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Abstract—In this paper we present a set of techniques that
enable the synthesis of efficient custom accelerators for memory
intensive, irregular applications. To address the challenges of ir-
regular applications (large memory footprint, unpredictable fine-
grained data accesses, and high synchronization intensity), and
exploit their opportunities (thread level parallelism, memory level
parallelism), we propose a novel accelerator design that employs
an adaptive and Distributed Controller (DC) architecture, and
a Memory Interface Controller (MIC) that supports concurrent
and atomic memory operations on a multi-ported/multi-banked
shared memory. Among the multitude of algorithms that may
benefit from our solution, we focus on the acceleration of graph
analytics applications and, in particular, on the synthesis of
SPARQL queries on Resource Description Framework (RDF)
databases. We achieve this objective by incorporating the synthe-
sis techniques into Bambu, an Open Source high-level synthesis
tools, and interfacing it with GEMS, the Graph database Engine
for Multithreaded Systems. The GEMS’ front-end generates
optimized C implementations of the input queries, modeled as
graph pattern matching algorithms, which are then automatically
synthesized by Bambu. We validate our approach by synthesizing
several SPARQL queries from the Lehigh University Benchmark
(LUBM).

I. INTRODUCTION

The exponential growth in the availability of data in many
areas, such as finance, commerce, government, healthcare,
cybersecurity, communication networks, transportation net-
works, social networks, and the Web, is driving the needs
for effective methods to extract value from the data itself.
The challenges reside not only in the unprecedented size of
the data to process, but also in the requirement to process
them as quickly as possible to provide actionable answers to
queries. Data, in fact, dynamically changes and late results
could be not useful or even generate major risks. To address
these issues, researchers have started to explore the use of High
Performance Computing (HPC) approaches and techniques to
Data Analytics, hence giving birth to High Performance Data
Analytics (HPDA).

A distinct characteristic of these data is that they usually are
unstructured or poorly structured. Data structures such as graph
appear capable of organizing the collected data in a supportive
manner: graphs are space efficient and can effectively represent

the dynamically changing relationships among the elements
of the datasets by adding or removing edges. Unfortunately,
graphs are prototypical irregular data structures. Their ex-
ploration is inherently parallel, but algorithms proceed by
executing fine-grained, unpredictable data accesses and exhibit
high synchronization intensity. In addition, parallelism is dy-
namic and datasets are difficult to partition without generating
load imbalance among the concurrent activities. Modern HPC
systems are multi-node clusters that implement multi-core pro-
cessors with complex cache hierarchies, which reduce memory
access latency and improve performance of regular workloads.
They also have high floating point performance, which the
coupling with accelerators, such as Graphic Processing Units
(GPUs), increases even more. Finally, the network interconnect
between nodes is optimized for large, batched transfers, and
becomes heavily under-utilized with small messages. Because
of these characteristics, graph-based algorithms and, in general,
data analytics perform poorly on these systems. The Graph
database Engine for Multithreaded Systems (GEMS) [1] is
one of the first relevant examples of HPDA applications.
GEMS implements a Resource Description Framework (RDF)
database on a commodity cluster by mainly employing graph
methods at all levels of his stack. To address the limitations of
HPC systems, GEMS employs a runtime that provides: a global
address space across the cluster, so that data do not need to
be partitioned, lightweight software multithreading, to tolerate
data access latencies, and message aggregation, to improve
network utilization with fine-grained transactions. A graph
application programming interface (API) and a set of methods
to ingest RDF triples and generate the related graph and
dictionary are built with the functions provided by the runtime.
On top of the whole system, a translator converts query
expressed in SPARQL to graph-pattern matching operations.

Accelerators based on reconfigurable devices such as
Field Programmable Gate Arrays (FPGAs) are emerging as a
promising platform for HPDA applications. The Microsoft Cat-
apult [2] project has integrated FPGAs in Microsoft-designed
servers to improve performance, reduce power consumption,
and provide new capabilities in the datacenter. The Convey
HC and MX hybrid platforms integrate high density FPGAs
with general-purpose processors, providing optimized high-
bandwidth, host-coherent, memory controllers. The Convey



WX (Wolverine) accelerator is a PCI-Express drop-in solution
that provides similar features. The high density of latest gener-
ation FPGAs enables exploiting the inherent parallelism of data
analytics applications by physically replicating the kernels. The
possibility to customize the accelerators’ design allows better
exploiting the available memory bandwidth, coping with the
peculiar applications’ features. However, designing accelera-
tors by employing Hardware Description Languages (HDL) is
hard and time-consuming. Hand-designed accelerators usually
provide very high performance, but can address only a very
specific set of algorithms. High Level Synthesis approaches,
which generate HDL starting from descriptions in higher-level
languages (such as C/C++), try to bridge this productivity
gap. Historically, HLS tools have targeted regular, compute
intensive applications. The reason is that regularity allows ap-
plying a large number of transformations, enabling extraction
of Instruction Level Parallelism (ILP). Although modern HLS
solutions try to better support task-parallel specifications, they
still mainly focus on regular and compute intensive code. This
allows primarily dealing with known latencies and exploiting
latency reduction techniques. Only a very limited number of
approaches started looking at possibilities to address issues of
irregular and memory-intensive workloads.

In this paper we discuss how we extended Bambu, an open-
source HLS synthesis tool, with techniques to better support
HPDA applications. Differently from other HLS approaches,
which focus on extracting Instruction Level Parallelism (ILP)
and generate a statically scheduled Finite State Machine with
Datapath (FSMD), our tool is able to exploit Task Level
Parallelism (TLP) by employing adaptive Distributed Con-
trollers (DCs). The DCs, structured as a set of interacting
control elements, enable dynamic scheduling. The resulting
set of kernels can concurrently access multi-banked/multi-
ported high bandwidth shared-memories through a Memory
Interface Controller (MIC). The MIC provides concurrency
control, dynamic routing of memory accesses and conflicts
management, and supports atomic memory operations. We
show a real use case for this HLS flow, starting from GEMS
and queries from the Lehigh University Benchmark (LUBM).
Whereas GEMS executes the queries converted to C/C++
through its multithreaded runtime, we synthesize the resulting
C/C++ graph pattern matching algorithms onto an FPGA
through Bambu. The generated accelerator implements a full
query. We evaluate the flow with datasets of varying size, while
changing the number of parallel kernels that implement the
queries and the number of memory ports.

The paper proceeds as follows. Section II briefly surveys
the related work. Section III presents the proposed architecture
template, detailing the DC, the MIC, and discussing how they
are implemented in the HLS flow. Section IV describes the
integration of GEMS and Bambu. Section V is about the
experimental evaluation. Finally, Section VI concludes the
paper.

II. RELATED WORK

The approach discussed in this paper touches several areas
of research in reconfigurable architectures and HLS. These
include the synthesis of distributed controllers, the exploitation
of task-level parallelism and the synthesis of parallel specifica-
tions, the design of accelerators for irregular and graph kernels

(such as graph breadth first exploration) on reconfigurable
devices, and accelerators for databases.

Synthesis of distributed controllers. Because conventional
HLS tools generate accelerators that exploit centralized con-
trollers, the majority of the approaches look at decomposing
the FSM to reduce its complexity. Among the variety of works,
we highlight approaches that restructure the controller in a
hierarchical way [3], [4], even using State Charts descriptions
[5]. Some solutions, like [6], employ a pseudo-distributed
approach that enables supporting Speculative Functional Units.
The final architecture still relies on a static schedule, but a
local controller dynamically checks results of SFUs without
stalling the whole datapath. Our approach, instead, is built
from the beginning with distributed controllers, and does not
consider any fixed schedule, avoiding runtime conflicts on
shared resources through arbiters.

Task-Level Parallelism Exploitation. The use of a central-
ized FSM to exploit parallelism across the boundary of basic
blocks may lead to an exponential increase in complexity.
Several approaches solve the problem by synthesizing tasks
independently and then managing their execution through cus-
tom schedulers or dedicated processors [7], [8]. Our approach,
instead, does not require any additional control unit.

HLS of Parallel Specifications. Various commercial and
research HLS flows started considering parallel specifications
as input descriptions. These include specifications annotated
in CUDA, OpenMP, OpenCL, and pthreads [9], [10]. LegUP
[11] also supports OpenMP specifications, but requires the
instantiation of an additional general purpose processor for
scheduling. Our approach does not require an additional pro-
cessor, and can support any level of nested parallelism. The
generated hardware supports nested parallelism, but limited to
only two levels of the call structure. OpenCL [12] is finding
some success, also in commercial tools [13]. However, having
been designed mainly for vector-based processors, it does not
adapt well to irregular applications.

Accelerators for irregular applications. Prominent exam-
ples of designs to accelerate graph traversal and, in general,
irregular kernels, are the BFS personalities for the Convey
HC systems [14], and the Convey MX system, which cou-
ples a multithreaded custom processor on the reconfigurable
logic with an OpenMP programming environment (CHOMP -
Convey Hybrid OpenMP) [15]. Betkaoui et al. [16] discuss
reconfigurable hardware methodologies for efficient parallel
processing of large-scale graph exploration. These, however,
either are custom accelerators for a specific kernel, or employ
general-purpose designs on the FPGA. Our approach exploits
a HLS approach. In [17], Halstead et al. discusses how to
extend the ROCCC framework to support irregular appli-
cations, introducing multithreading to tolerate long memory
access latencies. However, they do not address atomic memory
operations and focus on the simple case study of pointer
chasing.

Accelerators for databases. In the last few years, research
in reconfigurable computing has focused on finding solutions
to accelerate database operations and queries. IBM has pro-
posed a FPGA-based system to accelerate expensive operations
in relational databases queries, including data decompression
and predicate evaluation [18]. [19] discusses FPGA accelera-



tion of hash-joins on a ConveyMX, exploiting multithreading
and the support for atomic memory operations provided by
the system. IBM has also explored FPGA support for DB2
with BLU acceleration: compression techniques, paired with
the Column-Store approach, enable performing most SQL op-
erations on the compressed value, so that they can be processed
in a Single Instruction Multiple Data (SIMD) fashion. Com-
pilation of queries to FPGA for streaming databases has also
been explored [20]. [21] presents a compiler based approach
that translates SQL-based queries for software based Complex
Event Processing systems in hardware. Casper and Olukotun
in [22] show the potential of hardware acceleration for in-
memory databases with select, sort, and join operations. Dennl
et al. [23] discuss acceleration of the SQL restrict and aggre-
gate operators, employing partial dynamic reconfiguration to
compose query-specific datapaths. The poster [24] hints at the
potential of the use of HLS to fully implement queries for in-
memory databases by employing Vivado HLS. The integration
of custom units in general purpose processors to accelerate
analytics workloads and database operations has also been a
recent topic of interest (e.g., [25]). Our approach is different
from all these works. GEMS is a RDF database, that mostly
uses graph methods at all levels of its stack and the SPARQL
query language. Acceleration of conventional relational and
table-based operations can only improve management of the
result tables. We aim at fully synthesizing SPARQL queries,
but GEMS translates them in graph pattern matching oper-
ations that require different architectural designs. We provide
support for task parallel workloads, irregular memory accesses,
and atomic memory operations.

III. PROPOSED ARCHITECTURE

The majority of HLS techniques adopts the FSMD model
for the target architecture. While very effective in exploiting
ILP, this execution paradigm is inherently serial and does not
efficiently exploit coarser granularities of parallelism, such as
Task Level Parallelism (TLP). This is a significant limitation
in several application domains. HPDA applications and, in
general, irregular applications, although providing some ILP,
typically are task parallel. To overcome the limitations of the
FSMD model, we devised an alternative architecture design,
able to handle concurrent execution flows through a DC.

A. Distributed Controller Architecture

The proposed design supports parallel execution and dy-
namic scheduling through the introduction of an adaptive DC
[26]. The DC consists of a set of communicating modules,
each one associated with an operation. The approach does not
require the definition of any execution order (scheduling) at
design time, and allows run-time exploitation of parallelism.
The controller modules, called Execution Managers (EMs),
start execution of the associated operations as soon as all their
dependencies are satisfied and resource conflicts are resolved.
The minimum set of dependencies each operation is subject to,
called Activating Conditions (ACs), is computed by analyzing
the Extended Program Dependencies Graph (EPDG) of the
algorithm, which extends a typical Program Dependence Graph
(PDG) with control-flow information, such as loops’ back
edges. ACs are expressed as logic functions, and specifically
synthesized for each EM. Instead, dedicated arbiters, called

(a) (b)

Fig. 1: Example Extended Program Dependencies Graph (a)
and corresponding Distributed Controller architecture (b).

Resource Managers (RMs), associated to shared resources
manage resource conflicts: if multiple operations compete for
a resource, the arbiter establishes which one executes first,
according to a priority ordering. EMs communicate through
a lightweight token-based schema: each EM receives a to-
ken signal whenever a dependency gets satisfied. When the
controller has collected all the AC tokens (i.e., all depen-
dencies are satisfied), it checks for resource availability. If
the resource associated with the operation is free, execution
starts. The approach does not introduce any communication
overhead, because it does not use any sophisticated protocol.
Since every operation and function is managed independently,
the DC can efficiently control several concurrent execution
flows. Obtaining the same behavior with centralized FSMs is
possible, but not cheap: in fact, the complexity of a FSM
controller, in terms of number of states and transitions, is
exponential with respect to number of flows. This complexity
would lead to unfeasible designs even for relatively small
degrees of TLP. The complexity of the DC instead, grows
linearly with the number of operations, regardless of the
latency of the operations and of number of concurrent flows.
Figure 1 proposes an example of EPDG, annotated with ACs
and binding information, and the associated parallel controller
architecture. Operations 3,4,5 are bound to the same resource
C, while operations 6,7 are bound to D: the corresponding
EMs interface with RMs to avoid structural conflicts. In this
example all the operations have unknown latency (e.g. external
memory accesses, function calls, speculative operations) and
the completion of their execution is notified through explicit
done signals from the datapath to the EMs. If the execution
latency is known at design time, this signaling is not required,
and the EMs directly manage the timing.



Fig. 2: Top Level Memory Interface Controller Structure.

B. Memory Interface

The mainstream approach for TLP in hardware synthesis
is based on the replication of computing resources. Custom
hardware components implements different tasks/threads, and
the final design allocates multiple instances of such mod-
ules. In our approach we adopt the same strategy, binding
concurrent function calls to distinct hardware components,
thus allowing parallel execution. However, not all the re-
sources can be straightforwardly replicated: this is the case
of memory resources. Parallel applications usually present
tasks that share data. Consequently, memory can be a shared
resource, and allowing parallel execution of tasks requires
managing concurrent memory operations. The memory bot-
tleneck can considerably degrade performance, especially in
memory bound applications. In fact, those applications may
not have sufficient computation intensity to hide the memory
latency. Solutions based on caching require the adoption of
coherency protocols, and provide limited benefits, if any, in
the absence of locality. More suitable architectural approaches
are mostly based on memory distribution and/or partitioning.
These techniques allow concurrent access to the memory by
multiple operations, but introduce additional challenges:

• memory addresses usually are not statically known,
thus destination locations must be identified at run-
time;

• tasks may access the memory in parallel, thus they
need synchronization;

• structural conflicts on shared memory resources have
to be avoided.

In our approach we address these issues by incorporating in the
synthesized architectures an adaptive Memory Interface Con-
troller (MIC). The MIC completely manages concurrency and
synchronization of the memory resources [27]. It dynamically
maps memory operations across multiple, distributed and/or
multi-ported memories, such as those available in hybrid
systems. Figure 2 shows a high-level schematic representation
of the MIC. The MIC takes in input memory access requests
from N ports, which have an address, a data and an operation
type (load/store) line. The MIC routes requests towards one
of the M output ports by evaluating their addresses. It serves
a request as soon as the corresponding port is available. In
a similar way, it routes back M done signals (which notify
termination of an operation) and the results (in case of loads)
to the requesting operation. The memory is composed of M

different and independent banks, and each output port accesses
one bank. Each memory bank has non-overlapping addresses.
Accesses are routed towards a specific memory port at runtime,
providing efficient support of the unpredictable memory access

patterns typical in irregular applications. Customizable control
logic, synthesized according to the particular scrambling func-
tion that distributes the data on the memory system, performs
the routing. A lightweight arbitration scheme, which avoids
any structural conflict on shared resources and does not in-
troduce any further delay, provides concurrency management.
For arbitration, we employ RMs also in the MIC, similarly
to the DC. Access routing and resource availability checks
both occur at runtime, enabling the MIC to issue concurrent
memory operations, provided that they do not address the same
memory locations. This improves system memory bandwidth
utilization. Support of atomic memory operations, such as
fetch-and-add and compare-and-swap enables synchronization.
The RMs reject further memory requests on a memory loca-
tion accessed by an atomic memory operation, guaranteeing
atomicity.

C. Synthesis Flow

We have implemented a complete HLS flow that automati-
cally generates the proposed architecture by extending Bambu,
a state-of-the-art HLS tool available under GPL. Bambu takes
in input a C-code specification and synthesis objectives (e.g.
target frequency and area), and outputs a Verilog implemen-
tation, directly synthesizable on a variety of devices from
several vendors (Altera, Xilinx, Lattice). Bambu’s conventional
target architecture is a FSMD. Bambu’s flow has three main
components: front-end, synthesis and back-end. The front-end
phase processes the input specification, employing the GNU
Compiler Collection (GCC). The front-end analyzes the input
specifications and applies code transformations and optimiza-
tions (loop unrolling, function inlining, constant propagation,
etc). The process generates several graph-based Internal Rep-
resentations (IR), such as Control Flow Graphs, Data Flow
Graphs, Program Dependence Graphs and Call Graphs. The
synthesis phase takes those IRs in input and synthesizes the
application one function at a time, following the structure of
the call graph. This results in a modular, hierarchical design.
The main activities that the flow performs, as in most HLS
approaches, are: operation scheduling; allocation and binding
of functional units, registers and interconnections. Finally, the
back-end generates the final circuit description in Verilog,
together with the simulation and synthesis scripts that enables
Bambu to directly interface with 3rd-party tools.

To generate the DC architecture, we either designed
novel synthesis techniques or heavily customized previous ap-
proaches. In fact, the majority of HLS algorithms requires the
definition of an execution schedule. The proposed approach,
instead, does not consider any pre-determined execution order-
ing, because the DCs dynamically execute operations. When
compared to the FSMD flow, the proposed approach mandates
additional front-end analysis steps to build the EPDG and
compute the ACs. From the point of view of HLS techniques,
instead, we adopt custom algorithms for register [28] and
module binding [29]. On the other hand, the introduction of
the MIC does not require significant changes to the synthesis
algorithms.

IV. QUERY PROCESSING

Our framework generates the hardware implementation of
SPARQL queries translated into C++ graph pattern matching



routines. To obtain efficient C++ implementations, we exploit
some functionality offered by the GEMS software stack.
GEMS, the Graph database Engine for Multithreaded Systems
[1], is a multilayer software infrastructures for graph analytics,
composed of three main components:

1) GMT, Global Memory and Threading: GMT is a
custom runtime library that provides features to improve effi-
ciency of irregular applications on commodity clusters. GMT
implements a global address space across all the (distributed)
memories of the nodes in a cluster, removing the requirements
to partition dataset. It tolerates latencies to access data in
remote nodes through lightweight software multithreading.
Finally, it increases network bandwidth utilization through
message aggregation.

2) SGLib, Semantic Graph Library: SGLib implements
the methods to load and access the database, to perform
graph traversal, and to manipulate the data structures. The
methods exploit GMT primitives, hiding the runtime primitives
to higher levels of the stacks or to users that want to implement
their own queries in C++.

3) SPARQL-to-C++ Translator: the translation process
is composed of three main stages. The translator initially parses
the query, and then constructs an algebraic representation
(High Level Intermediate Representation - HLIR) of the query,
expressed as a Directed Acyclic Graph (DAG). Then, the
translator processes the HLIR to identify an optimal query
plan, and serializes it, producing a Low Level Intermediate
Representation (LLIR). Finally, the code emitter generates the
output C++ code, built upon SGLIB primitives.

GEMS allows implementing RDF databases on top of
Commodity Clusters. RDF is a data model proposed by the
W3C that organizes data in forms of subject-predicate-object
triples that naturally maps to directed, labeled graphs. It
is typically used to collect and organize data coming from
finance, government, healthcare, cybersecurity, transportation
networks, communication networks, social networks and for
the semantic Web. SPARQL is a common query language for
RDF databases that expresses a query as the search of a graph
pattern on the dataset. Differently from other RDF triplestores,
which are typically built on top of conventional relational
databases and have to resort to relational select and joins at
some point during query processing, GEMS employs mainly
graph methods in all layers of its stack. For this reasons, GEMS
heavily adopts High Performance Computing techniques to
speed up the graph algorithms.

Coupling GEMS and Bambu

Figure 3 illustrates how GEMS is integrated with Bambu.
We have customized some of GEMS’ layers to make them
generate C implementations of the queries that Bambu can
synthesize. Specifically, we extended SGLib, developing an
alternate version of the graph API written in C-language that
does not use the GMT runtime. We modified the code emitter
accordingly. Figure 4 shows a sample SPARQL query, together
with its graph pattern representation.

When processing this query, the custom SPARQL-2-C
translator generates the C-code implementation as listed in
Figure 5a.

Fig. 3: Structure of the GEMS stack and interacion with
Bambu HLS.

SELECT ?x ?y

WHERE {

?y ub:subOrganizationOf

<http://www.University0.edu> .

?y rdf:type ub:Department .

?x ub:worksFor ?y .

?x rdf:type ub:FullProfessor

}

(a)

<http://www.University0.edu>

?Y

ub:subOrganizationOf

ub:Department

rdf:type

?X

ub:worksFor

ub:FullProfessor

rdf:type

(b)

Fig. 4: Example Query Q6: full professors working at a
department of University0.

The pattern matching function consists of a nest of parallel
loops: each loop corresponds to matching a particular edge of
the graph pattern that composes the query. In SPARQL queries,
both vertices and edges may be either constant (represented
through their value in the input data) or variable. The labels
of constant elements, used the perform value checking during
the query execution, acts as input parameters for the search
function. This allows supporting with just one procedure differ-
ent queries that differ only for those labels. Bambu processes
the query implementation generated by GEMS. It applies
code transformations to better expose TLP for the proposed
architecture. In particular, Figure 5b shows how parallel loops
are partially unrolled, with an unrolling factor equal to the
number of kernel instances allocated in the synthesized archi-
tecture. Currently, the user must provide this number. The flow
bounds all the kernel instances in the unrolled loop to different
hardware modules during the synthesis, enabling concurrent
execution. The DC manages the concurrent execution.



1 void search(Graph * graph, NodeId var_2, Label p_var_3, LabelId

p_var_4, LabelId p_var_5, LabelId p_var_7, LabelId p_var_8,

LabelId p_var_9) {

2 size_t in_degree_var_2 = getInDegree(graph, var_2);

3 Edge * var_2_1_inEdges = getInEdges(graph, var_2);

4 for(size_t i_var_3 = 0; i_var_3 < in_degree_var_2; i_var_3++) {

5 LabelId var_3; //el. with label "ub:subOrganizationOf"

6 var_3 = var_2_1_inEdges[i_var_3].property;

7 NodeId var_1; //el. with label "?Y"

8 var_1 = var_2_1_inEdges[i_var_3].node;

9 if(var_3 == p_var_3) {

10 size_t in_degree_var_1 = getInDegree(graph, var_1);

11 Edge * var_1_3_inEdges = getInEdges(graph, var_1);

12 for(size_t i_var_7 = 0; i_var_7 < in_degree_var_1; i_var_7++)

{

13 LabelId var_7; //el. with label "ub:worksFor"

14 var_7 = var_1_3_inEdges[i_var_7].property;

15 NodeId var_6; //el. with label "?X"

16 var_6 = var_1_3_inEdges[i_var_7].node;

17 if(var_7 == p_var_7) {

18 size_t out_degree_var_6 = getOutDegree(graph, var_6);

19 Edge * var_6_5_outEdges = getOutEdges(graph, var_6);

20 for(size_t i_var_9 = 0; i_var_9 < out_degree_var_6;

i_var_9++) {

21 LabelId var_9; //el. with label "rdf::type"

22 var_9 = var_6_5_outEdges[i_var_9].property;

23 NodeId var_8; //el. with label "ub:FullProfessor"

24 var_8 = var_6_5_outEdges[i_var_9].node;

25 if((var_9 == p_var_9) && (var_8 == p_var_8)) {

26 size_t out_degree_var_1 = getOutDegree(graph, var_1);

27 Edge * var_1_7_outEdges = getOutEdges(graph, var_1);

28 for(size_t i_var_5=0; i_var_5<out_degree_var_1;

i_var_5++) {

29 LabelId var_5; //el. with label "rdf::type"

30 var_5 = var_1_7_outEdges[i_var_5].property;

31 NodeId var_4; //el. with label "ub:Department"

32 var_4 = var_1_7_outEdges[i_var_5].node;

33 if((var_5 == p_var_5) && (var_4 == p_var_4))

34 insertResults(var_6);

35 }

36 }

37 }

38 }

39 }

40 }

41 }

42 }

(a)

1void kernel(size_t i_var3, Edge * var_2_1_inEdges, Graph

* graph, NodeId var_2, Label p_var_3, LabelId

p_var_4, LabelId p_var_5, LabelId p_var_7, LabelId

p_var_8, LabelId p_var_9) {

2LabelId var_3; //el. with label "ub:subOrganizationOf"

3var_3 = var_2_1_inEdges[i_var_3].property;

4NodeId var_1; //el. with label "?Y"

5var_1 = var_2_1_inEdges[i_var_3].node;

6if(var_3 == p_var_3) {

7size_t in_degree_var_1 = getInDegree(graph, var_1);

8Edge * var_1_3_inEdges = getInEdges(graph, var_1);

9for(size_t i_var_7 = 0; i_var_7 < in_degree_var_1;

i_var_7++) {

10// Same as Fig. 5a lines [13--38]

11...

12}

13}

14}

15

16

17void search(Graph * graph, NodeId var_2, Label p_var_3,

LabelId p_var_4, LabelId p_var_5, LabelId p_var_7,

LabelId p_var_8, LabelId p_var_9) {

18size_t in_degree_var_2 = getInDegree(graph, var_2);

19Edge * var_2_1_inEdges = getInEdges(graph, var_2);

20size_t i_var_3;

21

22for(i_var_3=0; i_var_3 < in_degree_var_2%4; i_var_3++)

{

23kernel(i_var3, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8, p_var_9);

24}

25

26for(; i_var_3 < in_degree_var_2%4; i_var_3+=4) {

27kernel(i_var3, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8, p_var_9);

28kernel(i_var3+1, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8, p_var_9);

29kernel(i_var3+2, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8, p_var_9);

30kernel(i_var3+3, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8, p_var_9);

31}

32}

(b)

Fig. 5: Pseudo code for the pattern matching routines of example query Q6

V. EXPERIMENTAL RESULTS

We validated our approach by synthesizing a set of queries,
such as the one in Figure 5, from the LUBM benchmark. We
consider seven queries from the set used in [30]. Objective of
LUBM is to evaluate performance of Semantic Web reposito-
ries in a standard and systematic way. It evaluates performance
considering queries over a datasets originated from a single
realistic ontology. LUBM consists of a university domain
ontology, customizable and repeatable synthetic data, a set of
test queries, and several performance metrics. We generated
two different datasets: LUBM-1, consisting of 100,573 triples,
and LUBM-40, consisting of 5,309,056 triples. A RDF triple
corresponds to a subject-predicate-object clause. A set of
triples naturally maps to a directed labeled graph.

To evaluate the effectiveness of the proposed approach, we
synthesized the queries with two different configurations. In
the first (Serial), the generated accelerator is serial (i.e., a
single task). In the second, the generated accelerator is parallel,
implementing 4 hardware kernels (T = 4) and a MIC with 4

memory channels (M = 4). We synthesized all the designs
with Vivado 2015.1, targeting a Xilinx Virtex-7 xc7vx690t
(the same device used in a Convey Wolverine WX690). We
set a target frequency of 100 MHz for the synthesis. Table I
reports the performance of the design in terms of execution
latency (clock cycles) and maximum clock frequency. We can
see that the synthesized architecture (T = 4, M = 4) is
able, in general, to provide speed ups with respect to the
serial one. With the small dataset, the average speed up is
around 2.1, raging from 1.03 (Q1) to 3.13 (Q3), depending
on the query. With the large datasets, the average speedup is
similar (2.05), with a minimum of 1.08 (Q1 and Q6) and a
maximum of 3.13 (again Q3) . For the large datasets there
are two queries with minimum speedup. For the queries that
show only a modest improvement, the reasons reside in the
structure of the query and the high dependency of graph-like
methods from the datasets. In particular, the outer loops of
Q1 and Q6 execute only a few iterations. Hence, these queries
have only a few tasks. Our current design implements a fork-
join scheme that spawns a group of T tasks (identified from



TABLE I

Serial T=4, M=4 Speed up Speed up

Latency Max Freq. Latency Max Freq.

(#Cycles) (MHz) (#Cycles) (MHz)

LUBM-1 LUBM-40 LUBM-1 LUMB-40 LUBM-1 LUMB-40

Q1 5,339,286 1,082,526,974 130.34 5,176,116 1001581548 113.37 1.03 1.08

Q2 141,022 7,359,732 143.66 54,281 2801694 130.11 2.60 2.63

Q3 5,824,354 308,586,247 121.27 1,862,683 98163298 114.53 3.13 3.14

Q4 63,825 63,825 143.20 42,851 42,279 122.97 1.49 1.51

Q5 33,322 33,322 133.92 13,442 13,400 138.31 2.48 2.49

Q6 674,951 682,949 136.76 340,634 629,671 113.26 1.98 1.08

Q7 1,700,170 85,341,784 131.98 694,225 35,511,299 106.71 2.45 2.40

TABLE II

Serial T=4, M=4 Area Ov.

LUTs Slices LUTs Slices LUTs Slices

Q1 5,600 1,802 13,469 4,317 2.40 2.39

Q2 2,690 8,24 5,280 1,607 1.96 1.95

Q3 5,525 1,775 13,449 4,308 2.43 2.43

Q4 3,477 1,073 7,806 2,399 2.24 2.24

Q5 2,785 848 5,750 1,738 2.06 2.05

Q6 4,364 1,369 10,600 3,426 2.43 2.50

Q7 6,194 1,943 15,002 4,953 2.42 2.55

loop iterations) and assigns them to the T hardware kernels.
The group of tasks runs to completion before a new group can
start execution. Whenever one of the parallel hardware kernels
tries to access a memory location concurrently accessed by
another kernel, the MIC, by design, denies the request, and
the kernel stalls. Consequently, tasks of he same group could
have different execution times, but the group terminates only
when all the tasks have completed, leading to underutilization
of hardware resources and memory bandwidth. The dataset
dependency is highlighted by Q6, which takes almost the same
time with the sequential architecture with both the dataset
sizes. However, while with the smaller datasets there is a speed
up of 2, for the larger dataset the different layout of data in
memory does not allow to maximize concurrency. Regarding
frequency, the parallel implementations always meet the 100
MHz constraints, but they are in average 10% slower than the
serial implementation, with a maximum of around 20% for the
biggest designs (Q7). With the smallest designs the difference
is obviously lower, and in one case (Q5) the parallel accelerator
also reaches a slightly higher maximum frequency.

Table II reports the area of the synthesized accelerators in
terms of number of Look Up Tables (LUTs) and Slices. The
results are post place and route. Occupation of the parallel
implementations goes from around 2 times to 2.5 times the
occupation of the serial implementations. As kernels are repli-
cated 4 times, the synthesis tool provides some optimization
that makes occupation not linear. Because we see an average
speed up of 2, the average increase in area is somewhat
balanced by the higher performance. Obviously, for queries
with speed ups over 2.5, the parallel implementation is highly
profitable, while for the others, although there still is an
advantage in using the parallel controller, it does not outweigh
the increased occupation.

VI. CONCLUSIONS

In this paper we have presented a template architecture for
the HLS of irregular, memory intensive algorithms, such as
graph traversal. These algorithms are inherently task parallel,

they normally are developed with shared memory abstractions
to simplify their implementation, as they generate fine-grained
unpredictable data accesses on difficult to partition datasets,
and usually are synchronization intensive. We described two
components: an adaptive Distributed Controller (DC), which
provides an easier way to exploit task level parallelism than the
conventional FSMD model, and a Memory Interface Controller
(MIC), which transparently manages concurrent accesses to
a multiported/multibanked shared memory by the generated
shared kernels, while also providing support for atomic mem-
ory operations. Irregular algorithms are common in the new
class of HPDA applications, which have to deal with large
amounts of unstructured or poorly structured data. We show
a case study where our synthesis flow is interfaced to GEMS,
an infrastructure that allows implementing RDF databases on
commodity clusters by mainly exploiting graph methods, to
synthesize SPARQL queries on a common benchmark for
Semantic Web repositories (LUBM). We show that our HLS
flow can synthesize serial and parallel versions of the queries
(converted to graph pattern matching operations in C by
GEMS), and that the parallel implementations generally pro-
vide good speedups with respect to the serial implementations.
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