of the memory ports).

The DTS provides a way to execute new tasks as soon as
one of the multiple accelerators is free: instead of simply

Figure 3: High level overview of an architecture

template using the DTS

using a fork/join model, where all currently executing tasks
on the set of accelerators must terminate before a new group
could be executed, the DTS allow scheduling new tasks as
soon as one of the accelerators is free. This adapt to a vari-
ety of graph algorithms where certain tasks (iterations) may
execute for a long time, while other could terminate early,
such as when a graph walk is pruned early because it reached
an uninteresting part of the graph. Figure 3 shows an archi-
tecture template integrating the DTS. The DTS interfaces
to the set of parallel accelerators (Kernel Pool) and to the
Termination Logic. The DTS itself contains a Task Queue,
the Task Dispatcher, and a Status Register that holds infor-
mation on the accelerators in the kernel pool. As soon as
a task is terminates, the status register is updated and the
DTS can schedule a new task. The Termination Logic allows
understanding when all the tasks have completed, i.e., when
for example all iterations of a parallel loop have completed.

3. RESULTS OVERVIEW

To validate our architectural templates and our approach,
we have we have synthesized 7 queries from LUBM, and we
have tested the performance using a dataset of 5,309,056
RDF ”triples”. In Table 1, we compare, in terms of exe-
cution latency, a serial implementation of the architecture
(Single Acc.), one that employs PC and the HMI [3] (Parallel
Controller), and one that also includes the DTS (Dynamic
Scheduler). The parallel architectures include 4 accelerators
and HMIs with 4 ports. With respect to the serial imple-
mentation, the architectures employing the DTS generally
show a speed up close to the theoretical maximum. In many
cases, the DTS also provides significant speed ups against
the PC designs. This happens, in particular, with queries
that have some iterations (tasks) that executes order of mag-
nitudes longer than others. Another important effect of the
DTS is that it maximizes utilization of the available memory
channels as provided by the HMI. In fact, all the architec-
tures with the DTS utilize at least 3 out of 4 of the memory
ports for more than 75% of the time.

4. CONCLUSIONS

We have been investigating architectural templates and
methodologies to enable the HLS of data analytics appli-
cations. Among all data analytics applications, we focused
our attention to RDF databases. These operate on large
amount of data that can be conveniently organized in graph
data structures and queried through languages that express
queries as graph pattern matching operations. Modern re-

Table 1: Performance comparison of the implemen-

tation using the DTS+HMI against the serial and

the parallel controller implementations

Single Acc.
Parallel Dynamic Speedup

Controller Scheduler
Single Acc.

Parallel

Cycles # Cycles # Cycles Controller

Q1 1,082,526,974 1,001,581,548 287,527,463 3.76 3.48
Q2 7,359,732 2,801,694 2,672,295 2.75 1.05
Q3 308,586,247 98,163,298 95,154,310 3.24 1.03
Q4 63,825 42,279 19,890 3.21 2.13
Q5 33,322 13,400 8,992 3.71 1.49
Q6 682,949 629,671 199,749 3.42 3.15
Q7 85,341,784 35,511,299 24,430,557 3.49 1.45

configurable devices appear a promising target to acceler-
ate this type of applications, which are massively parallel
and mainly memory bound. However, conventional HLS
flows typically target digital signal processing applications,
which usually are compute intensive, exhibit significant in-
struction level parallelism, and present regular memory ac-
cess patterns. They do not cope well with the fine-grained,
unpredictable memory accesses, and the highly dynamic,
and sometimes very unbalanced, coarse grained (task) par-
allelism, typical of graph methods. We detailed three of the
architectural templates and the related methodologies we
have been designing to address these issues, and presented
some initial results on a realistic benchmark. We believe
that our effort can provide a solid basis to make HLS of this
type of applications more viable, thus a productive way for
the data analytic community to use custom accelerators.

5. REFERENCES

[1] Bambu: A Free Framework for the High-Level
Synthesis of Complex Applications.
http://panda.dei.polimi.it, 2014.

[2] V. Castellana, A. Morari, J. Weaver, A. Tumeo,
D. Haglin, O. Villa, and J. Feo. In-memory graph
databases for web-scale data. Computer, 48(3):24–35,
Mar 2015.

[3] V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo,
M. Lattuada, and F. Ferrandi. High Level Synthesis of
RDF Queries for Graph Analytics. In ICCAD’15:
IEEE/ACM International Conference on
Computer-Aided Design, pages 323–330, 2015.

[4] V. G. Castellana, A. Tumeo, and F. Ferrandi. An
adaptive memory interface controller for improving
bandwidth utilization of hybrid and reconfigurable
systems. In DATE 2014: Design, Automation and Test
in Europe, pages 1–4, 2014.

[5] Y. Guo, Z. Pan, and J. Heflin. Lubm: A Benchmark for
OWL Knowledge Base Systems. Web Semant.,
3(2-3):158–182, Oct. 2005.

[6] A. Putnam, A. Caulfield, E. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh,
J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Xiao, and
D. Burger. A reconfigurable fabric for accelerating
large-scale datacenter services. In ISCA: ACM/IEEE
41st International Symposium on Computer
Architecture (ISCA), pages 13–24, June 2014.

[7] A. Tumeo and J. Feo. Irregular applications: From
architectures to algorithms [guest editors’ introduction].
IEEE Computer, 48(8):14–16, 2015.

