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Abstract—Modular design is becoming increasingly important
in High Level Synthesis (HLS) flows. Current HLS flows generate
hierarchical and modular designs that mimic the structure
and call graph of input specification translating functions into
modules. Function calls are translated instantiating the callee
module in the data-path of its caller, allowing for resource sharing
when the same function is called multiple times. However, if
two different callers invoke the same function, current HLS
flows cannot share the instance of the module between the two
callers, even if they invoke the function in a mutually exclusive
way. In this paper, we propose a methodology that enables
sharing of (sub)modules across modules boundaries. Sharing is
obtained through function proxies, which act as forwarders of
function calls in the original specification to shared modules
without adding performance penalties. Building on the concept
of function proxies, we propose a methodology and the related
components to perform HLS of function calls through function
pointers, without requiring complete static knowledge of the alias
set (point-to set). We show that module sharing through function
proxies provides valuable area savings without significant impacts
on the execution delays, and that our synthesis approach for
function pointers enables dynamic polymorphism.

I. INTRODUCTION

Modular design is becoming increasingly important in HLS

flows. By enabling translation of specifications in high-level

code (e.g., C) to Register Transfer Level (RTL) specifications

in hardware description languages, HLS has the potential to

significantly improve designers’ productivity when develop-

ing custom hardware accelerators for many kernels of time-

critical applications. By employing modular and hierarchi-

cal approaches, HLS tools can today handle very complex

specifications. Modern HLS tools can partition a specification

into smaller modules, providing a structured and systematic

approach to build the full design. Proper partitioning allows

abstracting the implementation details and maintain indepen-

dence among the modules. Modularity enables the reuse of

components (even previously synthesized, and synthesized

with other tools) in the design [1], which could be specifically

optimized, providing area savings and higher flexibility.

In general, HLS flows generate hierarchical and modular

designs that mimic the structure and call graph of the original

high-level specification, where a function corresponds to a

module. The typical approach is to progressively synthesize

functions into modules, navigating the call graph of the origi-

nal specification from the leaves to the top function. A function

call corresponds to the instantiation of the related module

into the data-path generated for the caller. If a caller invokes

the same function multiple times, the HLS flows can usually

generate a data path that reuses the same instance of a module

for the different calls, depending on resource/performance

trade-offs. However, if two different callers invoke the same

function, current HLS flows do not share the instance of

the module between the two callers, even if they invoke the

function in a mutually exclusive way. With minor variations,

this is the strategy implemented both in research tools (e.g.,

LegUp [2], PandA [3], Shang [4], GCC2Verilog [5]) and

in commercial products (e.g., Vivado HLS from Xilinx [6],

AutoPilot from AutoESL, Synphony from Synopsys [7]).

Moderns application may have complex call graphs, where

the same function is invoked from very different paths, and

such an approach is clearly sub-optimal in terms of area.

In this paper, we propose a methodology that supports the

sharing of (sub)modules across modules boundaries. Sharing

is obtained through function proxies, which act as forwarders

of function calls in the original specification to shared modules

without adding performance penalties. Building on the abstrac-

tion of function proxies, we propose a methodology and the

related components to perform HLS of function calls through

function pointers, without requiring complete static knowledge

of the alias set (point-to set). This enables performing calls

from the same call points in a data path to different (shared)

modules depending on dynamic conditions. In other words, the

approach enables the synthesis of specifications that employ

dynamic polymorphism.

The main contributions of this paper are:

• The introduction of function proxies as an architectural

components for modular HLS;

• a methodology for the HLS of shared (sub)modules

across module boundaries employing function proxies;

• a methodology that enable synthesis of function pointers.

The remainder of this paper is organized as follows. Sec-

tion II introduces the concept of function proxies, describing

the architecture and the notification mechanisms. Section III

explains how function proxies enable the synthesis of function

pointers. Section IV presents the synthesis results, highlighting
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the benefits of module sharing across module boundaries.

Section V compares our approach to the related work. Finally,

Section VI concludes the paper.

II. METHODOLOGY

Modern HLS tools automatically generate the hardware im-

plementation of behavioral specifications commonly described

through programming languages such as C/C++. The result of

the synthesis is a HDL (Verilog, VHDL) description of the

design, typically implemented as Finite State Machine with

Data-path (FSMD) modules. When synthesizing applications

characterized by complex call structures the generated designs

typically are modular, and the design hierarchy mimics the

structure of the specification’s Call Graph (CG). The synthesis

proceeds one function at a time, starting from the leaves

of the CG: the tool embeds FSMDs of callee functions

into the data-path of the caller functions. Figure Figure 1a

proposes an example CG, while Figure Figure 1b shows the

corresponding modular architecture, obtained through typical

HLS techniques. While preserving modularity, this approach

requires the allocation of at least one callee function module

for each caller module. In the proposed example, funC is

allocated within both funA and funB modules. This issue

occurs regardless of the schedules of the callers: conventional

HLS flows allocate multiple callee modules also when they

execute in mutual exclusion (e.g., when funB depends on the

call of funC within funA). This leads to sub-optimal resource

utilization, which may be particularly significant for complex

applications.

A common technique that may improve resource utilization

is function inlining. Function inlining provides several valu-

able opportunities for optimization:

• it may improve Instruction Level Parallelism exploitation,

leading to latency improvements;

• by removing function boundaries, it may improve code

transformation optimizations, such as constant propaga-

tion and dead code elimination;

• it allows sharing at the level of functional units.

However, depending on the application characteristics, when

employing inlining the following issues may arise:

• an excessive flattening of the call structure may dra-

matically increase the number of operations within a

function, potentially affecting the controllers complexity.

As controller complexity grows, the synthesis tools start

introducing long wires and high load capacitances. This,

in turn, increases the path lengths between the controller

and the data-path selectors, degrading the overall perfor-

mance;

• control and data dependencies may still reduce the

amount of extractable ILP; in such a case, fine-grained

sharing of functional units leads to worse latency/area

trade-offs when compared to sharing at coarser granulari-

ties. Sharing at the level of FUs in fact, requires allocation

of steering logic for each shared FU; sharing a function

module instead, only requires allocation of steering logic

for its inputs.

To overcome limitations in resource sharing of conventional

HLS flows, we propose a general methodology that allows

sharing of modules across data-path boundaries, at every level

of the design hierarchy. Our approach is based on the definition

of lightweight control elements, called function proxies, which

enable the management of shared resources across the design

hierarchy, without affecting the design and the complexity of

the controllers. The technique is orthogonal to inlining: with

complex CGs inlining could actually improve the quality of

the results by providing larger candidates for sharing.

A. Function Proxy Architecture

As in typical modular design techniques, we model function

modules as custom synthesized units that expose a simple

interface. The interface includes: start and done signals, input

parameters, and return values. The controller of the caller

manages the function module, while the caller data-path em-

beds the module itself. In our design, we preserve this simple,

yet effective, structure, taking advantage of function proxies.

Function proxies substitute the instance of a shared module in

the caller data-path, redirecting control and data signals to the

proper module instance. This does not affect the behavior of

the controller of the caller. The generated architecture includes,

for every shared function module, a single instance of the

module, allocated within the data-path of the caller at the

higher level in the design hierarchy, and a proxy for each

call of the function, embedded in the data-path of each caller

module. The signal propagation mechanism exploits a custom

hardware component, called merger, which is associated with

the instantiated shared resource. The merger collects signals

coming from the proxies and forwards them to the instance of

the module. It also collects the outputs of the shared module

and forwards them to the function proxies. In our architecture,

only one proxy is active at a time, meaning that calls to

shared modules always occur in mutual exclusion. While

inactive, a proxy always outputs null valued signals. This

simplifies the design of the merger, which can be efficiently

implemented by OR-ing the incoming signals and broadcasting

back the outputs to the connected proxies. Inactive proxies

just ignore the incoming signals (done and return values).

Figure Figure 1c schematizes the architecture associated with

the CG of Figure Figure 1a, obtained by enabling the sharing

of funC. The shared instance of funC is allocated within funA

module. Dedicated proxies manage calls of funC in both funA

and funB.

B. High-Level Synthesis of function proxies

To enable sharing of function modules during HLS, we

propose an algorithm for the identification and selection of

suitable candidates. Our algorithm identifies candidates by

analyzing the CG of the specification: the algorithm marks

functions with more than one caller as sharable among module

boundaries. Nevertheless, not all the candidates are selected

for sharing. In fact, sharing small function modules may

provide limited area reductions because proxies, mergers, and

steering logic necessarily induce an area overhead that may
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Figure 1: Architecture obtained before and after function proxy introduction.

compensate any benefits. This may happen even if we designed

proxy and merger components trying to minimize resource

requirements. For this reason, we devised a simple heuristic for

the selection algorithm. The procedure computes the schedule

of the candidate functions: if the execution latency of a

function is constant (e.g., its latency is not input-dependent, or

it does not include variable latency operations) and limited in

terms of clock cycles, it is not selected for sharing. We choose

latency as selection criteria for two reasons. First, low-latency

modules typically small enough in terms of area to limit

the benefits of sharing. Second, in presence of function level

parallelism, calls to modules with constant latency are easy to

schedule in parallel. This reduces the overall latency of the

design, but requires to instantiate multiple modules. We have

implemented the methodology in a publicly available HLS

framework and, after an empirical design space exploration,

we have found a threshold latency of 4 clock-cycles to provide

the best overall area/performance trade-offs. After the selection

phase, the module allocation identifies the data path entity

in the design hierarchy where to embed the function module

instances. The algorithm once again analyzes the CG of the

application, and chooses the proper level in the hierarchy by

identifying the dominator of the calls to the shared function.

For complex CGs, the dominator function may not include any

call to shared functions.

III. SYNTHESIS OF FUNCTION POINTERS

The introduction of function proxies enables sharing a single

instance of a module that implements a function. By exploiting

this feature, it is possible to extend the methodology to support

the synthesis of applications with function pointers. State of

the art approaches commonly deal with function pointers by:

• static resolution of pointers: the frontend compiler can

generate specialized versions of synthesized functions,

if it can statically resolve function pointers to a single

candidate. This is the case of calling a function that takes

as input a function pointer, and passing a function name

as an argument;

• statically computing the alias set of the function pointers:

by performing alias analysis, it is possible to translate

1 int laplacian(char *, char *, int, int);

2 int make_inverse_image(char *, char *, int, int);

3 int sharpen(char *, char *, int, int);

4 int sobel(char *, char *, int, int);

5

6 int (*pipeline[MAX_DEPTH])(char *, char *, int, int);

7

8 void UserApp(char *in, char *out, int x_size, int y_size) {

9 // ...

10 // Pipeline configuration using function pointers

11 add_filter(0, make_inverse_image);

12 add_filter(1, sharpen);

13 // ...

14 // execute is synthesized in hardware

15 execute(in, out, x_size, y_size);

16 }

17 void execute(char *in, char *out, int x_size, int y_size) {

18 int i = 0;

19 for (i = 0; i < MAX_PIPELINE_DEPTH; i++) {

20 if (pipeline[i] == 0) break;

21 // here other hw accelerator are called

22 // using function pointers

23 int res = pipeline[i](in, out, x_size, y_size);

24 if (res != 0) return;

25 swap(in, out);

26 }

27 move_if_odd(i, in, out);

28 }

Listing 1: Image processing application using function

pointers.

calls that use function pointers into a switch block that

covers all the possible alternatives.

The underlying assumption of these two approaches is that

the HLS flow has the complete knowledge of the point-to set

of a function pointer during the synthesis. Having a single

instance of a function, through function proxies, enables a

more dynamic support for calls through function pointers.

Our methodology supports synthesis of function pointers by

extending modules with a memory mapped interface and by

introducing a communication protocol that implements the call

mechanism through such an interface.

Memory mapped interfaces are a well established design

pattern that is widely used for communication with hardware

accelerators and peripherals. The following sections discuss

how a memory mapped interface allows implementing a call

mechanism for function pointers in a simple and effective way.
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1) Memory mapped interface: The proposed flow automat-

ically generates the memory mapped interface according to the

prototype of the synthesized function. The interface includes a

control register, a set of input registers and an output register.

During the memory allocation step, the HLS flow assigns

a unique ID to each function. The ID works as the function

base base address and is associated with the control register. At

the same time, the memory allocation step reserves addresses

for the function parameters and for the function return value.

Following this schema, the control register is the first element

allocated in the address space of an accelerator, followed by

the memory mapped register of the function interface. This

solution allows associating the base address of a function (its

function pointer) with the address of its control register in the

synthesized architecture.

The control register gives access to the internal state of the

accelerator. The state can be: idle, computing, done. The main

purpose of the control register is to enable other processing

elements to start the computation and to identify when the

computation completes.

Input registers are allocated next to the control register. They

store the value of input parameters defined in the function

prototype of the synthesized accelerator. The last element of

the module interface is the output register, which stores the

return value of the synthesized function. Registers for input

parameters and return value are generated only if needed.

For example, modules synthesized from function returning

void do not have the output register. Similarly, modules

synthesized from functions without input parameters do not

have input registers. Figure Listing 1 shows an applica-

tion that implements a dynamically (re)configurable image

processing pipeline. The application contains a set of four

filters: laplacian, make_inverse_image, sharpen and sobel.

The pipeline is modeled through an array of function pointers

(Listing 1 line 6). Figure Figure 2 shows how the proposed

flow translates the prototypes of the filters into the memory

mapped interface.

2) Indirect call mechanism: The function call mechanism

for function pointers directly derives from the module interface

definition. Each caller performs three operations to invoke a

module through a function pointer. First, it writes parameters

into the input registers of the memory mapped interface. Then,

it starts the computation of the callee by writing in the callee

control register, and waits for the result. Finally, when the

callee completes, it reads the return value from the callee

Caller builtin Callee

builtin_indirect_call

sendParameters

startComputation

notify

readReturnValue

writeReturnValue

Figure 3: Sequence diagram of an indirect function call.

interface and continues its computation. The mechanism is

analogous to software function calls. The two steps performed

are equivalent to filling the activation record of the function,

and then jumping to the address of the first instruction of the

called function.

The layout of the memory interface is the same for all

the functions with the same signature because it is generated

according to the function prototype. This property guaranties

the generality of the call mechanism.

The value of the function pointer controls which module is

called, while the standard layout of the memory mapped in-

terfaces allows accessing the registers only using their relative

addresses.

3) Notification mechanism: The status register stores the

current state of the module accelerator. Using this information,

a caller can periodically poll the control register of the invoked

module to find out when it completes. Unfortunately, this

strategy does not scale with the number of hardware modules

concurrently active. In fact, periodical polls can congest the

bus. Furthermore, the unnecessary bus traffic can prevent

called modules to perform memory operations needed to com-

plete their computation, resulting in deadlocks. To avoid this

issue, our methodology includes an asynchronous notification

mechanism that is activated during the call process.

A memory operation is, again, at the core of the mechanism.

The HLS flow associates a unique ID, named notification

address, to every call site. So, on one side, the notification

address is stored in the control register during the call. On

the other side, the called module employs the address stored

in its control register to notify the caller of its termination.

The notification only requires a write operation to the address

stored in the control register. Once the caller intercepts this

store, the computation restarts by reading the return value

from the memory mapped interface of the called module

(Figure Figure 3).

Allocating different addresses for each indirect call site

allows distinguishing among calls to the same module from

different callers.

4) Function pointer run-time cost: The indirect call mech-

anism introduces a performance penalty over the direct call

mechanism. Assuming a single bus architecture, we can com-



1void execute(char *in, char *out, int x_size, int y_size) {

2int i = 0;

3for (i = 0; i < MAX_PIPELINE_DEPTH; i++) {

4if (pipeline[i] == 0) break;

5// here other hw accelerator are called

6// using function pointers

7__builtin_indirect_call(

8pipeline[i], 1, in, out, x_size, y_size, &res);

9if (res != 0) return;

10swap(in, out);

11}

12move_if_odd(i, in, out);

13}

Listing 2: Image processing example after builtin insertion.

laplacian UserApp

add_filter execute

sobel sharpen make_inverse_image

Figure 4: Initial call graph of Listing 1.

pute the overhead (in clock cycles) of the call mechanism

(CO) as:

CO = Wl(Np + 1) + lhs(Wl +Rl) (1)

where Np is the number of function parameters, Wl and Rl

are respectively write and read latency of the memory mapped

registers and lhs is 1 when the call instruction is on the left

hand side of an assignment or 0 otherwise. The first term takes

into account the run-time cost for parameter passing plus the

start command, while the second term accounts for the time

spent to retrieve the returned value. Parallelizing parameter

passing to the called module with a multi-channel architecture

can reduce the cost of the mechanism in terms of latency.

5) Source code transformations: We added two transfor-

mation passes to the HLS flow to support the methodology

described in the previous section. The first transformation

substitutes function calls performed through function pointers

with calls to a builtin function (the transformed code of the

initial image processing example is shown in Figure Listing 2).

The builtin function is defined as a variadic function. Its first

argument is the function pointer of the function to be called.

The second argument is a Boolean flag, which is true when the

last passed parameter is the address of the return value, or false

otherwise. Further arguments are the list of input parameters

passed to the function and the optional returning value address.

The HLS flow recognizes the builtin function and translates it

in a module implementing the indirect call mechanism.

Once the the first transformation inserts the builtins, the

second transformation modifies the application call graph by

adding edges that connects callers using pointers to functions

matching the pointer type. This transformation retrieves the

missing information about function calls using function point-

ers. Figures Figure 4 and Figure 5 show how the transfor-

mation modifies the call graph of the application in Figure

Listing 1.

laplacian

UserApp

add_filter execute

sobel sharpen make_inverse_image

Figure 5: Enriched call graph.

IV. EXPERIMENTAL EVALUATION

We validated our approach by extending Bambu, the HLS

tool of the open-source PandA [3] framework, freely down-

loadable from the internet. The tool takes in input applications

described in C and generates their Verilog implementations.

It interfaces with the GCC compiler as a front-end, which

allow exploiting several optimization techniques typical of

software compilation, that are also profitable in HLS. These

for example include hoisting, constant propagation, dead code

elimination, function inlining, loop unrolling. We simulated

the resulting designs with ModelSim 10.3, and synthesized

them with Vivado 2014.4, targeting a Xilinx Virtex-7 device

(package xc7vx485t). We targeted a frequency of 100 MHz

for the synthesis, and show the estimated maximum frequency

for the synthesized circuits. We characterize area requirements

by reporting the number of Look Up Tables (LUTs), Flip

Flops (FFs), and Digital Signal Processing (DSP) units post

place and route. We evaluate the effects of the introduction of

function proxies into the synthesis flow, and then provide a

validation for the synthesis of function pointers.

A. Function proxies

We validated our sharing approach by synthesizing the

CHStone benchmark suite [8], a reference benchmark for HLS

tools. CHStone benchmarks have very simple call graphs,

so the front-end compiler, in most cases, completely flattens

the designs by inlining all the functions, thus making our

methodology ineffective. In these settings our sharing strategy

can be applied only on the mpeg2 benchmark. On this bench-

mark, the function proxies reduce LUTs and FFs utilization

by more than 50% (from 4425 to 2035 LUTs, from 3367

to 1429 FFs, 0 DSPs). In order to highlight the effects of

the proposed techniques, we have selectively disabled inlining

for functions with more than one caller. We underline that

our methodology does not have the intent of replacing other

optimization techniques (such as inlining), but should rather

be used in combination with them. Table Table I shows the

obtained synthesis results., Overall, enabling sharing across

data-path boundaries reduces LUTs utilization by 17%, FF

utilization by 18.85%, DSP utilization by 1.77%, on average.

The benefits of the proposed methodology widely vary accord-

ing to the benchmark characteristics For benchmarks featuring

small functions or limited opportunities for sharing we report

a gain in area utilization lower than 4%; for benchmarks with



Table I: CHStone benchmarks with (FP ) and without (noFP ) function proxies disabling inlining.

#Cycles Freq. (MHz) #LUTs LUT Gain #FFs FF Gain #DSPs DSPs Gain
FP noFP FP noFP FP noFP FP noFP

adpcm 17996 94.10 94.94 5595 6143 8.92% 4340 4564 4.91% 63 69 8.70%

aes 1906 128.22 124.30 5984 7751 22.80% 5342 7141 25.19% 0 0 0.00%

blowfish 88763 114.39 106.95 3436 6241 44.94% 2185 3699 40.93% 0 0 0.00%

dfadd 520 133.89 139.16 3004 3937 23.70% 2303 2772 16.92% 0 0 0.00%

dfdiv 1152 112.51 109.89 5781 5783 0.03% 4219 4217 −0.05% 32 32 0.00%

dfmul 143 111.91 114.05 1643 1672 1.73% 983 983 0.00% 16 16 0.00%

dfsin 34182 104.22 102.89 13917 16423 15.26% 10151 12261 17.21% 51 51 0.00%

gsm 2920 91.93 87.97 4279 4309 0.70% 3619 3657 1.04% 25 25 0.00%

jpeg 571065 97.66 95.07 12642 12717 0.59% 6854 7238 5.31% 7 8 12.50%

mpeg2 4235 115.34 113.83 2362 5105 53.73% 1886 4031 53.21% 0 0 0.00%

sha 87362 155.38 127.06 3338 5442 38.66% 3811 6643 42.63% 0 0 0.00%

Averange 114.50 110.56 19.19% 18.85% 1.77%

Table II: libm function subset and basic_math with (FP ) and without (noFP ) function proxies.

#Cycles Freq. (MHz) #LUTs LUTs Gain #FFs FFs Gain #DSPs DSPs Gain
FP noFP FP noFP FP noFP FP noFP

acoshf 430 93.06 91.01 7353 12667 41.95% 7397 11943 38.06% 13 39 66.67%

asinhf 313 93.56 90.35 7535 12009 37.26% 7491 11381 34.18% 13 39 66.67%

atan2f 366 94.95 89.76 4031 6011 32.94% 3879 5856 33.76% 13 24 45.83%

atanhf 512 91.31 92.13 5571 7496 25.68% 5108 7306 30.08% 13 26 50.00%

cosf 213 108.24 115.19 10866 17405 37.57% 10372 16464 37.00% 2 12 83.33%

coshf 243 91.89 91.16 6988 11296 38.14% 6578 10643 38.19% 13 41 68.29%

erfcf 273 91.84 90.24 7543 10314 26.87% 7817 10338 24.39% 13 28 53.57%

erff 224 91.39 89.69 7447 10240 27.28% 7786 10316 24.53% 13 28 53.57%

expf 204 92.81 93.27 3807 3946 3.52% 3620 3746 3.36% 13 15 13.33%

gammaf 530 92.76 90.03 11671 18516 36.97% 12424 18878 34.19% 13 32 59.38%

hypotf 176 134.92 129.07 3773 3893 3.08% 3744 3871 3.28% 2 4 50.00%

lgammaf 773 90.01 91.31 11888 18678 36.35% 12385 18858 34.32% 13 32 59.38%

powf 1050 93.16 91.24 8530 8519 −0.13% 7691 7833 1.81% 13 15 13.33%

sinf 139 106.94 108.18 11078 17389 36.29% 10367 16464 37.03% 2 12 83.33%

sinhf 576 92.51 90.46 7108 11944 40.49% 6623 11395 41.88% 13 41 68.29%

tanf 481 92.27 92.39 12591 17156 26.61% 11043 15747 29.87% 13 21 38.10%

tanhf 636 93.69 91.92 5514 7567 27.13% 5269 7341 28.23% 13 26 50.00%

basic_math 25316299 84.27 89.69 52061 148075 64.84% 28982 87166 66.75% 58 250 76.80%

Averange 95.97 95.39 30.16% 30.05% 55.55%

more complex call structures, we report much more valuable

area reductions, up to over 50% (for both LUTs and FFs) for

mpeg2. Simulation results confirm that the introduction of the

additional components (proxies and mergers) for supporting

the sharing do not lead to any penalty in terms of number of

clock cycles needed for execution. Although such components,

being completely combinational, may slightly increase the

length of critical paths, we do not report any significant

reductions of the achievable frequency. In several examples

(e.g. sha), we even obtain frequency improvements: this may

be associated to the effects of the area reduction during the

synthesis through Vivado.

We evaluate our methodology also on applications featuring

more complex call structures. We selected a subset of 17 libm

primitives from Newlib [9] and the basic_math benchmark

from the mibench suite[10]. For these kernels, the front-end

compiler does not flatten the specifications through inlining,

due to the complexity of the call graphs. In particular, ba-

sic_math invokes the same functions from many different paths

Table III: Image filtering application.

#Cycles #LUT Pairs #DSPs #BRAMs Freq. (MHz)

test0 993104 30667 46 6 107.25

test1 1026151 30667 46 6 107.25

of its call graph, highlighting the effectiveness of our approach

(over 60% improvement in both LUTs and FFs).

Table Table II shows that the introduction of function

proxies reduces the number of LUTs by 30.16%, FFs by

30.05%, DSPs by 55.55%, on average. The benchmarks that

present the smallest area reductions (expf, hypot, and pow)

are characterized by small functions, whose sharing is less

profitable. Also in this case, we do not report any latency

penalty in terms of both clock cycles to complete execution

and achievable frequency.

B. Function pointers

We validated the support for the synthesis of function point-

ers with yet another set of benchmarks, since CHStone and



Table IV: Sorting/searching algorithms using function point-

ers.

#Cycles #LUT Pairs Freq. (MHz) #DSPs

bsearch-glibc 1292 6782 101.77 0

bsearch-musl 1301 6770 121.23 0

bsearch-newlib 1292 6836 104.19 0

bsearch-uclibc 1292 6936 105.55 0

qsort-glibc 2285721 10792 113.15 1

qsort-uclibc 2683672 10925 101.07 0

libm do not include any benchmark using function pointers.

For the validation, we selected several non-recursive qsort

and bsearch functions from various open-source C standard

libraries (glibc, uclibc, newlib, musl), [9], [11]–[13], and an

implementation of the image processing applications used to

illustrate our approach in Section Listing 1. All the selected

searching and sorting algorithms operate over an array of 1000
structures each containing 10 floating point numbers. The

input data has been randomly generated. Table IV presents

simulation (execution latencies in terms of clock cycles) and

synthesis (number of FF/LUT pairs and DSPs) results for the

considered applications. We verified that the results obtained

by simulating the circuit generated by our HLS flow are correct

and provide the same results of the software implementation

when processing the same input data. We underline that

without support for function pointers, a developer would have

to rewrite the software implementation of these kernels to

remove them. Instead, our flow allows to directly synthesize

them without any modification.

Finally, Table Table III reports the simulation and synthesis

results for the image filtering application operating on an

image of 64×64 pixels (purposely small to reduce simulation

times.). We validated two configurations: in the first, the

pipeline includes only the sharpening filter (test0), while in the

second we also added the inverse image computation (test1).

V. RELATED WORK

Many works have looked at improving resource utilization

in HLS at different levels of the design flow. Techniques that

restructure the input specification include clustering, data-path

fusion and pattern matching[8], [14]–[17]. Compared to such

solutions, our work looks at improving resource utilization at a

coarser granularity, but can exploit these finer grain techniques

to increase its effectiveness.

[15], [18] introduce procedure exlining. The technique

aims at eliminating redundancies from the input specification

through restructuring. The papers present a semi-automated

method that combine approximate matching and regular ex-

pression with other heuristics in order to produce a better

function partitioning of the original specification.

[8], [16] propose an Integer Linear Programming (ILP)

formulation that searches for the optimum balance between

inlining and exiling. The methodology has been also extended

with clustering techniques to merge similar functions.

These works have the final effect of improving the synthesis

results by promoting function reuse. Those techniques improve

the modularity of the specifications, possibly making the

adoption of our sharing methodology more effective.

[17] presents a pattern-based methodology that improve re-

source utilization for Field Programmable Gate Array (FPGA)

devices. Its main goal is to find similar patters of opera-

tions and, when possible, reduce them to a common form

to enable sharing of block of functional units, lowering the

number of multiplexer introduced in the design. Nevertheless,

the approach only works at the module level and does not

allow inter-module sharing of functional units. Our approach,

instead, overcomes this limitation by employing function prox-

ies, which enable sharing blocks of common operations (whole

functions) across the boundaries of modules.

The idea of globally sharing module instances in the

synthesized architecture has been already explored in the

past. The Handel-C [19] language provides constructs called

shared expressions for this purpose. Shared expressions allow

sharing of resources across different sections of the synthe-

sized specification. However, it is designer responsibility to

identify shareable operations and define accordingly the shared

expressions. Our approach, instead, is a fully automated HLS

methodology that makes inter-modular resource sharing com-

pletely transparent to the designer. Furthermore, it operates at

higher granularity than shared expressions (i.e., function level

rather than operations).

The work in [20], [21] suggests an alternative approach

for the synthesis of function pointers. The paper propose

to synthesize calls through function pointers by generating

control blocks assign values to function pointers to resolve the

call. The generated control block contains a branch for each

element in the alias set of a function pointer. This implies that

the alias set of the function pointers must be known at compile

time.

Our methodology overcomes this limitation. The indirect

call mechanism defines a communication protocol and works

without the knowledge of the alias set of the function pointer.

This enables modeling with function pointers externally de-

veloped Intellectual Properties (IPs), unavailable during the

synthesis.

The work in [22] proposes a methodology that supports

function pointers and recursion through stream rewriting,

a different model of computation. The different underlying

model make a direct comparison with our approach unfeasible.

The methodology in [5], [23] proposes a solution for

HW/SW cross calls. The work defines an architecture and

the related mechanism that allows calls from SW to HW,

from HW to SW and from HW to HW (including recursive

calls). In particular, the architecture proposed in [23] controls

the execution of the HW IPs by introducing a hardware

controller that stores parameters and starts the computation

of hardware accelerators. This centralized controller simplifies

the communication between HW and SW, but it does not allow

concurrent execution of two or more IPs. Our architecture

does not present this limitation because it uses a distributed



control mechanism. From this point of view, our approach

paves the way to the synthesis of parallel applications based,

for example, on the pthreads library.

[24] presents a solution that allows expressing static (com-

pile time) polymorphic behavior through SystemC and C++

template meta-programming. Our approach based on function

proxies, which enables synthesis of function pointers, enables

dynamic polymorphism.

VI. CONCLUSION

In this paper, we proposed a methodology for modular

HLS which enables sharing (sub)modules across module

boundaries. In conventional HLS flows, modules synthesized

from functions cannot be shared across different callers. Our

approach, which employs the abstraction of function proxies,

instead, allows sharing a single instance of a function module

in the whole synthesized architecture. We detailed the architec-

ture of function proxies, how they are translated to a memory

mapped interface, and discussed how they enable the synthesis

of function pointers. We have validated the methodology and

demonstrated that, for applications with a sufficiently complex

call graphs, it can provide valuable savings in area without

incurring in significant performance overheads. Possible future

extensions include the synthesis of recursive functions and the

synthesis of accelerators from parallel specifications without

the need of external (hardware or software) coordinators to

launch hardware threads. Parallel specifications could employ

the pthreads library, which directly invokes threads as func-

tion pointers, or OpenMP annotations, which normally gets

translated into thread invocation through function pointers.
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