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Abstract. Silicon is a very attractive Li-ion battery anode material due to its high 13 

theoretical capacity, but proper nanostructuring is needed to accommodate the 14 

large volume expansion/shrinkage upon reversible cycling. Hereby, novel 15 

mesoporous Si nanostructures are grown at room temperature by simple and rapid 16 

Pulsed Laser Deposition (PLD) directly on top of the Cu current collector surface. 17 

The samples are characterised from the structural/morphological viewpoint and 18 

their promising electrochemical behaviour demonstrated in lab-scale lithium cells. 19 

Depending on the porosity, easily tuneable by PLD, specific capacities 20 
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approaching 250 µAh cm−2 are obtained. Successively, newly elaborated bi-21 

component silicon/carbon nanostructures are fabricated in one step by alternating 22 

PLD deposition of Si and C, thus resulting in novel multi-layered composite 23 

mesoporous films exhibiting profoundly improved performance. Alternated 24 

deposition of Si/C layers by PLD is proven to be a straightforward method to 25 

produce multi-layered anodes in one processing step. The addition of carbon and 26 

mild annealing at 400 °C stabilize the electrochemical performance of the Si-27 

based nanostructures in lab-scale lithium cells, allowing to reach very stable 28 

prolonged reversible cycling at improved specific capacity values. This opens the 29 

way to further reducing processing steps and processing time, which are key 30 

aspects when upscaling is sought. 31 

Keywords: silicon, mesoporous, pulsed laser deposition, anode, lithium battery 32 

Introduction 33 

In the last decade, we are dealing with the rapid development of high performing 34 

portable electronic devices, such as smart phones and notebooks, which are becoming 35 

more and more demanding in terms of energy requirements. This continuously leads to a 36 

strong demand for new sources of power able to provide high capacity and high energy 37 

densities. In such a scenario, the Li-ion battery (LIB) is recognized as the system of 38 

choice. Today’s LIBs partially satisfy the present demands, but there is still room for 39 

further improvements1. 40 
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As far as the anode material is concerned, commercial graphite shows excellent capacity 41 

retention during battery cycling. Nevertheless, despite its good cycling stability and low 42 

cost, the low theoretical capacity of 372 mAh g−1 is clearly insufficient for the huge 43 

demands of the next generation of high energy density electronic devices as well as 44 

electric vehicles2. To meet these requirements, several elements  that can reversibly alloy 45 

with lithium were investigated, including Si, Sn, Al, Ge, as well as mixed compounds 46 

thereof3–6. Because of its exceptional theoretical capacity exceeding 4000 mAh g−1, 47 

silicon is one of the most promising candidates among these elements to be used as 48 

anode material, as demonstrated by the intensive investigations recently carried out on 49 

this subject. The main limitations to its wide spread application are the extremely high 50 

volume change (~300 %)7 occurring during reversible reaction with lithium and leading 51 

to mechanical fragmentation and active material particle pulverization. Nanostructuring, 52 

introduction of voids and addition of other active materials having lower capacity (e.g., 53 

carbon) are the main routes currently under exploitation to bypass this drawback. The 54 

advantages of nanostructuring have been evidenced in recent works, which demonstrated 55 

the existence of a threshold dimension in silicon particles that prevents from crack 56 

propagation upon lithiation8–10. The introduction of pores in the silicon anodes is another 57 

well-known strategy to face the detrimental effects of volume variation11–13; indeed, 58 

depending on their size and distribution, voids can accommodate the expansion during 59 

lithiation, mitigate internal stresses and possibly prevent from fragmentation and 60 

detachment from the current collector. Porous Si films are generally prepared via 61 

electrochemical etching using hydrofluoric acid 14,15 or by electrodeposition16–18. 62 
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In this work, we explore the possibility of growing mesoporous hierarchical amorphous 63 

silicon nanostructures by simple and rapid Pulsed Laser Deposition (PLD). As it allows 64 

to easily tailor the film morphology at the nanoscale, both in terms of nanostructuration 65 

and introduction of voids, PLD enables a straightforward engineering of the anode 66 

material properties. In our silicon anodes, we introduced a controlled porosity to buffer 67 

the volume expansion; moreover, the preferential growth in the direction perpendicular to 68 

the substrate headed to favouring the electronic and ionic transport through the electrode. 69 

Different films were fabricated having different morphology and degree of porosity. The 70 

effect of an increasing porosity was studied at ambient temperature by electrochemical 71 

testing in lithium cell configuration with liquid electrolyte. The best performing sample 72 

allowed for good initial capacity over the initial 30 galvanostatic discharge/charge cycles. 73 

Successively, in order to improve the electrochemical behaviour, both in terms of overall 74 

specific capacity output as well as capacity retention and stability upon prolonged cycling, 75 

novel multi-layered Si-C nanostructured composite films were produced. Graphite-like C 76 

has the role to improve the overall electrical conductivity (intermediate layers) and to 77 

promote the formation of a stable SEI (top layer). Moreover, mild annealing at 400 °C 78 

was adopted on these structures, in order to improve the mechanical properties in terms of 79 

stress relaxation and adhesion to the Cu current collector, thus to effective increase the 80 

stability upon cycling. 81 

A previous work by some of the authors demonstrated good electrochemical 82 

performances of an anode made by a mesoporous Si film grown by PLD covered by a C 83 

layer grown by Chemical Vapour Deposition at 800°C19. Here we deeper investigate the 84 

properties of mesoporous Si grown by PLD, on the way to optimize the film for 85 

microbattery anodes. Based on this optimization, we propose a simplified process to 86 
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obtain novel multilayered Si/C film where Si and C are both deposited by PLD, followed 87 

by a mild annealing at 400°C. Reducing processing steps and processing time is one of 88 

the key aspects when upscaling is sought. 89 

Methods 90 

Preparation of mesoporous Si films 91 

Mesoporous Silicon films were grown by PLD under ambient conditions. A rotating and 92 

translating Si crystalline wafer (monocrystalline CZ, n+-doped <100>) was ablated by a 93 

KrF pulsed laser (248 nm, ~5 J cm−2, 20 Hz, target-to-substrate distance 50 mm) under 94 

controlled atmosphere (mixture of < 3 % vol. H2 in Ar as background gas) in a vacuum 95 

chamber, previously evacuated at 3×10-3 Pa. In order to grow films having different 96 

morphology and porosity, samples were produced under varying background pressures of 97 

40, 60 and 100 Pa, respectively. Correspondingly, samples are named Si-40, Si-60 and 98 

Si-100, where the number is the deposition pressure for Si. Deposition times were set to 99 

obtain film thickness of 1µm. By increasing the background gas pressure, higher porosity 100 

can be introduced in the film by means of inducing the formation of bigger clusters 101 

during flight with a lower kinetic energy and, hence, a less-packed film on the substrate. 102 

Details on the relationship between process parameters and morphology of the Si films 103 

are reported in a previous work20. 104 

After native oxide removal by means of citric acid, copper discs were used as a substrate 105 

for Si deposition, so to act as the current collector for the active anode material in lithium 106 

cell.  107 

ebiserni
Testo inserito
. In particular, Si-40 and Si-60 are shown to be amorphous, while Si-100 film is made by an amorphous silicon structure embedding silicon nanocrystals.
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Fabrication of multi-layered composite Si-C films 108 

Composites films with desired morphology were grown by PLD adjusting the 109 

background gas pressure (Ar:H2) for each deposition, so that cluster nucleation and 110 

growth could be to some extent controlled and, hence, the film porosity. Si was deposited 111 

under 40Pa Ar:H2, while C was deposited at 5Pa Ar:H2 (namely, sample Si/C-40). 112 

Deposition time for C was fixed to obtain a 70 nm-thick layer, i.e. one third of the ∼200 113 

nm-thickness of each coupled Si-C layer, while for Si layers grown at different pressures 114 

the deposition time was tuned to have a ∼130 nm-thick layer, thus obtaining a final 115 

overall film thickness of 1 µm. This 1 µm thickness was chosen to allow for comparison 116 

with the other approaches described in this article, while the parameters for deposition of 117 

C (i.e., gas pressure and time) were set so as to obtain a uniform layer able to cover the 118 

underlying Si. The C-layer relative thickness was a non-optimized starting point 119 

balancing on the one hand the need for a well-defined C layer, possibly able to pin Si 120 

expansion, and on the other hand to have enough Si to consider the final anode as Si-121 

based. We chose to deposit Si and C by means of two separate targets mounted on a 122 

switchable target holder to grow alternatively Si or C into a multi-layered composite film. 123 

After deposition of the desired amount of one material, the laser was stopped for a while 124 

and the target holder switched without opening the vacuum chamber, thus exposing the 125 

other target to ablation. The resulting multi-layered sample was then annealed in a closed 126 

furnace filled with Ar:H2 to relieve internal mechanical stresses and possibly promote 127 

adhesion of the Si layer to the copper substrate, as proven by experimental results 128 

described in ref. [19]. The heating rate was set at 4 °C min−1 up to the temperature of 129 

400 °C, hold for 5 minutes at 400 °C and then let cool down. 130 
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Characterization of the materials 131 

In order to characterize their morphology and thickness, cross-sectional views of the 132 

single- as well as multi-layered Si films were acquired by a Supra 40 Zeiss Field 133 

Emission Scanning Electron Microscope (FESEM, accelerating voltage 3-5 kV). 134 

Specific surface area (SSA) was determined on a Quadrasorb evo™ (Quantachrome 135 

Instruments) using the Brunauer, Emmet, Teller (BET) method. Prior to adsorption, 136 

approximately 100.0 mg of solid were placed in the cell and evacuated at about 50 °C for 137 

2 h and, successively, at 200 °C for 3h. 138 

Raman spectra were acquired on the Si and Si/C samples upon excitation by the second 139 

harmonic (532 nm) of an air-cooled Nd:YAG laser. Laser power was kept below 0.4 mW 140 

(sample surface) while sampling Si films, in order to avoid laser-induced annealing 141 

effects. Spectra were recorded in the range 100-1800 cm-1 in the Stokes region and were 142 

calibrated against the 520.5 cm-1 line of an internal silicon wafer reference. The signal-143 

to-noise ratio was enhanced by repeated acquisitions. 144 

Van der Pauw measurements were performed on the samples Si/C-40 either annealed or 145 

not, in order to estimate the film conductivity in the two cases. The measurement was 146 

carried out at ambient conditions by a Hall Effect measurement Instrument (Microworld-147 

HMS5300, heated stage AMP55), equipped with a permanent magnet (0,5T) and golden 148 

fingers with applied current below 20nA. 149 

The electrochemical response in liquid electrolyte of the samples was tested in 150 

polypropylene three-electrode T-cells assembled as follows: a Si film disk (area 0.785 151 

cm2) as the working electrode, a 1.0 M lithium hexafluorophosphate (LiPF6, Solvionic, 152 

France, battery grade) in a 1:1 w/w mixture of ethylene carbonate (EC) and dimethyl 153 
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carbonate (DMC) electrolyte solution soaked on a Whatman® GF/A separator and a 154 

lithium metal foil (high purity lithium foils, Chemetall Foote Corporation) as the counter 155 

electrode. For cyclic voltammetry (CV), a second lithium foil was added at the third hole 156 

of the cell, in direct contact with the electrolyte, acting as the reference electrode.  157 

Galvanostatic discharge/charge cycling (cut off potentials: 0.02 – 1.5 V vs. Li+/Li) and 158 

CVs (between 0.02 and 1.5 V vs. Li+/Li, at 0.1 mV s−1) were carried out at ambient 159 

temperature on an Arbin Instrument Testing System model BT-2000. Clean electrodes 160 

and fresh samples were used for each test. Procedures of cell assembly were performed 161 

in the inert atmosphere of a dry glove box (MBraun Labstar, O2 and H2O content < 1 162 

ppm) filled with extra pure Ar 6.0. 163 

Results and discussion 164 

Characterization of mesoporous Si films 165 

In the present work, a very simple single-step PLD process allowed to obtain vertically 166 

oriented thin films of mesoporous nanostructured silicon, as evidenced by FESEM 167 

analysis for morphological characterisation. The length of the columnar nanostructures 168 

was found to be approximately 1 µm, as shown in images (a), (c) and (e) of Figure 1, 169 

where the low magnification cross-sectional views of the different amorphous silicon 170 

films are depicted. 171 

ebiserni
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 172 

Figure 1 Cross-sectional FESEM images showing the different morphology of the 173 

mesoporous single-layered Si nanostructured films grown at increasing background gas 174 

pressure: (a, b) 40Pa, (c, d) 60Pa, (e, f) 100Pa. 175 

The fabrication method was chosen and tuned to grow hierarchical films featured by 176 

aggregation of clusters in a columnar mesoporous algae-like structure (see images b, d, f 177 

in Figure 1). This was meant, on the one hand, to introduce some degree of porosity, thus 178 

accounting for volume expansion of lithiated silicon and, on the other hand, to address 179 

the need for overall mechanical integrity. In addition, the anisotropic, columnar structure 180 

could in principle promote faster kinetics and more effective electronic transport 181 
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throughout the whole electrode thickness as well as hinder the segregation of particles 182 

during electrochemical operation. 183 

An estimate of the densities of these films is provided in a previous work,20 with a value 184 

of 0.36 g cm−3 for the sample 100 Pa, 0.92 g cm−3 for 60 Pa and 1.66 g cm−3 for 40 Pa. If 185 

compared to the density of bulk silicon (i.e., 2.33 g cm−3), these result in estimated 186 

porosities of about 85, 60 and 29 %, respectively. 187 

Accurate determination of specific surface area (SSA) in porous Si is usually performed 188 

through BET technique, which analyses the adsorption/desorption isotherms of gases at 189 

low temperature.21 Nitrogen adsorption-desorption isotherms, shown in Figure 2 (a-c), 190 

are mainly classified as type IV isotherms with a hysteresis loop.22 This type of isotherm 191 

denotes a mesoporous material (pore diameters of 2–50 nm) with the hysteresis loop 192 

being associated with the capillary condensation of nitrogen within the mesopores. In 193 

details, the relative pressure at which the hysteresis of adsorption/desorption is recorded 194 

in the isothermal profiles may account for the different pore size distribution in films 195 

having different morphology. By comparing BET data of Figure 2 with FESEM images 196 

shown in Fig. 1, two orders of porosity can be traced in each of the three films. The 197 

“first-order” porosity is the one given by large intra-algae pores with diameter size in the 198 

range of tens of nanometers and gives rise to the hysteresis in the low partial pressure 199 

range of the isotherms. The “second order” porosity is instead the one of voids between 200 

clusters composing each single algae of the film; these have a diameter in the range up to 201 

tens of nanometers and are represented by the hysteresis in the high partial pressure range 202 

of the isothermal profile. In sample 40Pa, the “first order” porosity dominates the overall 203 
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porosity, as from the position of the hysteresis in the isothermal profile as well as 204 

visually confirmed by FESEM analysis.  205 

 206 

Figure 2 Isothermal profiles of single-layered Si films prepared at increasingly higher 207 

applied deposition pressures: (a) 40Pa, (b) 60Pa, (c) 100Pa. 208 

On the contrary, the “second” order porosity becomes more important in films produced 209 

at higher pressure. As a consequence, the hysteresis in the isotherms shifts towards the 210 

range of higher partial pressures; this is particularly evident in sample Si-100, where 211 

almost only the “second” order porosity is present. Exploiting the BET theory, the 212 
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following values of specific surface area were obtained for each sample prepared varying 213 

the deposition pressure: 68, 109 and 189 m2 g−1 for sample Si-40, Si-60 and Si-100, 214 

respectively. As expected, surface area values increase almost linearly with the increase 215 

in the applied deposition pressure from 40 to 100 Pa, in good agreement with SEM 216 

analysis and with previous literature on porous films of silicon or other materials 217 

prepared by PLD.23,24 218 

Raman analysis on the as-prepared single-layered Si nanostructured anodes before 219 

electrochemical tests reveals the amorphous character of their structure (see Fig. 3, where 220 

only the Raman spectrum of sample 40Pa is shown as representative for the three 221 

samples prepared), as from the characteristic Gaussian bands centred around 145, 330, 222 

430 and 490 cm−1 that are generally attributed to the transverse acoustic (TA), 223 

longitudinal acoustic (LA), longitudinal optic (LO) and transverse optic (TO) modes of 224 

amorphous Si, respectively.25  225 

 226 

Figure 3 Raman spectrum of Si-40 (thick line), fitted by the characteristic Gaussian 227 

curves of amorphous silicon (thin lines). 228 
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In samples produced at 100 Pa, an additional peak at 515 cm-1 was detected, being 229 

attributed to the transverse optic (TO) mode of silicon crystals of nanometric size, in 230 

agreement with the literature26–28 and with the capability, demonstrated in previous works, 231 

to grow Si nanocrystals by PLD (2.5 to 6 nm), embedded in an amorphous matrix20.  232 

The ambient temperature electrochemical behaviour was evaluated in laboratory-scale 233 

lithium test cells and carried out by means of cyclic voltammetry and galvanostatic 234 

discharge/charge cycling at various current regimes. Results are shown in the plots of 235 

Figure 4 (a-c). Note that the electrodes were used as-grown on the Cu current collector, 236 

without any addition of binders and/or conducting additives.  237 

The typical cyclic voltammetric response of the porous silicon nanostructures prepared 238 

by PLD is shown in Figure 4 (a) in its initial 10 cycles. Sample deposited at 40 Pa is 239 

representative for the complete set of samples here prepared. It was performed at the scan 240 

rate of 0.1 mV s−1 between 0.02 and 1.5 V vs. Li+/Li. The cyclic voltammograms (CV) 241 

show the typical behaviour of silicon electrodes upon reversible alloying/dealloying 242 

reactions with lithium ions,29,30 resulting in two main couples of anodic and cathodic 243 

peaks. In details, in the initial scan towards lower potential values, it shows two cathodic 244 

peaks at below 0.2 V vs. Li+/Li (i.e., around 0.15 V as the dominant, and around 0.05 V), 245 

characteristics of the lithiation step into amorphous silicon. These are reflected in the 246 

following anodic scan, where the two corresponding broad anodic peaks, centred at about 247 

0.3 V and 0.47 V vs. Li+/Li, indicate a two-step lithium extraction process from the Li–Si 248 

alloy back to amorphous Si. In the second cathodic scan, the broad cathodic peaks 249 

slightly shift towards higher potential values (e.g., the dominant centred at ca. 0.18 V). It 250 

is supposed to come from a slightly different kinetics in the alloying process due to the 251 
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formation of slightly different metastable amorphous LixSi phases according to the 252 

previous literature31.  253 

 254 

Figure 4 Ambient temperature electrochemical behaviour in lab-scale lithium test cells 255 

of as-grown mesoporous single-layered Si nanostructures: (a) cyclic voltammetry (cycles 256 

1-10) of sample 40Pa in the potential range of 0.02–1.5 V vs. Li+/Li at a scan rate of 0.1 257 

mV s−1, (b) galvanostatic discharge/charge potential vs. specific capacity profiles of 258 

sample 40Pa at 130 µA cm−2, (c) specific capacity vs. cycle number of the three samples. 259 

Moreover, in (d) the Raman spectra taken on Si-40 and Si-60 anodes after 260 

electrochemical tests are shown (together with the large band of amorphous silicon, the 261 

peaks of Li2CO3 are highlighted). 262 

Regarding the formation of the solid electrolyte interphase (SEI) layer, it appears in the 263 

first cathodic scan as a broad faint signal between 0.6 and 0.4 V vs. Li+/Li. 264 

ebiserni
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The potential vs. time profiles upon discharge (lithiation) and charge (delithiation) for 265 

sample 40 Pa, are shown in plot (b) of Figure 4. The charge/discharge current rate used 266 

for each sample was 0.1 mA, corresponding to about 130 µA cm−2. Profiles show the 267 

typical features of amorphous silicon electrodes, with an initial discharge cycle being 268 

rather different from the following ones due to the formation of the SEI layer and to the 269 

presence of high oxygen content at the surface of the electrode, as usual for amorphous 270 

silicon nanoparticles. This causes the relatively large irreversible capacity loss, which 271 

always results in low initial Coulombic efficiency for these kind of electrode materials. 272 

The cycling performance of the mesoporous single-layered Si nanostructures in lab-scale 273 

lithium test cells is shown in Figure 4(c). The initial 30 galvanostatic cycles account for 274 

good initial capacity higher than 200 µAh cm−2 for all of the three porous films, with a 275 

capacity loss of about 40 % for sample 40 Pa and 50 % for both 60 Pa and 100 Pa upon 276 

initial lithiation; this is a reasonably low value for initial capacity decay if compared to 277 

similar high-surface-area silicon nanostructures reported in the literature30. Based on the 278 

kind of synthesis adopted in the present work, the sample having lower surface area 279 

available for reaction with the electrolyte, i.e. the one prepared at a pressure of 40 Pa, 280 

shows in fact lower capacity loss during initial lithiation. This is reflected also in the 281 

overall electrochemical behaviour, which is superior both in terms of higher specific 282 

capacity values and stability upon reversible cycling, and results in the highest value of 283 

capacity retention (around 77 %) after 30 discharge/charge cycles in lithium cell. 284 

After electrochemical tests, some of the cells were opened to characterize their status 285 

after-cycling. Representative Raman spectra of the anodes were acquired after their 286 

washing in EC:DEC in order to remove residuals from the electrolyte as well as glass-287 

ebiserni
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fibres from the separator. In addition to the bands of amorphous silicon, the spectra 288 

reveal on all of the samples the presence of intense and sharp peaks at 96, 127, 156, 193, 289 

273 cm−1 that constitute the fingerprint of lithium carbonate (Li2CO3). As reported in 290 

several studies in the literature, Li2CO3 comes from the electrolyte decomposition in 291 

those systems that use LiPF6 as the salt dissolved 24–27. 292 

Multi-layered Si/C bi-component films 293 

In order to improve the cycling performance of the newly elaborated silicon 294 

nanostructures, the sample having the most promising prospects in terms of galvanostatic 295 

cycling, namely Si-40, was successively prepared in the form of a multi-layered 296 

nanocomposite film where Si-40 layers were alternated to C ones. In this way, multi-297 

layered structures were grown where Si and C were alternated 9 times (10 layers, 5 298 

couples Si-C), starting with Si in contact with the copper collector and terminating with 299 

C on top of the whole stack. The role of the C top layer is to promote the formation of a 300 

stable SEI being in direct contact with the electrolyte, while the C layers in between of 301 

the stack are meant to improve the overall electrical conductivity and buffer the volume 302 

expansion of the Si layers. The multi-layered sample was then annealed at 400 °C for 5 303 

minutes in inert atmosphere. The annealing treatment is thought to be effective for 304 

internal stress relaxation and is supposed to improve the adhesion of the Si film onto the 305 

copper substrate. 306 

ebiserni
Testo inserito
via copper diffusion into Si (this would strengthen the adhesion of Si film to the Cu substrate and prevent, in principle, the loss of electrical contact between active material and current collector during cycling [M.E. Stournara, X. Xiao, Y. Qi, P. Johari, P. Lu, B.W. Sheldon, et al., Nano Lett. 13 (2013) 4759–68.].
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, as recently shown by Hassan et al. [F. M. Hassan, V. Chabot, A. R. Elsayed, X. Xiao, and Z. Chen, “Engineered si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation li-ion batteries.,” Nano Lett., vol. 14, no. 1, pp. 277–83, Jan. 2014.]
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  307 

Figure 5 (a,b) Cross-sectional views at different magnification and (c) Raman spectrum 308 

of the multi-layered Si/C-40 film. 309 

Cross-sectional views of the multi-layered Si/C-40Pa film acquired at different 310 

magnifications are shown in Figure 5(a,b). The alternated Si and C stacks are clearly 311 

visible for this sample, where silicon was grown at 40Pa, unlike the more porous samples 312 

with Si deposited at higher pressures (not shown here). Probably, the higher porosity of 313 

the single Si layer provides a rough surface for the deposition of C, which can then 314 

infiltrate into Si instead of forming a separate layer. 315 
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Raman investigation on multilayered samples is discussed upon considering the spectral 316 

range as divided into two parts: the one containing the features arising from Si layers 317 

(100-600 cm-1), the other one accounting for C layers (1000-1800 cm-1). In the range 318 

100-600 cm-1 (left-hand side of the spectrum in Figure 5c), Raman spectra recorded on 319 

as-deposited samples show the characteristic features of amorphous Si, i.e. the bands  320 

related to the transverse acoustic (TA), longitudinal acoustic (LA), longitudinal optic 321 

(LO) and transverse optic (TO) modes25, respectively, as in the case of single-layered 322 

samples. For multilayered samples, the spectral region between 1000 and 1800 cm-1 was 323 

also considered, and the spectra were fitted with four Gaussian curves, following the 324 

procedure described by Ferrari et al.36. The right-hand side of the spectrum in Figure 5(c) 325 

features the two typical bands of amorphous graphitic carbon, the one intense and broad 326 

around 1330 cm-1 (D band) and the narrower one around 1540 cm-1 (G band), this latter 327 

being associated to the in-plane stretching of sp2 bonds. D band, instead, arises from the 328 

breathing mode of C-rings in disordered layers, e.g. from distorted 6-folded rings or from 329 

rings of different order36,37.  330 

Van der Pauw measurements were performed on the multi-layered Si/C-40Pa sample 331 

either annealed or not, in order to estimate the film conductivity in the two cases. As 332 

summarized in Table 1, the annealed samples show a 10-times smaller resistivity with 333 

respect to the non-annealed ones. It is not straightforward to extract a value of 334 

conductivity from these measurements, due to the inhomogeneous structure of the film 335 

(i.e., a nanostructured nanoporous assembly) and, hence, the resistivity and conductivity 336 

should be considered as effective quantities, viz. obtained by considering the film as 337 

composed by an effective uniform 1µm-thick medium.  338 
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Sample Eff. Resistivity 
(Ω cm) 

Eff. Conductivity 
(Ω cm)−1 

Si/C-40 
annealed 1.37E+03 7.29E-04 

Si/C-40 
not annealed 1.33E+04 7.51E-05 

Table 1. Van der Pauw measurements on multi-layered Si/C-40, annealed and not-339 

annealed. 340 

The annealed multi-layered Si/C-40 nanocomposite film was then tested under the same 341 

constant current conditions as for the single-layered samples (i.e., 0.1 mA, viz. about 130 342 

µA cm−2) between 0.02 V and 1.5 V (vs. Li+/Li). The cycling response at ambient 343 

temperature is shown in Figure 6, where both the charge/discharge potential vs. specific 344 

capacity profiles (graph a) and specific capacity vs. cycle number along with Coulombic 345 

efficiency (graph b) are plotted. In general, annealed samples showed good cyclability. 346 

The initial capacity of about 400 µAh cm−2 is lost at only 15 % during the first cycle and 347 

then rapidly stabilizes slightly above 300 µAh cm-2 in the following cycles. Noteworthy, 348 

the specific capacity exceeds 295 µAh cm-2 after prolonged operation of 100 349 

discharge/charge cycles. Clearly, if compared to the corresponding single-layered Si 350 

sample shown in Fig. 4, both a noticeable increase in the overall specific capacity as well 351 

as a profound improvement in the stability upon prolonged cycling was successfully 352 

obtained. Also the Coulombic efficiency rapidly reaches 99 % after the initial cycles and 353 

then stabilizes. It is noteworthy that galvanostatic charge/discharge curves of the 354 

reference samples (not annealed) were affected by a sudden drop in capacity during the 355 

initial cycles, with rapid cell failure. Thus, as expected, the annealing step proved to be 356 
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beneficial for the stability of the anodes, confirming the explanations provided in the 357 

literature about CVD-induced effects38. Moreover, the role of the top layer of carbon in 358 

promoting the formation of a stable SEI is confirmed by the much more limited specific 359 

capacity loss upon initial lithiation (below 15 %), if compared to the much more 360 

pronounced irreversible capacity loss exceeding 40 % demonstrated by the corresponding 361 

mesoporous single-component Si film. 362 

 363 

Figure 6 Ambient temperature galvanostatic cycling behaviour of the annealed multi-364 

layered Si/C-40 nanocomposite film at 130 µA cm−2: (a) representative constant current 365 

discharge/charge potential vs. specific capacity profiles (100th cycle), (b) specific 366 

capacity vs. cycle number along with Coulombic efficiency. 367 

The results obtained clearly indicate that the multi-layered bi-component Si/C films 368 

prepared by sequential PLD deposition at 40Pa and successively annealed at 400 °C own 369 

a great potential to be used as a high capacity, highly stable anode material in the next-370 

generation of lithium-based (micro)batteries. 371 
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Conclusions 372 

Silicon is very attractive as active material for Li-ion battery anodes due to its high 373 

theoretical capacity, but proper nanostructuration is needed to accommodate the large 374 

volume expansion/shrinkage upon reversible cycling. This would overcome the 375 

disgregation induced by the lithiation/delithiation processes, often resulting in poor long-376 

term performance. 377 

In this work, mesoporous nanostructured silicon anodes were fabricated by Pulsed Laser 378 

Deposition technique, characterised and electrochemically tested in lab-scale lithium test 379 

cells. Different deposition pressures were exploited in order to evaluate the influence of 380 

this process parameter on the morphological/electrochemical characteristics of the 381 

resulting nanostructures. The sample prepared at lower deposition pressure, having 382 

porosity featured by larger average pore size and lower surface area, showed initial 383 

capacity approaching 250 µAh cm−2 upon 30 galvanostatic discharge/charge cycles. We 384 

believe that the higher stability of the samples deposited at lower pressure can be related 385 

to their lower surface area. On the contrary, the higher surface area of the more porous 386 

samples (samples 60 Pa and 100 Pa) is likely to be responsible for their increased 387 

capacity fade; more surface area is involved, in fact, in the side reactions with the 388 

electrolyte and, hence, more capacity is lost in forming the interphase layer. The 389 

appearance of intense peaks attributed to Li2CO3 in the Raman spectra confirms that 390 

losses due to the SEI formation are relevant to the proper operation of the single-layered 391 

films. 392 

Moreover, alternated deposition of Si/C layers by PLD has proven to be a straightforward 393 

method to produce multi-layered bi-component electrode films in one processing step. 394 
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The addition of carbon and mild annealing at 400 °C stabilized the electrochemical 395 

performance in lithium cells: compared to the corresponding single-layered Si sample, 396 

both a noticeable increase in the overall specific capacity as well as a very profoundly 397 

improved stability upon prolonged cycling has been successfully obtained. The beneficial 398 

impact of an increased conductivity upon annealing may have a role in the improved 399 

electrochemical performances of the annealed silicon anodes, as it can promote faster 400 

kinetics in lithiation-delithiation. 401 

Thus, engineering voids at the nanoscale, by direct introduction of specific porosity 402 

during growth and producing alternated Si and C multi-layered nanocomposite films, 403 

opens up the route for the effective use of silicon as lithium battery anode without the 404 

need for any binder or conductive additive that would lower the overall energy density of 405 

the resulting device. Further developments of this work shall include a thorough study of 406 

the effects of annealing at lower temperatures, in view of larger scale applicability. This 407 

would lead to a definition of an optimum temperature, i.e. the minimum one for the 408 

stabilizing effect to occur, and provide useful information for the successive integration 409 

of the annealing step into the deposition process, by means of a heated sample-holder. 410 

This would further reduce fabrication steps, making it possible to deposit and anneal 411 

silicon and carbon in one single processing step. 412 
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