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Abstract—The integration of Field Programmable Gate Arrays
(FPGAs) in an aerospace system allows to improve its efficiency
and its flexibility thanks to their programmability. To exploit
these devices, the designer has to identify the functionalities that
have to be executed on them and provide their implementation
by means of Hardware Description Languages. Generating
these descriptions for a software developer could be a very
difficult task because of the different programming paradigms
of software programs and hardware descriptions. To facilitate
the developer in this activity, High Level Synthesis techniques
have been developed aiming at (semi-)automatically generating
hardware implementations of specifications written in high level
languages (e.g., C). State of the art tools implementing such
methodologies have not been designed for the integration with
aerospace systems design flows, so significant adaptations could
be required to the designer for integrating the hardware imple-
mentations with the rest of the design solution. In this paper the
integration of a High Level Synthesis design flow in the TASTE
framework (http://taste.tuxfamily.org) is presented. TASTE is
a set of freely available tools for the development of real time
embedded systems developed by the European Space Agency
together with a set of its industrial partners. This framework al-
lows to integrate specifications described in different languages
(e.g., C, ADA, Simulink, SDL) by means of formal languages
(AADL and ASN.1) and to early verify the correctness of the
produced solutions. TASTE has been extended with Bambu
(http://panda.dei.polimi.it), a tool for the High Level Synthesis
developed at Politecnico di Milano. In this way the TASTE users
have the possibility to specify which functionalities, provided by
means of high level languages such C, have to be implemented
in hardware on the FPGA without having to directly provide
the hardware implementations. Thanks to the integration of the
High Level Synthesis tool indeed, the framework is able not only
to produce the hardware implementations, but also to integrate
them in the rest of the aerospace system by automatically gen-
erating the whole architecture to be implemented on the FPGA.
This architecture contains not only the implementation of the
hardware accelerators, but also of the components required to
transfer the data from and to the rest of the system and to
correctly manage their size and endianness. The application of
the extended framework to a real case study shows its effective
usability.
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1. INTRODUCTION

The evolution of the aerospace systems is characterized by
the improvement of the on-board sensors which are able to
capture larger and larger amount of data. However, the trans-
mission bandwidth between them and the Earth stations has
not equivalently grown. For this reason, to actually exploit
the availability of larger amount of data, more and more
pre-processing has to be executed directly on the aerospace
system to reduce the data to be sent to Earth. Traditional
high performance computing devices such as general purpose
processors could provide the required computational power,
but they are not suitable for these systems because of the re-
quirements in terms of low power and high dependability. On
the contrary, micro processors developed for space environ-
ment meet such requirements but cannot provide the required
computational power. The solution which has instead been
identified for solving this issue is the use of Rad-Hard Field
Programmable Gate Array (Rad-Hard FPGA). This type of
devices indeed has good characteristics in terms of reliability
and power consumption and guarantees a significant amount
of computational power.

The inclusion of FPGA devices in aerospace systems worsens
one of the major issues in their design that is their hetero-
geneity. Indeed, not only the hardware components of a
system can be very heterogeneous, but also the features of
the specifications to be implemented on them can be very
different. Moreover, in case of very large complex systems, a
third source of heterogeneity can arise, that is the presence of
different companies involved in the project, which potentially
implies the presence of different design flows to be integrated.

Several approaches have been proposed to address the het-
erogeneity of space embedded systems. For example, Ludtke
et al. [1] proposed a reconfigurable system composed of
different processing elements (including a FPGA device),
an ad-hoc operating system, and a middleware to allow the
exploitation of the same architecture for the implementation
of different specifications. The focus of this work is mainly
on the characteristics that the hardware/software architecture
must have, while no specific framework or tool are proposed
to program it. On the contrary, the framework proposed
in [2] and [3] aims at helping the designer in choosing the
best combination of FPGA device and fault-tolerant strategy,
but the design of the hardware accelerator for the particular
combination is still demanded to the developer. Another
possible approach to help the designer in the exploitation of
FPGA devices has been proposed by Greco et al. in [4]. The
USURP framework has been extended adding a Hardware
Abstraction API, very similar to the GNU Scientific Library
API, which allows to transparently access to a set of already
implemented hardware accelerators. This approach has the
advantage of not requiring knowledge of hardware design
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nor of HDL languages, but only a limited set of hardware
accelerators are available: the functions not already included
in the hardware library cannot be mapped on the FPGA. A
whole framework for the design of space systems has been
proposed also by Deshmukh et al. [5]. The authors proposed
a new Domain Specific Language for describing the different
components of an application targeting space systems and
provided a framework to automatically generate the code to
implement it. FPGAs devices are however not considered
in this work and developer is forced to use a new unique
language for developing the whole application. The TASTE
framework [6], whose extension is proposed in this paper, in-
stead hides the modeling language to the developer allowing
to use different languages (HDL included) to describe and
implement the single components of the application.

Most of the presented design frameworks aim at helping
the designer in integrating FPGA accelerators in complex
systems. However their integration is not the only issue about
hardware accelerators: the other main problem is how to gen-
erate these accelerators. Their design indeed requires specific
skills, such as the knowledge of the HDL languages, which
often are not owned by software designers or by aerospace
engineers. The work presented in this paper aims at solving
this issue. Its main contribution is the integration of High
Level Synthesis methodologies, which aim at the automatic
generation of hardware accelerators, in a framework for the
development of aerospace systems. This integration allows
to design space systems which include hardware accelerators
without any knowledge of hardware design techniques nor
HDL languages.

The rest of this paper is organized as follows. Section 2
presents the background of this work describing the TASTE
framework, the High Level Synthesis and the Bambu tool.
Section 3 presents the integration among them while Section
4 presents an example of application of the integrated design
flow. Finally, Section 5 presents the conclusions of this work
and proposes some possible future works.

2. BACKGROUND

In this section the background of the design flow presented
in this paper will be described. First the TASTE framework
will be presented, then the High Level Synthesis will be intro-
duced and finally Bambu, the open source tool implementing
High Level Synthesis which has been integrated in TASTE,
will be described.

The TASTE Framework

TASTE (The ASSERT Set of Tools for Engineering) [6] is
a development framework for the design of applications for
real time safety-critical embedded systems. The framework
was originally created in 2008 as the final result of ASSERT
(Automated proof based System and Software Engineering for
Real-Time applications), a research project co-founded by the
Sixth Framework Programme for Research and Technology
Development of the European Union, which was coordinated
by the European Space Agency and which involved about 30
industrial and accademic partners. In the following years Eu-
ropean Space Agency has continued to support the framework
by funding several follow-up activities to maintain and extend
it.

The TASTE framework is composed of a collection of tools,
most of which released under GPL/LGPL license, aimed
at building in a semi-automatic way a distributed real time

system. It supports different operating systems (RTEMS,
Linux and Linux with Xenomai), different processors (x86,
x86-64, LEON2, LEON3, and ERC32 BSP) and, by means
of the integration of device drivers as functional models, ex-
ternal devices (e.g., ethernet network interfaces, serial ports,
Spacewire interfaces, etc.). The main aim of the framework
is to allow to the system designers to focus their attention
on the design of the algorithms composing the specification
and not on the implementation details related to the particular
combination of operating systems and hardware components.
Nevertheless, the adoption of a single unique language (e.g.,
UML) for modeling each aspect of a potentially very het-
erogeneous system has been considered unrealistic. On the
contrary, the TASTE framework does not try to remove or
reduce the heterogeneity of the system, but tries to hide this
heterogeneity to the designer without requiring to adopt a
unique formal modeling language. Indeed the single parts of
the systems can be described by the designer in the preferred
language: TASTE currently supports Matlab/Simulink, SDL,
C, Ada, and VHDL as input description languages. Starting
from so different languages, the TASTE framework hides
in a transparent way all the details about communication
among heterogeneous subsystems, but still allowing to verify
at design time in a formal way the critical properties of the
generated system. Section 3 will show how the TASTE
framework generates all the code necessary to implement the
calling of a hardware function by a software function, without
requiring to the designer any knowledge about how this is
actually implemented.

The design flow implemented in the TASTE framework is
presented in Figure 1. The main steps are:

• Capture Functional Architecture: in this phase the designer
builds the Interface view of the application. This view
defines which are the different functions which compose the
designed application and which are the interfaces which allow
interaction among them. The TASTE framework provides
a graphical tool (Interface view editor) to accomplish this
activity.

• Design SW Components: the single software components
are implemented by the designer with the languages sup-
ported by the TASTE framework. Different components can
be described with different languages. The interfaces of
such components are automatically generated by the TASTE
framework so that the designer has only to focus on their
implementation and not on their interaction.

• Software Implementation: in this phase the designer builds
the Deployment view of the application which describes the
target architecture (i.e., which are the hardware components,
how they are connected, and the operating system) and then
assigns each function of the Interface view to one of these
components; the TASTE framework includes a graphical
tool (Deployment view editor) to accomplish this task; next,
the framework automatically generates the glue code which
allows the different software components to interact and
exchange data; finally the software system is deployed on the
target.

Beside the tools aimed at implementing these steps, the
TASTE framework integrates also a set of tools for analyzing
the designed application and in particular to perform schedul-
ing analysis (MAST [7] and CHEDDAR [8]).

During the different steps of the design flow, the TASTE
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Figure 1. The design flow of the TASTE framework.

framework exploits two languages to formally describe the
characteristics of the designed application:

• AADL [9], which is used to describe the Interface view and
Deployment view; note that AADL descriptions are automat-
ically generated by the tools of the TASTE framework, so its
knowledge is not required to the designer.

• ASN.1 [10], which is used to specify the type of the data
exchanged between the different components of the designed
application; the framework already provides the ASN.1 de-
scriptions for the basic types (e.g., integer, float), but the
description of more complex types has to be provided by
the designer. The adoption of this standard in the TASTE
framework guarantees the correct interaction among func-
tions assigned to different processing elements with different
endianness and different data size.

While the adoption of AADL can be completely ignored by
the designer, the adoption of ASN.1 has to be taken into
account since it impacts on the Design SW Components phase
which is mainly performed by the designer. Not only the
designer has to describe by means of this language all the
types used in the function interfaces, but he or she must adapt
function implementations to them. In particular, in case of
C functions, the original parameter types must be replaced in
the source code with C structure types wrapping them. These
structures are then used as parameter types during this phase
and in the following guaranteeing the correct communication
among different TASTE functions. The TASTE framework
can automatically generate the C function signatures with
ASN.1 based types, but the designer has to adapt the imple-
mentation of the C function bodies to them. For example
given the C function:

void swap_array(int in_arg[2], int out_arg[2])
{

out_arg[0] = in_arg[1];
out_arg[1] = in_arg[0];

}

the C implementation must be modified to use the C ASN.1
compliant signature (which is automatically generated by the
TASTE framework):

void function1_PI_swap_array(\
const asn1SccIntPair * IN_in_arg, \
asn1SccIntPair * OUT_out_arg)

where asn1SccIntPair is a structure containing a field
of type integer array. Changing the C types of the formal
parameters implies that the bodies of the functions have to
be accordingly modified by the designer to be analysed and
exploited in the TASTE design flow. Note that this holds only
for those C functions which implement TASTE interfaces and
so which can be called from components different from the
one to which they are assigned. The functions which have to
be synthesized in hardware have not to be modified as it will
be shown in Section 3. Finally, all the C functions which are
local to a TASTE function and all the library C functions (i.e.,
all the functions which do not implement an interface) have
not to be modified.

The High Level Synthesis

High Level Synthesis [11] is a design flow composed of a
set of methodologies aimed at automatically generating an
ASIC or FPGA implementation of a high level specification.
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The high level specification, which is the main input of the
whole design flow, is usually formally defined by means of
standard high level languages or by means of a subset of
them; the languages supported by most of state of the art
methodologies and tools are ANSI C/C++ and SystemC. The
output of the High Level Synthesis flow is the description at
Register Transfer Level (RTL) of the hardware architecture
implementing the functionality. This description is written by
means of a Hardware Description Language (HDL) such as
VHDL or Verilog. For complex specification (e.g., composed
of different functions) a hierarchical architecture composed
of different modules can be generated.

The modules implementing the single functions include two
different parts: the control logic and the data path. The
control logic is modeled as a Finite State Machine which
handles the routing of the data within the data path and the
execution of the single operations. The data path actually
implements all the operations that have to be executed and
stores their input and output.

The whole High Level Synthesis flow is quite similar to
a software compilation flow: it starts form a high level
specification and produces low level code after a sequence
of analysis and optimization steps. Nevertheless, since the
target of the High Level Synthesis flow differs so significantly
from the target of compilers, only a limited set of these
steps are shared. Even if the same HDL language can
be used to describe architectures implemented for different
families of devices, the High Level Synthesis flow is not
target independent but takes into account information about
the target device. Moreover, FPGAs do not have a fixed
operating frequency, but this can be decided by the designer
or forced by devices (e.g., sensors or actuators) connected
to it. Which is the target operating frequency of the circuit
is another information which the High Level Synthesis must
consider to generate an accelerator correctly working at that
speed. In Section 3 it will be shown that the target frequency
of accelerators developed for the TASTE FPGA architecture
is 100Mhz because of the constraints of the rest of the
architecture.

Like in a software compilation flow, three different phases
can be identified in the High Level Synthesis flow: front-
end, middle-end and back-end. In the front-end the input
code is parsed and translated in a intermediate representation
which will be used in the following parts of the flow. In
the middle-end target independent analyses and optimizations
are performed. Some of these steps are the same applied in
a software compilation flow (e.g., data flow analysis, loop
recognition, dead code elimination, etc.). Note however that
not all the software code optimizations are profitable also
when the target is a hardware accelerator. For example,
the effects of transformations like function inlining and loop
unrolling can impact much more on resource utilization in
case of hardware devices. Finally, in the back-end the actual
hardware architecture is generated. The steps composing this
phase, which are the main difference with respect to software
compilation flow, are:

• Functions Allocation: the hierarchy of the modules imple-
menting the functions of the specification is built.

• Memories Allocation: the memories for storing aggregate
variables (arrays and structures), global variables, and dy-
namically allocated data are instantiated.

• Resource Allocation: the functional units for executing

all the operations are allocated; note that the characteristics
of a functional unit can differ significantly according to the
considered target device; moreover, there can be several avail-
able implementations of the same functional unit for a given
device which differ in terms of area usage and performances.

• Scheduling: the order of execution of operations is decided;
multiple operations can be scheduled simultaneously.

• Finite State Machine Construction: the Finite State Ma-
chine controlling the evolution of the computation is built.

• Functional Unit Binding: each operation is assigned to a
particular instance of a functional unit.

• Register Binding: the opportune number of registers is
instantiated and the scalar variables are assigned to them; note
that differently from a general purpose processor the number
of registers is not fixed and their number can be significantly
larger.

• Interconnection Binding: the interconnections connecting
elements of the datapath (registers and functional units) are
instantiated and the data transfers are assigned to them.

• Code Generation: the HDL description corresponding to
the designed architecture is produced.

The RTL architecture produced by the High Level Syn-
thesis flow is not the architecture which will be actually
implemented on the FPGA. The RTL architecture indeed is
transformed in a logic gates architecture by means of Logic
Synthesis [12]. In case of FPGA devices, this process is
performed by means of tools provided by device vendors.

Bambu

The integration of a High Level Synthesis flow in TASTE
framework has been obtained by including Bambu [13] in
the design flow. Bambu is an open source tool, part of the
PandA framework [14], developed at Politecnico di Milano
and aimed at assisting the designer during the High Level
Synthesis of complex applications. Bambu is written in C++,
it can be freely downloaded under GPL license and it has been
tested with different linux distributions (e.g., Centos, Debian,
Ubuntu).

In the default High Level Synthesis flow, presented in Fig-
ure 2, Bambu takes as input one or more C source code
files containing the application or the parts of the application
which have to be synthesized in hardware. The output of the
tool is a HDL description of the hardware accelerator, the
scripts for its logic synthesis and eventually the scripts and
the testbench for simulating its execution. Previous versions
of Bambu were able to generate only Verilog descriptions:
the backend for the generation of VHDL descriptions has
been added to make easier the integration of the generated
modules with the rest of the TASTE FPGA architecture. The
flow is fully automatic, but can be controlled by the designer
by means of a set of options and configuration files (i.e.,
xml files). For example it is possible to specify which is
the C function that has to be synthesized in hardware in case
the C source code contains more than one. Bambu supports
different devices produced by the three main FPGA vendors
(i.e., Altera, Lattice, and Xilinx). The list of supported
devices can be easily extended by means of xml configuration
files. Bambu relies on the GCC [15] frontend, which is
interfaced by means of a set of GCC plugins, to perform
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Figure 2. Default High Level Synthesis flow implemented in Bambu
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the parsing and the initial analysis of the C source code.
The plugins dump the intermediate representation of GCC
after the target independent optimizations in a text format
which can be parsed by Bambu. All the versions of GCC
since GCC 4.5 are currently supported. By exploiting GCC
frontend, Bambu can parse all the C source code which is
compliant with the ANSI C Standard. Moreover, since the
most significant state of the art target independent compiler
optimizations are already applied by GCC, they have not been
implemented in Bambu. Some FPGA oriented optimizations,
not implemented in GCC because relevant only when the
target is a hardware accelerator, have been implemented as
intermediate steps of the Bambu High Level Synthesis flow.

Bambu is able to synthesize most of the C constructs, so
that it does not impose any relevant restriction on the input
code. For example, Bambu supports function calls, pointer
arithmetic, dynamic allocation of memory, and floating point
arithmetic. On the contrary Bambu does not support recursive
function calls and function returning structures. All the
pointer arithmetic performed by the hardware accelerators
produced by Bambu is based on 32bit pointer size. Moreover
all the internal data of hardware accelerators generated by
Bambu have little endianness and the same endianness is
adopted for exchanged data.

To sum up, the main features which have made Bambu
suitable to be integrated in the TASTE framework are:

• it allows the automatic generation of hardware accelerators
implementing C functions;

• it is a open source tool;

• it supports the FPGA board supported by the TASTE
framework;

• it can be used at command line so that it can be easily
integrated in more complex design flow;

• its High Level Synthesis flow can be customized by means

of XML configuration files.

3. AUTOMATIC GENERATION OF FPGA
ACCELERATORS

This section presents the new design flow which allows the
automatic generation of hardware accelerators in the TASTE
framework. This objective is accomplished by integrating
an enhanced version of Bambu in the TASTE framework.
Selecting which are the functions that have to be synthesized
in hardware is demanded to the designer of the applica-
tion: the integration of automatic techniques for performing
HW/SW partitioning [16] is out of the scope of this work.
The assignment of a function to the FPGA is performed
by selecting VHDL as its implementation language. In the
following it will be shown how Bambu retrieves this infor-
mation from the Interface view produced by the rest of the
TASTE framework to identify which are the functions to be
synthesized. Since Bambu accepts only C source code files as
input, only functions written in this language can be synthe-
sized as hardware accelerators. The support to the automatic
generation of hardware accelerators starting from SDL has
been indirectly added by modifying OpenGEODE [17]. The
tool has been extended by adding a backend for the generation
of C source code starting from SDL representation. This C
source code can then be used as input of Bambu, so that,
by combining OpenGEODE and Bambu, it is possible to
generate hardware modules starting from SDL descriptions.
All the other languages supported by the TASTE framework
are instead not supported and hardware accelerators cannot
be automatically created starting from them.

The only FPGA board supported by the current version of the
TASTE framework is the GR-CPCI-XC4V board [18]. This
board has been developed as a co-operation between Aeroflex
Gaisler and Pender Electronic Design. It is a compact PCI
board containing a Virtex4 XC4VLX FPGA, 16 Mbyte of
FLASH prom and up to 256 Mbyte of SDRAM. Access to
this device is provided in the TASTE architecture by means of
the PCI bus: the TASTE framework automatically generates
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the software drivers for interfacing the accelerators mapped
on the FPGA. Each input and output parameter of each syn-
thesized function is assigned to a particular memory address.
The steps performed during the invocation of a function
mapped on the FPGA are shown in Figure 3. When a function
has to invoke a function mapped on hardware, it calls its
driver (call(...)) which writes (write_in(...)) in
the opportune FPGA memory addresses the input parameters
through the PCI bus. After that all the input parameters have
been written, the driver starts the execution of the hardware
accelerator by writing (start()) a memory mapped control
register. Next, it continuously checks (poll()) for the value
stored in the memory mapped control register until the hard-
ware accelerator ends its computation. Finally it performs
a set of memory readings (read_out(...)) aimed at
retrieving the output of the hardware accelerator computation,
and then returns these data to the function which performs the
call to the hardware module. Note that a different driver is
automatically generated for each designed application since it
depends on the particular signatures of the functions mapped
on hardware.

The software drivers hide most of the implementation details
of the interaction between the general purpose processor
and the FPGA, but they are not sufficient to make software
functions and hardware modules communicating. Indeed,
as in the software part of the application it is necessary to
use drivers to fill the gap between the low level bus and
the application, in a similar way on the FPGA device it is
necessary to instantiate some components to connect the PCI
bus with the accelerators. The architecture which has been
designed to make accelerators generated by Bambu accessible
from the PCI bus is presented in Figure 4. The hardware
accelerators are not directly connected with the PCI bus, but
are directly connected to an internal communication infras-
tructure based on the ARM Advanced Microcontroller Bus
Architecture (AMBA)[19]. AMBA bus is an open standard
on-chip interconnect specification, originally developed by
ARM, aimed at facilitating the interconnection on System-

on-Chip of components developed by different designers.
The components used in the TASTE FPGA architecture to
implement such type of communication infrastructure are
taken from the GRLIB IP Library [20], a set of reusable IP
components designed for FPGA released under GNU GPL
License. The advantages of using such type of communica-
tion infrastructure are:

• it allows to generate architecture containing more than one
hardware accelerator;

• each hardware accelerator can be designed independently
from the rest of the system;

• it hides the implementation details of the selected FPGA
board since for some components (e.g., the PCI target) it pro-
vides ad-hoc implementations for all the supported boards;

• it facilitates the porting of the TASTE FPGA architecture
to different boards.

More in details the exploited components are:

• the PCI target interface component which implements the
PCI slave interface toward the extern of the board and a
AHB master interface towards the internal communication
infrastructure. This component acts as a bridge allowing the
communication between the PCI bus and the AMBA bus.

• the AMBA bus, composed of a AHB bus, a APB bus and
a bridge connecting them. The hardware accelerators are
connected directly to the APB bus, so they have to implement
a slave interface for this type of bus. APB bus presents some
limitations with respect to the AHB bus (e.g., reduced size
of address space assignable to the single slave), but it has
been preserved to maintain compatibility with the previous
versions of the TASTE FPGA architecture.

Figure 5 shows the design flow implemented in Bambu for
the integration in the TASTE framework. Bambu uses four
different types of input files to generate the TASTE FPGA
architecture:

1. Interface View, i.e., the file specifying the different func-
tions composing the application;

2. Data View aadl files, i.e., the aadl descriptions of the types
adopted in the interfaces of the functions;

3. Data View ASN.1 files, i.e., the ASN.1 descriptions of the
types used in the interfaces of the functions;

4. C Source files, i.e., the files containing the implementation
of the functions which have been mapped to the FPGA.

Since Bambu is able to retrieve information about the data
types directly from the Interface View, the automatic gener-
ation of the C ASN.1 compliant signatures and the implied
modification of the bodies of the functions, which have been
described in Section 2, are not required (i.e., the tool takes
directly as input the legacy C source code). The High Level
Synthesis flow starts from the parsing of the Interface View
file, which is the only one that has actually to be explicitly
provided to the tool. All the other files previously listed
indeed are automatically identified by the tool recursively
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analysing the extracted information. From the Interface View
file three types of information can be retrieved:

• The interfaces which must be implemented in hardware and
the type of the input and output parameters.

• The source files containing the C implementation of these
interfaces.

• The list of the Data View aadl files to be analysed; from
these aadl files, the tool extracts the information about the
Data View ASN.1 files describing the types used by the
interfaces to be implemented.

Next step of the new design flow implemented in Bambu is
the analysis of the Data View ASN.1 files. For each ASN.1
type the collected information is:

• Its structure: the software driver includes the padding
data in aggregate parameters (i.e., structures and arrays) to
guarantee the portability of exchanged data; Bambu must
know this information to remove padding when necessary.

• Its size: ASN.1 allows to specify the size of the exchanged
data also for basic types. For example, it is possible to specify
the range of an integer parameter. Bambu can exploit this
information to improve results of its bit value optimization.

• Its endianness: the hardware accelerators generated by
Bambu internally adopt little endianness; if one or more
parameters have different endianness, the final hardware ac-
celerator must also include the module necessary to correctly
manage this difference.

Finally, as last parsing step, Bambu reads by means of a GCC
plugin the C implementation of the interfaces to be synthe-
sized in hardware. After that all the necessary information
has been collected, the rest of the High Level Synthesis flow
can be applied. When Bambu targets the TASTE FPGA
architecture, it assumes that the target board is the GR-CPCI-
XC4V board [18] which is the currently only board supported
by the rest of the TASTE framework. If the support to other
boards will be added in the TASTE framework, their support
can be easily integrated in Bambu by means of XML files.
The target frequency is set to 100MHz which is the operating
frequency of the APB bus to which the Hardware accelerators
are connected.

The outcome of the High Level Synthesis design flow target-
ing the TASTE FPGA architecture is:

• a VHDL file containing the description of the top architec-
ture to be implemented on the FPGA, i.e., the PCI target and
the AMBA bus;

• a VHDL file containing the structural descriptions of all the
synthesized C functions.

The adoption of VHDL as output language has been chosen to
facilitate the integration of different components (GRLIB IP
Cores are written in VHDL), but has required the inclusion
of the backend for this language in Bambu, since this can
previously only generate Verilog code.

Because of the adoption of the ASN.1 standard in the TASTE
framework and because of the interaction with the software

driver, the generated components for the synthesized func-
tions differ from the components generated by Bambu with
the default High Level Synthesis flow. The structure of the
hardware accelerators generated for the TASTE FPGA archi-
tecture is shown in Figure 6. Each accelerator is composed
of:

• C Function Implementation, i.e., the module actually im-
plementing the C function; this module corresponds to the
outcome of Bambu when it does not target the TASTE FPGA
architecture; it is characterized by a minimal interface which
allows the exchanging of data between the module and the
rest of the system.

• Control Register: it allows to the software driver to control
the status of the accelerator.

• Local Memory: it is used to store the input and the output
aggregate parameters. The overall maximum size of the
parameters is limited by the address space assigned to each
HW accelerator; the APB protocol limits it to 4KB.

• IN Registers: they store the input scalar parameters of
the function. These registers, directly connected to the C
Function Implementation input ports, are memory mapped so
that the software driver can write parameters inside them.

• OUT Registers: they store the output scalar parameters of
the function. These registers, directly connected to the C
Function Implementation output ports, are memory mapped
so that the software driver can read parameters from them.

• Address Translator: the hardware accelerators implements
a local memory address space which is different from the
global memory address space adopted in the whole TASTE
FPGA architecture; this module performs the translation from
an address space to the other.

• Data Restructuring: it manages the eventual different data
representation between hardware accelerators and software
components. These differences can consist of:

– different endianness between the transferred parameters
and the hardware accelerators internal data (they always
adopt the little endianness);

– different padding size in the structure parameters.

It is worth noting that with respect to the components gener-
ated by the default High Level Synthesis flow, the component
generated for the TASTE FPGA architecture includes several
additional modules. Most of these modules are dedicated
to the correct management of parameters and represent the
overhead of integrating hardware accelerators in the systems
targeted by the TASTE framework.

4. CASE STUDY

In this section a case study of the application of the proposed
design flow to a real world specification is proposed. The con-
sidered specification is the CCSDS 122.0-B-1 Recommended
Standard [21], which is a lossless to lossy image compression
standard. It has been designed for the compression of two-
dimensional 16-bit grayscale images produced by payload
instruments and it is suitable for use on-board spacecraft
because of its low complexity and its reduced intermediate
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Figure 6. The structure of a hardware accelerator designed to be integrated in the TASTE FPGA architecture.

buffers. The Recommendation includes both a lossy and a
lossless compression algorithm which rely on integer and
floating point Discrete Wavelet Transforms (DWTs). The
floating point DWT has better compression effectiveness at
low bit rate, but provides only lossy compression. On the
contrary the integer DWT can provide lossless compression
and has reduced implementation complexity since it requires
only integer computation.

The implementation of this specification considered for this
case study is the CCSDS Image Data Compression Imple-
mentation [22] developed by the University of Nebraska-
Lincoln. Despite the fact that the High Level Synthesis helps
the designer in porting a complex C application to an archi-
tecture which includes a FPGA, there are still some activities
required to the designer. Given a legacy C implementation
such as the CCSDS image compression, the steps that a
designer has to perform in order to design the final system
by means of the TASTE framework are the following:

1. Application Decomposition: the designer must decompose
the application in functions so that the parts of the applica-
tion that have to be executed by hardware accelerators are
separated from the rest. In the case study this requires to
restructure the implementation of the compression algorithm,
since the computation part and the file writing part are mixed
(i.e., the application writes pixel data immediately after their
computation). The separation of the computation part of the
application from the input/output part is a common approach
which has to be applied in most of the design flow for
heterogeneous systems. In the following, the computation
kernel of the compression algorithm will be identified as
compress.

2. Algorithm Customization: the possibility of configure at
run-time the algorithm must be removed if this will not be
actually exploited. The CCSDS image compression imple-

mentation allows to apply both the integer DWT and the
floating point DWT compression. If only one of them will
be actually exploited on the target system, the other one can
be removed reducing the size of the generated hardware ac-
celerator. In a similar way, all the parameters of the algorithm
which will be fixed must be replaced with the corresponding
constants. For example in a typical scenario of application
of image compression in space system, the resolution of the
image coming from sensors is fixed and this information can
be embedded in the implementation.

3. Kernels Cleaning: all the parts of the kernel functions
which are not relevant must be removed from the implemen-
tation since they can increase the hardware resource usage
or they can make the synthesis impossible. In case of the
CCSDS image compression the error management routines
and the routines for collecting profiling information data have
been removed from the implementation of compress.

4. Exchanged Data Identification: the designer has to iden-
tify which are the data exchanged between the functions
mapped on the FPGA and the rest of the application. The
legacy implementation of the CCSDS image compression has
functions with a limited number of parameters which use
global variables to exchange data. Since the communication
in the TASTE framework is based on the message passing
model (i.e., the data exchanged among different functions
must be explicitly listed in the interfaces) and not on shared
memory, the signature of compress has to be modified to
explicitly include all the necessary parameters. Moreover,
the size of these parameters must be known: the size of
arrays pointed by pointers must have an upper bound known
at design time. Note that the Algorithm Customization and
the Kernels Cleaning can significantly reduce the amount
of data that have to be exchanged. In case of the CCSDS
image compressor these data are the input image, the com-
pressed image and a limited set of configuration parameters.
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However, because of the limited address space which can be
assigned to each hardware accelerator for data transfers, the
input and output images have to be split in tiles. Moreover, for
evaluating the size of the output image the worst compression
ratio with the selected parameters has to be considered.

5. Data View Building: the ASN.1 Data View has to be
enriched with the data types used in the kernels interfaces.
In the considered case study the only data types to be added
are the arrays of fixed size which are used to store the tiles of
input and output images.

6. Interface View Building: the designer builds the Interface
View by means of the Interface View editor. In a typical
scenario of usage of a FPGA like the CCSDS image com-
pression, there is at least one function which manages the
input/output and one function which contains the kernels
of the application. The designer has to specify VHDL as
implementation language of the latter and has to provide
the C source code file containing its implementation (in the
considered example the C source code file must include
the implementation of compress). Next the designer has
to add compress as a provided interface of this function
specifying the input and output parameters using the types
defined in the Data View.

7. Interfaces Generation: the TASTE framework generates
automatically the C signatures of the interfaces. In case of
the compress function it will generate a driver exposing a
function with the same parameters.

8. C Source Code Modification: the source code of the
functions not mapped on the FPGA has to be modified to call
the hardware components by means of the generated drivers.
In the example the call to compress has to be replaced with
the call to the corresponding driver.

9. Deployment View Building: the designer has to build the
Deployment View by means of the TASTE graphical tool. The
FPGA board is considered part of the processor board, so only
this has to be instantiated and both the functions (i.e., the one
containing the kernels and the one containing the rest of the
application) have to be assigned to it.

10. System Building: from this point on, most of the process
is directly performed by the TASTE framework: Bambu
generates the hardware accelerator while the other tools build
the rest of the system.

The development process just presented is composed of
several steps which involve interaction with the developer.
However, some of these steps (i.e., 5,6,7,9,10) are required
by the TASTE design flow independently from the considered
target system, so they have always to be executed. Other
steps (i.e., 1,4,8) have always to be executed when the target
system is composed of more than one processing element
and the application is split and assigned to some of them.
Finally, steps 2 and 3 are the ones which are more related to
the generation of the hardware accelerators, but reducing the
code size of the computation kernels can positively impact
on the overall system even when they are not assigned to a
FPGA.

It is worth noting that, despite the potentially increased
effort required to application developer to exploit High Level
Synthesis, all the activities required in the presented design
flow only involve the usage of the TASTE graphical tools and

the manipulation of the C source code of the applications: the
usage of HDL languages and hardware design techniques is
completely transparent to the designer so that their knowledge
is not required.

5. CONCLUSIONS

In this paper the integration of High Level Synthesis (Bambu)
in a design flow targeting real time safety-critical embedded
systems (TASTE) has been proposed. The use of explicit data
transfers and of ASN.1 has required to extend the High Level
Synthesis flow to correctly manage inputs and outputs of the
generated hardware accelerators. The presented case study
shows that the introduction of hardware accelerators in the
system does not increase the designer effort in a significant
way and does not require knowledge of HDL languages, so
that they can be easily exploited also by software developers.

Potential future works concern the optimization of the com-
munication of the hardware accelerators with the rest of
the system (i.e., the improvement of the software drivers
and the removal of the APB bus) and the integration of
Hardware/Software codesign methodologies in the TASTE
framework to automatize the selection of the functions to be
synthesized as hardware accelerators.
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