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Abstract—In this paper we present an approach for debugging
hardware designs generated by High–Level Synthesis (HLS),
relieving users from the burden of identifying the signals to trace
and from the error–prone task of manually checking the traces.
The necessary steps are performed after HLS, independently of
it and without affecting the synthesized design. For this reason
our methodology should be easily adaptable to any HLS tools.

The proposed approach makes full use of HLS compile time
informations. The executions of the simulated design and the
original C program can be compared, checking if there are
discrepancies between values of C variables and signals in the
design. The detection is completely automated, that is, it does
not need any input but the program itself and the user does not
have to know anything about the overall compilation process.
The design can be validated on a given set of test cases and
the discrepancies are detected by the tool. Relationships between
the original high–level source code and the generated HDL are
kept by the compiler and shown to the user. The granularity of
such discrepancy analysis is per–operation and it includes the
temporary variables inserted by the compiler. As a consequence
the design can be debugged as is, with no restrictions on
optimizations available during HLS.

We show how this methodology can be used to identify
different kind of bugs: 1) introduced by the HLS tool used for
the synthesis; 2) introduced using buggy libraries of hardware
components for HLS; 3) undefined behavior bugs in the original
high–level source code.

I. INTRODUCTION

High–Level Synthesis (HLS) aims to increase the produc-
tivity of hardware designers, using high–level programming
languages to overcome the challenges of an always increas-
ing design complexity. However there are still obstacles to
achieve this goal. Among them there are the limitations of
hardware (HW) debugging techniques and tools specifically
tailored for HLS. For this reason in recent years there have
been multiple efforts to remove such limitations. Indeed some
of the proposed solution are big steps forwards, but they
are based on assumptions and requirements that considerably
limit the available options when performing HLS. Typical
requirements are to avoid function inlining and local RAMs.
Another peculiar trait of all the debugging tools for HLS–
generated circuits is the poor accuracy in case of heavy
compiler optimizations. This is due to the fact that allowing
these options severely affects the observability of signals.

In this paper we describe an approach for automatic de-
tection of logical bugs in HW designs generated using HLS.
Our main goal is to remove the restrictions described above,

allowing the usage of all the available options for the memory
layouts and all the compiler optimizations when performing
HLS, without compromising the possibility to debug the gen-
erated circuit without modifications. All of this preserving the
ability to relate the generated HDL to the original high–level
source code. These goals are very important because we do
not want to limit our debugging methodology to unoptimized
circuits, and we want to be able to spot bugs introduced by
any optimization step performed in HLS. We describe our
implementation of a debugging tool to show a real–world
application of the described methodology. The debugger is
designed as a set of passes for the open source bambu HLS
compiler [1], which performs HLS from C.

The remainder of this work is organized ad follows: sec-
tion II describes the specific problems of debugging HW
designs, firstly from a general standpoint and then focusing on
HLS. Section III formalizes our approach for our automated
bug detection. Section IV describes how it is practically used
in our implementation. Section V describes the results in terms
of detected bugs, performance and coverage. It shows differ-
ent potential scenarios for effective use of the methodology.
Finally section VI summarizes the results, discussing some
cases still not covered by the debugger and outlining a possible
evolution of the research.

II. BACKGROUND AND RELATED WORK

A. Approaches and challenges in hardware debugging

Debugging HW designs is a complex process. Typically it
involves selecting a large number of signals, tracing their val-
ues concurrently during the execution, and analyzing them to
find misbehaviors. To effectively do this, any HW debugging
technique needs to provide three main features [2]:

1) signal observability;
2) hardware controllability;
3) limited turnaround times.
Signal observability is the ability to see the values of

the largest number of signals in the design, with the finest
granularity, across the largest time span as possible. Hardware
controllability is fine control on the design execution during
the debug operation. It is necessary to detect not only the
wrong signal, but also the exact time when that happens
and possibly the values of a number of other signals in a
surrounding time frame. By limited turnaround time, instead,



we mean that the time needed between a request to the
debugger and the attainment of the result must be short enough
not to slow down the whole development process. Achieving
these goals usually requires some trade off. Research efforts
aimed at maximizing the performance in these fields can be
subdivided mainly in two groups:

• approaches for debugging the circuit directly on–chip;
• debugging techniques based on RTL simulations.

Both the methodologies have intrinsic characteristics that
makes particularly easy to provide some of the mentioned
features rather than others.

On one hand, debugging on–chip is the only way to
spot malfunctions due to HW faults (power–supply noises,
environmental interferences, damaged gates). However, for
logical bug detection, in–circuit debug is usually worse than
simulation in providing the three features described above.
Indeed, to guarantee observability and controllability, it is
necessary to add tracing circuitry or to enforce restrictions
on the memory layout of the HW accelerators. This does not
scale with increasing design complexity. It also imposes limits
on the number of traced signals and on the time frame that
can be captured. The extra logic or the forced memory layout
may modify the original design, compromising crucial timing
characteristics of the accelerator, or making the bug non–
reproducible. Even when the insertion of the debugging cir-
cuits is harmless, finding and analyzing the interesting signals
can be a hard task. Another problem of in–circuit debugging is
related to the turnaround time. The place and route process is
slow and development can get severely hampered by the need
to re–synthesize the bitstream whenever the tracing logic has
to be changed. To avoid this problem, many studies showed
different approaches for post–synthesis insertion of debugging
circuits, like [3], [4] and [5], but some reconfiguration of the
bitstream is always necessary.

On the other hand, debugging at the RTL level using
simulation is far slower, but this do not inevitably leads to
longer turnaround times. Indeed simulation takes much more
time than real HW execution, but incremental modifications
can be done during the debug process without altering the
bitstream. In addition, no extra circuits or dedicated memories
are needed to provide signal observability, since in software
(SW) memory limits are not an issue anymore. Controllability
can be guaranteed using simulators’ APIs, enabling to execute
the design until a determined point, stop it, analyze variables
and then resume the execution (or even roll it back) without
affecting the logic of the simulated circuits. If the values of the
signals are dumped to file, using the standard Value Change
Dump format [6], there is even no need for controllability at
all, because the HW can be simulated and the values inspected
later. In this way simulation succeeds in achieving complete
observability of the signals. However the difficulty in finding
the interesting ones remains. Even if all the variations of every
signal for the entire execution are saved in VCD during the
simulation, the programmer has to inspect manually the regis-
tered traces. For HLS–generate circuits there is an additional

degree of complexity, due to the problem of determining the
relationship between the generated HDL description and the
high–level source code. This complexity grows considerably
with compiler optimizations and it is also dependent on several
modifications introduced by the HLS engine.

B. Recent advances in debugging HLS–generated circuits

In the recent years many results have been pushing the limits
of debug capabilities for electronic circuit designs generated
by HLS tools. The idea they all have in common is to take ad-
vantage of the extra informations present in the original high–
level specification and use it for debug purposes, leveraging
the patterns in the generated HW due to the predictability
of the HLS engine. In addition to what said in section II-A,
debugging methodologies targeted to HLS–generated designs
can be roughly grouped in two families: optimizations of
tracing circuits for in–system debug and methods to bring SW
debug look and feel to HW verification.

In particular, the researches centered on debugging on–chip
mainly focus on increasing controllability and observability,
using high–level knowledge to fine–tune the trace buffers.
[7], for example, shows a technique for maximizing the
observable events with low area overhead. The tracing circuits
described by the authors can be inserted with small modifica-
tions and they can be optimized using high–level knowledge of
the Control Flow Graphs and State Transition Graphs used for
HLS. However they do not scale very well with the number
of the signals. Moreover, the paper purposely skip over the
problems of the individuation of the interesting signals and
how to relate them back to the high–level original source code.
The authors just say they assume it can be done using compiler
informations. In addition, given that the trace buffers are per–
signal, additional processing is required to reconstruct the time
relationships between the traces. This becomes very hard when
the necessary variables are not stored in a register, or even
impossible when heavy compiler optimizations are activated.
Another trend in on–chip debugging is based on bringing
ANSI–C assertions to HW [8] [9] [10]. This is done adding
assertion checker circuits. The checker’s Finite State Machine
(FSM) can be executed concurrently to the controlled module
([8] and [9]) or the synchronization can be directly performed
by the FSM of the accelerator itself (see [10]). Besides area
overhead and modifications to the FSMs the main problem of
such approach is that it can only check malfunctions foreseen
by the developers. The assertion must be manually inserted in
the original C specification. This fails to spot bugs that are
not checked with assertions. Even when the assertion checker
spots a wrong condition, the fault where it comes from can be
caused by a previous bug which is difficult to find. Finally, if
the buggy HW happens to enter in a hanging state, the relevant
assertion trigger point may be never reached at all.

As we can see, all the mentioned results are really focused
on efficient implementation of HW tracing circuits to improve
the collection and reconstruction of signal traces. But what
they leave aside is another set of complex problems. In
particular, they still leave to the designer the burden of finding



out the interesting signals and to step through the execution to
find bugs. These tasks can be overwhelming with increasingly
larger designs. With complex designs it can take days and
things are even more complicated if the circuit description
is generated by an HLS tools, because the developer has no
knowledge of the signal naming conventions and how the
signals are related to high–level variables.

The authors of [11], [12] and [13] try to tackle these
limitations, bringing to HLS some of the typical software–
like debugging methodologies: stepping, breakpointing and
dynamic variable inspection. While [11] does not describe
an actual implementation, [12] provides such features using
dedicated control circuits and trace buffers. These circuits
enable the user to control the clock, the execution of the design
and to analyze the memory during the operation of the HW
accelerator on–chip. The limit is that the design cannot be
executed at full speed and the memory layout is constrained
to be a single central memory. The only variables that can be
analyzed are those stored in the global memory, making tem-
porary variables inserted by the synthesizing compiler invisible
to the debugger. The approach and the goals of [13] is quite
similar, but the work is more focused on how to keep source–
level information than on how to provide observability and
controllability of the HW. Notwithstanding the interest towards
high–level source informations, the temporaries introduced by
compiler optimizations cannot be inspected and several other
constraints are imposed to HLS. Namely, inlining is disabled,
local RAMs are made global, and constants cannot be stored
on ROMs. Interestingly [13] is possibly the first work where
the idea of an automated discrepancy detection is outlined, for
both on–chip and simulated debugging workflows.

III. AUTOMATED TRACE–BASED BUG DETECTION FOR
CIRCUITS GENERATED BY HIGH–LEVEL SYNTHESIS

A. Fundamental ideas and goals

The idea of an automated discrepancy analysis is extremely
powerful, because it is the best way to guarantee short
turnaround times. Controllability and observability are useless
if users waste lots of time finding out which are the signals
to trace and performing manual stepping to find bugs. Watch-
points and breakpoints are helpful, but they require to spot the
right place to insert them and this is not always possible with
heavy compiler optimizations. Bringing a software–like debug
flow to the HW basically throws away all the performance
boost coming from debugging on–chip, because the largest
amount of time is spent resynthesizing the tracing circuits and
stepping the design. At the same time it imposes limits to
optimizations and prevents the design to be tested in the exact
form where the bug is found. This is unrealistic, because some
bugs could be caused exactly by some front–end optimizations,
HLS optimizations or memory layouts.

For these reasons automated bug detection can be the key
to really make the design/debug cycles more productive. This
approach can be even more useful if it is not dependent on
particular memory layout and if the granularity of the checks
can capture bugs related to temporaries inserted by compiler

optimizations. In this respect proposed debug methodology
tries to achieve the following goals:

1) perform fast, scalable and reliable automated discrepancy
analysis, to detect if and where the original high–level
description differs from the HW behavior;

2) avoid any direct interaction with the user during such
analysis, to avoid slowing down the process;

3) use HLS informations to provide per–operation and per–
variable granularity to the discrepancy analysis, indepen-
dently of the optimization applied by the compiler and
even when chaining and pipelining are enabled;

4) select all the necessary signals automatically; this is
fundamental to make the most of the HLS informations,
so that the user does not need to know anything about
the HLS compiler internals;

5) keep informations on the relationships between the orig-
inal C code and the generated HDL and show them to
the user with useful details if a discrepancy is found;

Clearly points 3 and 4 cannot be achieved in practice
without relying on the internals of the HLS framework used
for the implementation, but the approach we are going to
describe is generic enough to be applied to any HLS tool.
These same two requirements impose to have the maximum
observability of the signals. This is the major reason of
the decision to implement our proof–of–concept relying on
simulation. However the key contributes of the research (i. e.
the automated signal selection and the automated bug detection
with maximum granularity) are not strictly dependent on the
simulation flow. If the observability of the necessary signal
can be achieved in HW, then the same approach should be
applicable to in–circuit debug. This should remove the biggest
bottleneck to the speed of our method, which is currently
the poor performance of RTL simulator compared to HW
execution. In this paper we rely on simulation for signal
tracing, using different fine–tuned optimizations to improve
scalability with the size of the design and the number of
execution cycles. Details are given in the following sections.
Results of the debugging and performance of the algorithms
are shown in section V.

Before diving into the definitions there is an aspect to
underline. Even if at first sight our approach can resemble
equivalence checking, we are not trying to guarantee formal
equivalence between the high-level source code and the gener-
ated HW. Rather, for a given input set, we want to extend the
granularity of functional verification to find bugs at every level
in the HW hierarchy. The goal is to identify the exact time of
malfunctions and to isolate the faulty operation/component. In
this respect, the original C source code represents the original
specification and the generated HW is the design to be tested
for equivalence. This allows to validate the HLS engine as
well. The discrepancy analysis we are going to introduce is
not enough to guarantee formal equivalence, because it works
on a input test set. What it does, instead, is, given an input
triggering a bug, is to detect the misbehavior automatically,
selecting all the necessary signals to reach per–operation gran-



ularity and providing useful information on the location and
the cause. We did not investigate how to generate test inputs to
provide complete function coverage and branch coverage. This
is actually an orthogonal problem per se, especially because
there is no straightforward relationship between coverage in
C and in Verilog. The topic is extremely vast and it would
deserve a separate analysis.

B. Formal description of the problem

We now introduce Hardware Traces (HT) and Software
Traces (ST), describing the execution of HW and SW on a
given input. We alse define when they are equivalent. For
the definitions we start from the Control Data Flow Graph
(CDFG), the FSM and the Datapath (DP), which are general
internal representation used in HLS compilers [14]. The CDFG
is built by the compiler front–end and it represents the behav-
ior of the original program, with control dependencies between
basic blocks (BB) and data dependencies between operations
in the BBs. It is also the data structure manipulated by several
front–end optimizations, like speculation, code motion, dead
code elimination, constant propagation and others. The FSM
and the DP describe the synthesized HW. They are created by
the compiler during HLS, based on the resulting CDFG after
front–end optimizations. This conversion typically requires
three tightly related steps: scheduling, allocation and binding.
The whole process can also involve non–trivial modifications,
like sharing, chaining, pipelining and duplication of operations
in more than one state. For a given CDFG, the scheduling tells,
for every operation in a BB, the state of the derived FSM
where it will be executed. What is important for our purposes
is that the HLS engine creates the FSM from the CDFG in
such a way that every BB is mapped onto a chain of states in
the FSM, where the only control flow instructions are in the
last state of the chain (see Fig. 1). This is not strictly true if
the FSM implementation used in HLS tool is based on guard
conditions [14], but the following definitions can be adapted
to this case as well.

1) Control Flow Traces (CFT): Consider a function f

described in a high–level language such as C, and its CDFG
after front–end compiler optimizations. From such a CDFG,
HLS produces a FSM and a DP. With the appropriate con-
ventions the two representations can accept the same inputs.
For a given input, the CDFG represents the execution of the
software (as optimized by the compiler) and the FSM and
the DP together the execution of the generated HW. The two
flows have different semantics for operations. In BBs they are
sequential, while all the operations in a state of the FSM are
executed concurrently (or at least in chaining). However, from
a control flow standpoint, for a given input I the execution
can be described as an ordered list of nodes visited on the
graph, being it BBs for CDFG or states in FSM.

Definition 1. Consider a CDFG and an FSM coming from the
same high–level specification. We call Software Control Flow
Trace (SCFT) on a given input I the ordered sequence of BBs
representing the execution of the CDFG on the given input.

  
CDFG FSM

S0_2

S3

S2

S1_1

S1_0

S0_1

S0_0

BB2

BB0

BB1

BB3

Fig. 1. Scheduling relationship between CDFG and FSM. The thick magenta
arrows represent the Control Flow Traces.

We call Hardware Control Flow Trace (HCFT) on the same
input I the ordered sequence of states describing the execution
of the FSM. We will refer to SCFTs and HCFTs together with
the name Control Flow Traces (CFT).

According to this definition can we see the CDFG as a
function SCF that associates a Software Control Flow Trace
SCF (I) to every input I . In Fig. 1 the SCFT is (BB0, BB0,
BB1, BB2, BB3). In the same way we can regard the FSM
as a function HCF that associates an Hardware Control Flow
Trace to every input I . In Fig. 1 the HCFT is (S0 0, S0 1,
S0 2, S0 0, S0 1, S0 2, S1 0, S1 1, S2, S3).

Definition 2. Let now be fixed an input I for both a
CDFG and its associated FSM. Let then be SCF (I) =
〈BB0, BBk1, BBk2, . . . , BBK(I)〉 the related SCFT and
HCF (I) = 〈S0, Sj1, Sj2, . . . , SJ(I)〉 the related HCFT. We
say that SCF (I) is equivalent to HCF (I) if HCF (I) can be
produced from SCF (I) simply substituting (BBk) with the
corresponding states through the scheduling relationship. In
the following pages we will sometimes say that SCF (I) and
HCF (I) match. It is possible to show that for every SCFT s
there is one and only one equivalent HCFT h.

2) OpTraces (OT): Until now we defined equivalence be-
tween HW and SW executions at the control flow level. But
our goal is to compare the traces at the operation level. With
CFTs we can tell if two executions are not equivalent but
not the precise operation causing the mismatch. To reach this
granularity we have to consider binding and allocation in
addition to scheduling. Fig. 2 shows how the list of statements
in a BB can be reordered and assigned to operations scheduled
in different states of the FSM. The dashed arrows on the right
represent how the operations are bounded to allocated HW
components in the DP. Note the mapping of operations on HW
components is many–to-one, meaning that components can be
shared by multiple operations. Instead, there is a one–to–one
mapping between the statements in a BB and all operations
scheduled in the related states. Again, this is not strictly true
in case of FSMs with guard conditions or duplicated opera-
tions, but the described approach can be adapted with slight
modification to support them. In this paper we describe only



the basic case for the sake of conciseness. The fundamental
point is that every statement cannot be scheduled twice in a
chain of states representing a BB. For this reason, even if the
semantic of the operations is sequential in BBs and concurrent
in states, we can define equivalence also at the operation level.

Definition 3. Given a Basic Block BBi and its associated list
of states S1, . . . , Sk, we call Software OpTrace (SOT) of BBi

the list of results of the statements in the basic block and we
denote it with SO(BBi). We call Hardware OpTrace (HOT)
of a state Sj the set of results of the operations scheduled
in Sj and we denote it with HO(Sj). These results are
actually the values of the output signals of the HW component
implementing the operations themselves, when the FSM is
in the state Sj . Note that there is a one–to–one relationship
between statements in SO(BBi) and all the operations in
HO(S1), . . . H0(Sk). We will use the term OpTraces (OT) to
denote SOTs and HOTs together.

Definition 4. We say that the OpTraces SO(BBi) and
〈HO(S1), . . . HO(Sk)〉 are equivalent, or that they match, if
the results of the statements in BBi are equal to the results
of the associated operations in S1, . . . , Sk.

As stated above, more than one operation can be mapped
on the same HW module in the DP. This represents a
challenge in detecting the correct value for the result of a
given operation. However if a component is shared between
multiple operations, they must be scheduled in different states,
so it is enough to pick the output value of the component
when the FSM is in the correct state to retrieve the correct
result for the operation. It is possible to handle operations
in chaining, pipelined modules and multi–cycle operations.
The only requirement is to know their ending time, but this
is easily done given that the execution time of an operation
is known to HLS tools. The HCFT allows to identify the
time when an operation is started, then the execution time
tells when the result must be checked. One exception could
be represented by function calls and unbounded operations,
whose execution time is not known in advance. The function
calls are actually handled as normal unbounded operations,
allowing to use this approach with very complex call graphs.
Unbounded operations are usually handled with an handshake
mechanism, involving START and DONE signals. But the
DONE signal is enough to infer the real ending time of the
operation from the HCFT. Then it is possible to locate the
precise time when the result of the unbounded operation has
to be checked for the discrepancy.

3) Putting CFTs and OTs together: Having defined CFTs
and OTs we can finally define SW and HW traces and their
equivalence used to perform automated discrepancy analysis.

Definition 5. A Software Trace (ST) for a CDFG on a given
input I is a pair S(I) = (SCF (I), O), where O is the list of
Software OpTraces SO(BBi) of the BBs in SCF (I). Similarly
a Hardware Trace (HT) for an FSM on a given input I is a
pair H(I) = (HCF (I), H) where H is the list of Hardware
OpTraces HO(Sj) of the states in HCF (I).

  DATAPATHFSMCDFG

statement_4

statement_3

statement_2

statement_1

statement_0

BB1 

operation_4

operation_3

operation_2

operation_1

operation_0

S1_0

S1_1 

HW_component_0

HW_component_3

HW_component_1

HW_component_2

Fig. 2. Mapping between statements in a BB of the CDFG, operations in the
corresponding states of the FSM and HW components in the DP.

Definition 6. Let S(I) = (SCF (I), O) be an ST for a CDFG
and H(I) = (HCF (I), H) be the HT of the associated FSM.
S(I) and H(i) are equivalent if

• SCF (I) is equivalent to HCF (I)
• ∀BBi in SCF (I), being 〈S1, . . . Sk〉 its related states,
SO(BBi) is equivalent to 〈HO(S1), . . . HO(Sk)〉

IV. FROM FORMAL DESCRIPTION TO IMPLEMENTATION

The description reported in section III-B is quite abstract
and it was inspired by an early work in the field [15]. To show
the effectiveness of the proposed methodology we created a
debugger using our discrepancy analysis algorithm. The im-
plementation has been developed extending the functionalities
of the bambu HLS compiler [1]. Bambu takes C source files as
inputs and generates Verilog [6] HW descriptions. The steps
described here have been added to the default HLS flow of
bambu. They are executed after the generation of the Verilog
description of the HW to test, without affecting it in any way
and without imposing any limitations on front–end optimiza-
tions on the options available for allocation/scheduling/binding
in HLS. Instead, it makes full use of the HLS informations to
select the signals and to perform the pattern matching between
Software Traces and Hardware Traces.

A. Collecting STs and HTs

To adopt the approach described in section III-B, we need
to retrieve the informations on the STs from the software and
on the HTs from the generated HW. In particular, to generate
the HTs it is necessary to detect the signals that needs to be
selected in the generated HW.

1) Generation of the Software Traces: The SCFT is the
list of BBs visited by the software execution, the SOT is the
list of the results of assignment statements in the high–level
source code. The data on the STs are collected by printing
back the C source code after all the front–end optimizations
performed by the HLS compiler. The assignments in the
generated code are instrumented so that when the program
is executed the assigned values are printed to a file, with
additional high–level information. The C code–generator is
designed to structure the generated source like the CDFG.
The assignment are printed in Static Single Assignment (SSA)
form, so every variable is assigned in only one operation. SSA
φ operations [16] are splitted and substituted with assignments,
with the approach described in [17]. In this way they can be



printed in the instrumented C code and they can be checked
by the discrepancy analysis. There is no need to reorder
the instruction in C to mirror the scheduling order of the
operations in the FSM. This is due to the fact that every
operation is executed only once in a BB and that it is scheduled
in only one state among those corresponding to that BB. With
this assumptions, having the operations printed in SSA form
is enough to infer the correspondence between the assigned
variable and the output signal of the HW component at the
correct time. Moreover printing the C source code in SSA
after the front–end optimizations allows to capture the internal
variables inserted by the compiler. Executing the generated
program is enough to retrieve both the SCFT and the SOT
needed for discrepancy analysis.

2) Automated signal selection: The HCFT is represented by
the value of the state signal in the controller of the FSM, while
the HOT is essentially the set of values of the output signals
of the HW modules to which the operations are bounded.
For this reason, and for what said in paragraph III-B2, to
use the approach described earlier the only signals to select
are the following: 1) obviously the CLOCK signal; 2) the
PRESENT STATE signal of every FSM, which represents the
HCFT; 3) the output signal of every HW module implementing
a statement in the CDFG (this can also be a function call;
the signal names are implementation specific); 4) START
and DONE signals for HW module implementing unbounded
operations. It is worth stressing that these signals are all we
need to be able to perform the discrepancy analysis, even if
the number of signals in the design is much larger.

3) Generation of the Hardware Traces: To generate HTs
we rely on simulation. As said earlier, the simulation may
not be the fastest way to obtain such information, but the
slowdown is compensated by the automatic signal selection
and discrepancy analysis. Moreover the simulation provides
maximum observability of the signals, independently of the
target technology. The design is executed with the same input
as the C program and the signal variations are dumped in
VCD format. To obtain the data needed to build the HCFT it
is enough to collect the state signal of the controller of the
FSM. The HOTs, instead, are composed using the values of
the output signals of the HW modules used to implement the
operations in the DP. The necessary signal are just a portion
of all the signals in the design. The name of the interested
signals can be inferred by the binding/allocation mapping built
for the HLS process. The details of how this can be done are
dependent on the specific HLS tool, but they are nothing more
than the standard results of binding/allocation steps, without
any customization. Once the interesting signals are identified,
it is possible to restrict the VCD print only to them. With this
signal selection the resulting VCD can be from about 35% to
about 95% smaller than the original (see Fig. 6 in section V),
with obvious benefits for the I/O time.

B. Matching STs and HTs

After the Hardware and Software Traces are collected the
last step of our implementation performs automatic discrep-

ancy analysis. The definitions already suggest how to compare
the traces. CFTs can be easily compared with linear time
complexity, simply iterating through the SCFT and verifying
that the HCFT generated by the HW is equivalent, one element
at a time. The linear complexity comes from the fact that
the scheduling information used to compare BBs and states
is built during the scheduling so it does not need additional
calculations. Looking again at Fig. 1 we can deduce from the
scheduling that BB0 is mapped onto the list of states (S0 0,
S0 1, S0 2), BB1 is mapped onto (S1 0, S1 1), BB2 onto S2
and BB3 onto S3. If we start from the SCFT (BB0, BB0, BB1,
BB2, BB3) and we substitute every BB with the corresponding
list of states we obtain (S0 0, S0 1, S0 2, S0 0, S0 1, S0 2,
S1 0, S1 1, S2, S3), which is indeed the HCFT. Then the two
Control Flow Traces are equivalent.

The basic idea to compare OTs is very similar. In this case
we take Fig. 2 as reference. The equivalence of OTs is done
one BB at a time. Inside a single BB, the pattern matching
proceeds along the list of FSM’s states corresponding to the
BB itself. For BB1 in the figure, the values assigned in the
5 statements must be checked. When the PRESENT STATE
signal of the FSM is in state S1 0 the value of the output signal
of HW component 0 must be equal to the value assigned in
statement 3, and the value of the output of HW component 1
must be equal to the value assigned in statement 0. Every
variable is assigned in a single statement thanks to the SSA
form, so this operation can be done. The same can be done
for S1 1, to compare the remaining 3 operation.

This algorithm must be applied to all the BB in the SCFT.
If the bug affects the control flow, the discrepancy is detected
at the CFT level and the OTs comparison can be restricted
to a single BB. This is done simply comparing the results of
every statement with the value of the corresponding output
signal of the component in the DP. Given that an operation
is executed once for every BB, the time complexity to detect
the bug in a single BB is O(m), where m is the number of
operations in the BB. The worst case scenario is when there is
no CTF mismatch. In this case all the OTs for all the operations
in all the basic blocks must be verified, because there could
be a bug that does not change the control flow. This leads
to a worst case time complexity of

∑N
n=1O(t(n)) where N

is the total number of operations and t(n) is the number of
times operation n is executed. Actually if a bug is present the
comparison is faster, since it stops at the first mismatch.

V. CASE STUDIES AND RESULTS

The approach described above have proved to be very
versatile and efficient in automatic bug detection on different
designs synthesized starting from C specifications using the
bambu compiler. The discrepancy analysis is able to compare
signals coming from pipelined and multi–cycle operations,
with per–operations granularity even with very aggressive
compiler optimizations. All the memory layouts available for
HLS are supported. In this section we report in detail the
results we collected during tests with our debugger.



A. Bug detection

The bugs detected from our debugger can be coarsely
divided in three classes:

1) bugs already present in the original C specification;
2) bugs introduced using a library with flawed hardware

components for HLS;
3) bugs introduced by the HLS tool.
Among bugs in (1), some are due to the quirks of the C

language, like non–initialized variables or integer functions
with return statements without value. These are allowed by
the C standard, but they cause non–initialized signals to be set
to “Z” in Verilog. Others are just real bugs caused by a wrong
implementation of the specifications in the original C source.
In this case the discrepancy analysis does not discover any
mismatch between the high–level source code and the resulting
HDL. However, given that this kind of bug are already present
in the original code, all the well–known software debugging
techniques can be used to find them, without involving the
HW. Bugs in category (3) are actually bugs in the HLS tool.
Like bugs in (2) they can be described in more detail based
on how they affect the generated HW. In fact, their impact on
the design is typically one of the following:

a) bugs in HW components used to implement operations;
b) bugs in the FSM controller logic;
c) bugs causing the design to loop or hang;
d) errors in the interconnection between components;
e) bit flips due to aggressive optimizations.
Bugs in all these categories have been successfully detected

by our tool. Some of them were manually inserted for testing
purposes, while others were actually found in the bambu
HLS compiler. An out–of–bound bug was found in the mips
benchmark in the CHStone HLS benchmark suite [18] (version
1.11 150204 and previous). Bugs of group (a) and (e) are
the more frequent and they are detected with per–operation
accuracy. When a mismatch occurs, the tool shows the position
of the failing operation in the original C along with the
mismatching signal and the timestamp. The failing operation
may not be present in the original code, for instance if it was
inserted by compiler optimizations. In this case, the debugger
shows the information on the instrumented code after the
optimizations. Bugs in the logic of the generated controller
(b) can be due to wrong state optimizations of the FSM. They
can cause a mismatch in the CFTs or bugs of type (c). In the
latter case, the simulator can be set with a maximum number of
cycles to simulate. Then the discrepancy analysis is performed
on the partial traces. In this way the same method can be used
to find bugs which normally would cause the design to hang or
loop. Finally, bugs of categories (d) and (e) are actual compiler
bugs. It is worth to remark that in our experiments we proved
that with this approach it is possible to spot bugs which are
not visible outside the design.

During our tests with the debugger we collected data about
the coverage and the performance of our method, along with
some other data on the advantages of the approach. Such
results were collected during the execution of our discrepancy
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Fig. 3. Time overhead of discrepancy analysis, compared to simulation.
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Fig. 4. Coverage: percentage of checked assignments at runtime.

analysis on the circuits generated by the bambu compiler for
the well–known set of CHStone HLS benchmarks, with dif-
ferent optimization options. In all the figures in the remainder
of this section the names of the benchmarks are on the x axis,
along with the optimization level.

B. Performance

In Fig. 3 we show the time overhead of our discrepancy
analysis debugger, compared to the execution time of the
simulation of the design being tested. The simulation was per-
formed with the Modelsim SE–64 10.3 simulator. As we can
see the discrepancy analysis represents a negligible overhead
compared to the simulation: around 15% in the worst cases,
but much less in most others. This is even more impressive
if we think that normally the user would have to perform the
analysis of the signals manually, without any knowledge of
the circuit generated by HLS.

C. Coverage

Perhaps the most interesting results are about the coverage.
In Fig. 4 we can see some coverage metrics about the gran-
ularity of the discrepancy analysis. The histogram shows the
percentage of assignment at runtime checked with our method.
The dark small area at the bottom represents the assignments
involving variables which are present in the original source
code. The larger yellow area on top, instead, represents the
assignment involving compiler temporary variables. They are
always at least 45% of the total, with a maximum of 89%
for aes–O3. This clearly shows the potential of our method
compared to other approaches to source–level debugging for
HLS–generated circuits ([13], [12]), which are not able to
check temporaries and force to disable compiler optimizations.
It is also possible to see that the percentage of checked as-
signments is slightly affected by the optimizations, sometimes
even showing an increase with more aggressive optimizations.

There are still some cases not covered by the methodology,
namely checks on values resulting from pointer arithmetics.
This is due to the different address spaces on the host
machine of the SW and on the synthesized HW. As a result,
for memory–intensive benchmarks the coverage is generally
worse than others, because of the higher number of arithmetic
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Fig. 6. Reduction of the VCD file size using signal selection.

operations between pointers. Work is ongoing to cover also
the currently missed cases.

D. Other advantages

Another couple of interesting effects of our approach can
be seen in the remaining figures. Fig. 5 shows the percentage
of signals selected in the design with our approach. It is
evidently very low. It also represents the number of signals
needed to ensure HW/SW execution equivalence using our
approach. Without automated signal selection, the user would
typically need to find out the signals himself and to reconstruct
the relationship with the original high–level source code. This
would take a large amount of time especially if the user is not
aware of the internal signal naming conventions of the HLS
tool. This means that only the automatical signal selection is
already a huge advantage for HW designers.

But there is more. With the signal selection we are sure that
we have all the signals we need for the discrepancy analysis.
Then there is no need to dump all the signals in the design
to the VCD file. Only the interesting signals can be dumped,
reducing the size of the generated VCDs. Fig. 6 shows the
amount of the reduction of the generated VCD file size. In
some cases this means bringing the size from some GBs to
some MBs. This is also beneficial for the simulation time,
which is always lower with signal selection, since the I/O
bottleneck to print the VCD is less significant.

VI. CONCLUSIONS AND FUTURE WORK

Significant progress has been made in recent years in the
quality of circuits produced by HLS, but the support for
debugging is still incomplete. The work presented here tries
to bridge this gap proposing an approach for a completely
transparent debugger which requires low effort for the user.
This approach can help not only the software engineers with
a limited knowledge of hardware design but also the hardware
engineers to increase their own productivity.

The main contribution of the proposed technique is the
automated discrepancy analysis, based on the selection of
the signals in the generated HW, performed as well by the
tool itself. The results on the coverage are very promising,
showing that it is possible to find a very large percentage
of the possible bugs also in complex scenarios with deep

call graphs. Most importantly, such automated discrepancy
analysis is able to find bugs related to temporary variables
and no restrictions are imposed on compiler optimizations and
memory layouts. Research is ongoing to complete the coverage
also of addresses and pointer arithmetics.
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