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Abstract

We present a satisfiability-preserving reduction from MITL interpreted over
finitely-variable continuous behaviors to Constraint LTL over clocks, a variant
of CLTL that is decidable, and for which an SMT-based bounded satisfiability
checker is available. The result is a new complete and effective decision pro-
cedure for MITL. Although decision procedures for MITL already exist, the
automata-based techniques they employ appear to be very difficult to realize in
practice, and, to the best of our knowledge, no implementation currently exists
for them. A prototype tool for MITL based on the encoding presented here has,
instead, been implemented and is publicly available.

1. Introduction

Computer systems are inherently discrete-time objects, but their application
to real-time control and monitoring often requires to deal with external asyn-
chronous events that may not always happen at integer-valued times. Hence, a
discrete-time assumption requires to approximate continuous time by choosing
some fixed minimal interval, thus limiting the accuracy of modeling, verification
and validation of such systems. To overcome this restriction, many continuous-
time models have been developed, most notably Timed Automata [4], a dense-
time operational model based on finite-state machines, but also descriptive
models such as the continuous-time temporal logics MTL (Metric Temporal
Logic) [ 6] and MITL (Metric Interval Temporal Logic) [6]. In general, the
role of temporal logics in verification and validation is two-fold. First, temporal
logic allows abstract, concise and convenient expression of required properties of
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a system. Linear Temporal Logic (LTL) is often used with this goal in the verifi-
cation of finite-state models, e.g., in model checking [7]. Second, temporal logic
allows a descriptive approach to specification and modeling (see, e.g., [8,@]). A
descriptive model is based on axioms, written in some (temporal) logic, defining
a system by means of its general properties, rather than by an operational model
based on some kind of machine (e.g., a Timed Automaton) behaving in the de-
sired way. In this case, verification typically consists of satisfiability checking
of the conjunction of the model and of the (negation of) its desired properties.
An example of the latter approach is Bounded Satisfiability Checking (BSC)
[10], where MTL specifications and properties on discrete time are translated
into Boolean logic, in an approach similar to Bounded Model Checking of LTL
properties of finite-state machines.

In general, verification of continuous-time temporal logics is not as well sup-
ported as for discrete-time. Uppaal [I1] is the de-facto standard tool for verifi-
cation of Timed Automata, but its query language, a simplification of TCTL,
falls short of being a full continuous-time temporal logics: not only satisfiabil-
ity checking is not available in Uppaal, but even the formalization of general
system properties in temporal logic may not be possible, aside from invariants,
reachability and simple liveness and safety properties. Rather, non-trivial prop-
erties to be verified on an operational model must be expressed as other Timed
Automata, i.e., at a lower level of abstraction. The main technique for the
translation of MITL formulae into Timed Automata was first proposed in [6],
with a more recent solution in [I2]. Alternatively, in [13] it is shown that any
formula of MITL can be translated into a formula of Event-Clock Logic (ECL)
whose satisfiability is decidable. All these works deal with with the continuous
semantics of MITL, based on finitely variable signals. A signal (also called a
timed state sequence) is a mapping associating nonnegative real numbers with
states. Finite variability is a very common requirement for continuous-time sys-
tems, ruling out only pathological behaviors (e.g., Zeno [9]) which do not have
much practical interest.

However, to the best of our knowledge, neither proposal has been imple-
mented, raising some doubts over the possibility of their actual application.
Both [12] and [6] leverage on a fundamental property of MITL, namely that
“Future” formulae F, 3, may only finitely vary over any interval of length b—a.
Hence, the delay between change points of Future can be measured by a finite
set of clocks, whose cardinality depends on the constants a,b. Recent works
by [14} [15] propose an automata-based approach to MITL by a translation into
alternating timed automata, which could allow for efficient implementations in
the case of the less general pointwise semantics (i.e., when interpreting formulae
over timed words rather than over signals).

Rather than going through a translation into Timed Automata, in this paper
we propose a new logic-based approach, which still exploits the previous prop-
erty of the finite number of clocks for Future (and Until) formulae. Our work
also assumes the continuous semantics of MITL over finitely-variable models.
Our technique is based on generalizing BSC to MITL, by reducing satisfiability
of MITL to satisfiability of Constraint LTL over clocks (CLTLoc), a decidable
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Table 1: Semantics of MTL.

variant of CLTL [I6]. CLTLoc allows explicit clocks that, similarly to clocks
of Timed Automata, can be compared with integer constants and reset to O.
In particular, an MITL formula is encoded into an equisatisfiable CLTLoc for-
mula, which can be solved through the same techniques presented in [17], [I8] [19].
The approach in generalizes BSC to CLTL, generating an encoding suitable for
verification with standard Satisfiability Modulo Theories (SMT) solvers such as
Z3 [20]. In [21], we show the decidability of CLTLoc and the modifications to
the the procedure for CLTL of [I9] to deal with clocks and time progress. An
open-source prototype tool [22] implements our technique of BSC for MITL.

The paper is organized as follows. Section [2] defines MITL and its relevant
variants, and Section [3|defines CLTLoc. Sections [ [5] [6] and [7] define reductions
from MITL and its variants to CLTLoc. Section [§| presents some experimental
results with the prototype tool implementing the encodings, which shows the
feasibility in practice of our approach. Section [9] concludes.

2. MTL, MITL, MITLg, , past operators and counting modalities

Let R denote the set of real numbers, R~ the set of positive reals and R
the set of nonnegative reals. An interval I is a convex subset of R of the form
{a,b) or {a,), where a < b are nonnegative integers, symbol ( is either ( or |
and symbol ) is either ) or ].

Let AP be a finite set of atomic propositions. The syntax of (well-formed)
formulae of MTL is defined by the grammar, with p e AP:

p:=plong|—¢|oUrs

The globally G and eventually F; modalities can be defined as usual: F;(¢) =
TU[¢ and G](QS) = —\FI(—'QS).

The semantics of MTL is defined in Table [1| with respect to a signal and
a real number. A signal is a function M : Ry — p(AP), that throughout
the paper is assumed to be finitely variable (f.v. for short), i.e., such that in
every bounded interval there is a finite number of changes in the value of atomic
propositions in AP. An MTL formula ¢ is (f.v.) satisfiable if there exists a (f.v.)
signal M such that M,0 = ¢ (in this case, M is called a model of ¢). Note that
the semantics of Table [I] uses the “strict” version of the until operator, hence
the values of ¢ and ¢ in the current instant do not influence the truth of ¢U .



Hence, the modalities Ujg;, and Ujg o) are equivalent, respectively, to U,
and to U(g o), for all b > 0. To include also the current instant, we can define
¢U7%v as an abbreviation for ¢ A pU[1).

We denote with MITL [6] the syntactic fragment of MTL such that the
intervals of the form {(a,b), with a,b € N, are such that b > a. We denote
with MITLg o [6] the syntactic fragment of MITL such that the only allowed
intervals have the form (a, 00), for a > 0, or the form (0, b), for b > 0. Therefore,
in MITLg,,, bounded intervals with nonzero left end points are prohibited.

MITL can be extended with the “since” S; past modality [23], obtaining the
language MITL+Past. The definition of S; is symmetric to Uy:

Mt ¢Sy <3t <t, t—t' eI, M,t' =1 and M,t" |= ¢ Vt" € (¢, 1)

The historically Hy and eventually in the past P; operators can be defined
symmetrically to their corresponding future modalities:

PI(¢) = TS[¢ and HI(qb) = ﬁP[(ﬁd)).

The relations among various logics are recalled in the following proposition,
assuming, as everywhere in this paper, the continuous semantics (i.e., signals):

Proposition 1.

1. MITL is as expressive as MITLy o [13], but it is exponentially more suc-
cinct.

2. MITL+Past is strictly more expressive than MITL [2], [25].

3. Satisfiability is EXPSPACE-complete for MITL [6] when constants are
encoded in binary, and it is PSPACE when the constants are encoded in
unary; it is PSPACE-complete for MITLg o [6]], also in the case of the
binary encoding of constants.

2.1. Normal forms

Define two MTL formulae ¢, to be equivalent, written ¢ = 9, if for every
signal M, for every instant ¢ > 0, we have M,t |= ¢ if, and only if, M,t = 4.
As in [12} 26], it is convenient to introduce a normal form, where U o) and
F; (and their past counterparts) are the only temporal modalities, and consider
the “metric” until Uy as derived.

By Lemma 4.1.1.2 of [0], for every MITL formula ¢ there exists an equivalent
MITL formula ¢" that uses only the temporal modalities U ), F (0,5, with
b > 0, and Upy, with 0 < a < b. Also, the number of distinct syntactic
subformulae of ¢’ is linearly related to the size of ¢, defined as the number
of propositions, Boolean connectives and temporal modalities occurring in ¢.
A symmetrical result clearly holds also for past modalities in an MITL+Past
formula. This property, together with the following well-known lemma, makes
it possible to confine metric issues only to the operators F; and Py, with I
bounded, whose translation into CLTLoc is much simpler than the general case
of Uy and S;.



Lemma 1. For all 0 < a < b, the following equivalences hold for all MTL
formulae ¢,p:

(1) 6Uai¥ = G (6Ul0 )% A Groat (v 0Up008) A Fraiy (¥)

(2) Uy = G(o,a] (¢Ufo,oo)¢> A Fapy (@)

Symmetrical results hold for Sq p)-

The following corollary of Lemma [If allows for the elimination of U, p, in
favor of Ug ) and F (g, (and similarly for S, ).

Corollary 1.

(1) For every MITLy o formula ¢ there exists an equivalent MITLg o formula
@' that uses only the temporal modalities U g oy and F (g, for b > 0.

(2) For every MITL+Past formula 1 there exists an equivalent MITL+Past
formula ¢’ that uses only the temporal modalities U (o o), Fia,pys S(0,00), Peaybys
for0<a<b.

The number of distinct syntactic subformulae of ¢’ and 1)’ are linearly related
to the size of ¢ and v, respectively.

By the proof of Lemma 38 of [27], an MITL+Past formula F, 3)(¢) may be
replaced by a sequence of a alternations of F (g 1)G g1 in front of F(g;_4)(¢);
more precisely, it is equivalent to the formula F 1)G0,1) - - - F(0,1)G(0,1)F (0,0—a) (#)-
An analogous result holds for P, ). Moreover, by the same proof in [27], all
temporal modalities in MITL+Past may be assumed to consider only open
intervals of the form (a,b) or (0,b). For instance, F(g)(#) is equivalent to
F(Oyb)(qb) \Y ((ﬁ(]ﬁU(ng)d)) A G(OJ)F(Oyb)(QS)). In fact, either ¢ occurs in the in-
terval (0,b), hence F (g ) (¢) holds, or ¢ does not occur in (0,b), but it must
occur exactly in b. In the latter case, since formula —¢U g )¢ captures the
fact that ¢ becomes true in a left-closed manner, then F (g4 (¢) and —¢U g o)
hold for 1 time unit, therefore G 1)(¢) holds at the current position.

Therefore, if we call MITLg +Past the fragment of MITL4-Past where the
only allowed temporal modalities are U g o), S(0,00), F(0,0) and P (g ), for b > 0,
the following result holds:

Proposition 2. For every MITL+Past formula i there exists an equivalent
MITLgy o +Past formula ¢'. The size of o' is linear in the size of ¢ and in
the unary encoding of the the mazimum constant K occurring in ¢, but it is
exponential in the binary encoding of K.

2.2. Counting modalities

Pnueli conjectured that logics such as MITL are unable to express naturally-
occurring constraints, such as “Event #; will occur, followed by event 65, both
within the next time unit”. This has led [28] to define a new “Pnueli modality”
P,,: for every natural number n > 0, the modality P, (61, ...,0,) holds at time



t if there exists an increasing sequence of time instants ¢t < t; < to < -+ <
t, < t+ 1 such that 6; holds at ¢;, for all 1 < ¢ < n. The Pnueli modalities
were introduced for a syntactic fragment of MITL+Past, namely Quantified
Temporal Logic (QTL for short) [29], where only U ), S(0,00); F(0,1) and P g 1)
are allowed, but which is as expressive as MITL+Past. Embedding Pnueli
modalities into QTL induces a hierarchy with respect to n. In fact, given n >
0, all modalities P}, with 0 < h < n, can be expressed in terms of P, as
Prb1,...,0n) = Pn(61,...,0n,true, ... true) by simply considering true as
a formula. The hierarchy is strict, since QTL (hence also MITL+Past and
MITLg o) augmented with the P,, modality is strictly more expressive than
QTL with the modality P,_; only (Theorem 7 of [2§]). A simpler “counting”
modality C,, also introduced in [28], is defined as C,(8) = P,(6,...,0), i.e., 0
must hold in at least n time instants in the open unit interval ahead. For every
n > 1, the semantics of counting modality C,, is:

Mt =Cp(¢) < Ity .. 3ty it <ty <---<t,<t+1land Mty =¢ Vke{l,...

Each C,, modality is strictly more powerful than the C,,_; modality; moreover,
QTL extended with every counting modality is as expressive as QTL extended
with every Pnueli modality [30]. Satisfiability of QTL with counting modalities
is PSPACE-complete when each index n in a modality C,, is encoded in unary,
although it is EXPSPACE-complete if n is encoded in binary [31].

In the transformation into CLTLoc defined in this paper, we will also con-
sider a language called MITL+Past with counting, which is the logic MITL+Past
extended with counting modalities.

3. Constraint LTL over clocks

Constraint LTL (CLTL [I6l [18]) is an extension of LTL allowing atomic
formulae over a constraint system D = (D, R), where D is a specific domain of
interpretation for a finite set of variables V' and for constants, and R is a finite
family of relations on D (of various arities). CLTLoc is a special case of CLTL,
where the domain D is R, the set R of relations is {<, =} and the variables in
V are interpreted as clocks.

Let AP be a finite set of atomic propositions. Well-formed CLTLoc formulae
are defined as follows:

p=pla~alpnré|—¢|X(d)|Y(¢)|¢Us|¢Se

where p € AP, symbol ~ stands for < or =, «a is a constant ¢ € N or a clock
reV,and X, Y, Uand S are the usual “next”, “previous”, “until” and “since”
operators of LTL. Boolean operators v, T, 1, = can be introduced as usual; the
“globally” G, “eventually” F, “release” R, and “trigger” T operators may be
defined as in LTL, i.e., oRY is —=(=¢U—1), ¢Ty is —=(—¢S—1), G¢ is LR¢
and F¢ is TU¢.

The semantics of CLTLoc is defined with respect to the constraint system
(R, <, =) and the strict linear order (N, <) representing positions in time. The



valuation of clocks is defined by a mapping o : NxV — R, , assigning, for every
position ¢ € N, a real value o(i,z) to each clock z € V. Intuitively, a clock x
measures the time elapsed since the last time when x = 0, i.e., the last “reset”
of x. To ensure that time progresses at the same rate for every clock, o must
satisfy the following condition: for every position ¢ € N, there exists a “time
delay” d; > 0 such that for every clock x € V:

S I

In this case, o is called a clock assignment. In order to compare CLTLoc with
MITL, in this paper we always assume that a clock assignment is such that
Dien 0i = © (i.e., time is always progressing).

An interpretation of CLTLoc is a pair (m,0), where o is a clock assignment
and ™ : N —> p(AP) is a mapping associating a set of propositions (i) with
each position ¢ in N. The semantics of CLTLoc at a position ¢ € N over an
interpretation (m,o) is defined in Table [2] where we assume that o(i,c¢) = ¢
whenever ¢ is a constant. A formula ¢ € CLTLoc is satisfiable if there exists an

(m,0),i=Ep<epemn(i)forpe AP
(m,0),iEay ~as < (0(i,a1) ~ o(i,a))
(m,0),i = —¢ < (m,0),if~ ¢
(m,0)iE¢AY s (m,0)ikE=¢and(m,0),iF=
(m,0),i = X(¢) < (m,0),i+1E¢
(my0),iEY(¢) = (mo)i—1EFE¢Ai>0
(mo0)iEU¢ =3j=i:(mo),jEY A Vi<n<j(mo)nkEo
(m0)iE¢SY=30<j<i:(mo)jEY A Vji<n<i(mo)nkEgo

Table 2: Semantics of CLTLoc.

interpretation (m, o) such that (m,0),0 = ¢. In this case, we say that (7, o) is
a model of ¢ and we write simply (7, 0) = ¢.

By definition, the initial value o (0, z) of a clock  may be any non-negative
value, but if needed any clock x may be initialized to 0 just by adding a con-
straint of the form xz = 0. It is often convenient to assume that at every position
there is at least one clock which is not reset. If this is the case, just add a new
clock Now, which is never reset, except possibly at position 0. Hence, the time
delay 0; may uniquely be defined in each position i as o(i + 1, Now) — o (i, Now).

An example. Consider a simple channel, that receives an in event at one end and
delivers it as an out event at the other end, with a variable delay of 3 to 5 time
units. It is assumed that no other in event may occur until the corresponding



out event has been issued. Let AP = {in,out}, V = {z}. The conjunction of
the following formulae, within a G operator, specifies the system:

in=(x=0AX((z>0A —out A —in) Ulout A 3 <z <5)))
out = Y (—out S in)

When an in arrives, clock z is set to 0; we require that both no out and no
in occur and also that the clock is not reset again until an out occurs; out can
occur only at a position where the clock is between 3 and 5. To ensure that no
spurious out without a corresponding in is generated, we also require that an
occurrence of out is preceded by an occurrence of in that was not followed by a
different occurrence of out.

4. Reducing finitely variable signals to CLTLoc interpretations

In this section, a formula ¢ is in general a formula of MITL+Past with
counting. We denote with sub(¢) the set of all subformulae of ¢.

Let M be a signal and let 8 € sub(¢). We say that “6 becomes true”, denoted
ey, at instant ¢ > 0 of signal M when 6 holds right after ¢, but not before it, or
t is the origin:

Je>0,Vt' € (t,t+¢): M,t' =6 and
t=0or 3 >0,Vt'e(t—¢,t): M,t' = —0.

The opposite one “f becomes false”, denoted as eg, is simply the definition
above with —6 instead of 6.

Formula 6 has an “up-singularity” sy for signal M at instant ¢ (in words, “¢
becomes true in a singular manner”) if the following holds:

t>0, Mt =0 and 3e > 0s.t. Vt' #te (t—e,t +¢): M,t' = —0.

Formula 6 has a “down-singularity” sg (in words, “f becomes false in a singular
manner”) at instant ¢ for signal M if the formula above holds with —6 instead
of 6. By definition, singularities do not occur in the origin.

If one of ef, eg, sy, sg holds for M at t, we say that € changes in M at t.

A change point in a signal M for a formula ¢ is a time instant ¢ such that
there exists a subformula 6 € sub(¢) which changes in M at t.

When dealing with finitely variable signals, the following proposition is im-
mediate:

Proposition 3. For all fv. signals M, the set of change points in M for ¢ is
countable. Moreover, if the set is infinite, then it is also unbounded.

Henceforth, also in the statements of lemmata and theorems, all signals are
always assumed to be finitely variable.

Reducing MITL+Past with counting modalities to CLTLoc requires to rep-
resent continuous-time signals by CLTLoc models where positions in time are



p p p [
L ® O . * ¢—0—0
MITL, ,, signal D .
Pop o P iop : R
Ie Fy S ) ® Py >
CLTLoc model F —|F F —-F —|F F F —-F
L 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Figure 1: Example of a signal and a corresponding CLTLoc model (clocks not shown).

discrete. Positions in CLTLoc models represent change points and truth values
of MITL formulae, while CLTLoc variables, behaving as clocks, measure the
time progress between two consecutive change points. Every position in a CLT-
Loc model captures the “configuration” (the truth value of all the subformulae
of ¢) of one of the intervals in which the continuous-time signal is partitioned
by the change points of ¢. All the change points occurring in the signal are
captured by the associated CLTLoc model and the value of a formula is stable
between its change points (i.e., it does not vary). Figure [1| shows an example
of a signal and a corresponding CLTLoc model. Our reduction thus defines the
semantics of all subformulae occurring in ¢ by suitable CLTLoc formulae.

We now explain how to represent the value of MITL formulae and their
change points on a signal through a CLTLoc model. For each subformula 6 of ¢

we introduce two CLTLoc atomic propositions, 1y and (5, called first and rest,
to represent the value of 6 in, respectively, the first instant and the rest of an
interval [¢,t') such that there are no change points in (¢,¢). We also introduce
two clocks, zj and zj}, with the intended meaning to measure the time elapsed
since the last two change points of 6.

In Table [3] we introduce some abbreviations, through combinations of the

o

basic predicates 1¢ and £, with the goal of representing various conditions on

the values of an MITL+Past formula £. In particular, the CLTLoc formulae

T¢, ¢, ILe and ¢ are intended to represent, respectively, e}g, eg, s¢ and sg.
« «

Notice that at position 0, both Y(£) and Y (— &) are false, no matter £, and

—

o
elsewhere =Y (— &) = Y (&), Therefore, at position 0 ¢ holds if, and only if,

o
¢ holds in 0, while ¢ can never hold at 0; similarly for ¢ and U¢. The
other shorthands may informally be explained as follows. Formula O is true

only in the origin. Formula _t denotes that formula ¢ has become true, possibly
in a singular manner, or that the current position is the origin and £ is true;

3 € £
symmetrically for 3. Formula > (resp. L) holds if £ holds (resp. does not

hold) in an interval starting from the current position. Also, formula & (resp.



T ==Y(6)n € Ne =Y(-Onlenm¢
Le =ﬁY(ﬁE)AﬂZ T =Y(E)AﬁT5AZ
(0] =-Y(T)

_€T =Tevdlev (Onle) ﬁ’ = Tev e

_i =LevTev(0Oa—Te) i ="le v L

¢ =T£/\Z & =-Tlenmg

Table 3: CLTLoc shorthands used in the encoding.

¢) holds if £ is true (resp. false) throughout the current interval, including the

current position.

We need also recall some preliminary results, whose trivial proofs are omit-
ted. The following two lemmata characterize the change points of U ;) and
S(0,4c0) formulae. When the value of formula U ) (resp. S o)) changes
on a signal M, the signal only varies in a left-closed (resp. left-open) manner
because the formula holds in t if, and only if, it holds over a non-empty inter-
val including ¢. This also guarantees that no singularity can occur for these
formulae.

Lemma 2. If 0 = YU 1) and M is a signal, then for all t € R, there is
€ € Rog such that Mt |= 0 if, and only if, M,t' =0 for allt' € (t,t + €].

Lemma 3. If 0 = vS(,1o)% and M s a signal, then, for all t € R, there is
€ € Rog such that Mt |= 0 if, and only if, M,t' =0 for allt' € [t —e,1).

Note that, in ¢ = 0, YS9 4o0)¥ is false, and, for any ¢ € R.g, [—¢,0) is
not an interval of R, so the lemma is trivially true. Singularities s* cannot
occur in signals associated with formulae F(,)(7) or Cn(7y). In fact, the next
Lemma (4| states that F(, 4)(y) or Cy(7) holds in ¢ if, and only if, it holds over
two nonempty left and right intervals including ¢.

Lemma 4. Let 6 be F(q) () (with0 < a <b)orCy,(y). If M,t |= 0 then there
is € € Raq such that, for all t' € [t,t + €] we have M,t' = 6 and, when t > 0,
there is also € € R~q such that e <t and for all t’ € [t —e,t] we have M,t' = 0.

A similar result can be given also for formulae P, 4)(7).

Lemma 5. Let 0 be P, (7) (with 0 < a <b). If 0 holds for a signal M in
an instant t (i.e., M,t = 0), then there is € € Rsq such that M,t' |= 6 for all
telt—et+e]

Finally, the following result from [12] shows that formulae of the form F, 4 ()
have inherent bounded variability.

10



Lemma 6 ([12]). Let 6 be F (4 4)(7), let M be a signal and let 0 < t; < ta be
two instants such that M,t1 = e} and M, ts = eg v sg. Then, to —t1 = b—a.

By Lemma [6] the distance between a change point where “f becomes true”
outside the origin and one where “f becomes false” (possibly in a singular man-
ner) for formulae 6 = F (4 ) () cannot be less than b—a. However, this property
does not hold when ey occurs at ¢ = 0 and v becomes false before b. For in-
stance, let M,a = p and M,a +¢ = eg, where ¢ > 0 is such that a + ¢ < b;
assume for simplicity that p remains false, i.e., for all t € [a + &, +0), M, t = p.
Then, if 6 = F(,4)(p) we have that M, 0 = ey and M, ¢ |= ed. This property will
be exploited below to define the translation of the F operator. It is fundamental
in our construction, because it allows us to introduce a finite number of clocks
that measure time elapsing between change points.

A property analogous to Lemma |§| holds for P, 3.

Lemma 7. Let 0 be P(q)(7) (with 0 <a <b), M be a signal and 0 <ty <ty
two instants such that M,t; = e} v sg and M,ts = eg. Then, to —t1 = b—a.

Corollary 2. Let 6 be F(,3)(7) or P (v), with a = 0,b >0, and let t be an
instant of time. If M is a signal such that M,t |= 0, then, in [t,t + b] there are

at most d = 2 [ﬁ] change points in M.
We have a similar result for operator C,,.

Lemma 8. Let 0 = C,(7), let t be an instant of time and M be a signal.
Then, in interval [t,t + 1] of M there are at most 2n change points.

Proof. Let t be an instant where ey holds. Then, either there are exactly n
singularities s¥ in (t,t + 1], including one in ¢ + 1, or y becomes true in ¢ + 1 in
a non-singular manner. In the latter case, 6 is true throughout (¢,¢ + 1]. In the
former case, # can become false only at each singularity, and become true again
in between two of them, hence there can only be 2n change points. Similar
reasoning holds in the other cases, when €4, s¢ or none of them hold in t. [

5. Reducing MITLg , to CLTLoc

We define the translation from MITLg o to CLTLoc, preserving the sat-
isfiability over finitely variable signals. First, Section [5.1] introduces a set of
general formulae, for every subformula 6 of ¢, defining constraints to guaran-
tee that clock resets occur at suitable points. Then, in Section we provide
the operator-specific CLTLoc formulae that capture the semantics of MITLg o
connectives and temporal operators.

5.1. General Constraints on Clocks

This section describes the behavior of clocks in relation to change points. In
general, clocks in CLTLoc are very similar to clocks of Timed Automata, but
with one difference: a clock in CLTLoc is a variable, hence it cannot be reset
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and tested at the same time. Therefore, if we need to test a clock z against a
positive constant and then to start a new time measure, we may introduce a
pair of clocks, z°,z! instead of one clock x, which are alternatively reset and
tested. For instance, 2V is reset at a position; at a later position 20 is tested
while at the same position ' may be reset; at a later position, 2! is tested and
20 is reset, and then later 20 is tested and z! is reset, etc.

To represent the semantics of the temporal modality 6 = F g 4)(y), we intro-
duce two pairs of clocks, zj), z4 and zg, z}/ Each pair of clocks is alternatively
reset, with the technique described above. By Corollary [2| § may vary at most
once in any interval of length b: if § becomes true at ¢ then v must become true
at t + b and, over the interval (¢,¢ + b), § does not change its value anymore.
Clocks zg and zé are used to measure the time elapsing between two consecutive
change points of 6. Hence, if z} (i = 0 or i = 1) is reset in a position corre-
sponding to time ¢, then there exists a position (corresponding to time ¢ + b)
where zj = b and also v becomes true. Clocks 29 and z] are used to measure
the time elapsing between two consecutive change points of 4: a change point
of v may influence the truth value of 6 only if the previous change point of
occurred more than b time units earlier.

For all 6 € sub(¢), such that 6 is Fq ) or it occurs as argument of F g ) the
following CLTLoc formula holds at position 0, simply stating that clock zj is
reset at 0 (while z; can have any value):

zg = 0. (1)

The other formulae of this section must hold at each position; for simplicity, the
globally operator G is inserted explicitly only at the end of the section.

Whenever subformula 6 changes its value (it becomes true or false, possibly
in a singular way), one of its associated clocks zj and z} is reset:

0 0 0 L

Aviezy=0vz =0 (2)
The clocks associated with @ are alternatively reset, i.e., between any two resets
of clock 28 there must be a reset of clock z;, and vice-versa:

A Gh=0) = X((0 "0~ 0)R(z) £ 0)). (3)
ie{0,1}

In the following, cky denotes the formula () A G([2) » @)).

5.2. Semantics of MITLy o, temporal modalities

This section presents the definition of m(#), the translation of every sub-
formula 6 of an MITLg o, formula into a suitable CLTLoc formula encoding its
semantics. Essentially, m(6) describes how € becomes true and false depending
on the value of its own subformulae.

The translation considers every possible case for 8, i.e., when 6 has one of
the forms =1,y A 9, 7U 0,00)¥, F(0,5)(7). The case of intervals of the form (0, b]
is omitted for brevity.
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Case § = —. The predicates for 8 are the opposite ones of :

m(8) = (To=> — 14) A (6 = ). (4)

Case 8 = v A 1. The semantics of 8 is the conjunction of the predicates for -

and -
m(0) = (To=Ty A Ty) A (67 A ) (5)

Case 0 = yU(g,0)y. U formulae cannot have singularities, as this would violate
Lemma 2| This means that when a U formula changes its value, it must do so
in a left-closed manner (i.e., the value at the change point is the same as the
one after the change point). Then, we have @ below.

m(0) = (19©§> A (5@3 A (z? vX (?U((? A D)V Tw)))) (6)

In particular, the second conjunct of Formula @ states that 6 holds in an
interval if, and only if, either both ¢ and ~ hold in it, or there is a future
interval in which v holds (either throughout the interval, or in its first instant),
and 7 holds throughout all intervals (including their first instants) in between.

Case 0 = F (o) (7). By Lemma |4} an up-singularity ILy can never occur for a

formula of the form F (g ) (). Also, if 6 holds at the beginning of an interval

(i.e., 7o holds), then it must hold also in the rest of the interval and, if ¢t > 0,

it must also hold in the interval before. Then, the following constraint holds in
every position:

« «
lo=6 A(Y(9) v O) (7
Formula states that, when 6 becomes true with a rising edge g, in an

instant other than the origin, a clock zg is reset, and jT will eventually be true
exactly after time b from the reset of clock zg; if 8 becomes true in the origin,
then either it does so in a left-closed manner, and v becomes true before clock
zg becomes b, or it becomes true in a left-open manner, and v becomes true
exactly after time b.

TQA(Ovzg>O)U(jT/\O<z3<b v ’7/\0) v

(0N 8 v
To < —1oAX|20>0U (2 Az)=bn \/z@)b

1€{0,1}

—“OA—=Tgn \/ 2=0AX[2>0U jTAzg:b/\ \/zf,>b
je{o,1} i€{0,1}
(®)

13



14 4 v 0 ,
w 1 [ —. 0. -
oy } ) -
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2 >b 25 <b
(a) (b)

Figure 2: Examples of conditions for rising edges for 0 = F (g 3)(7) at t > 0 and t = 0|(b)

Fig. 2| shows a graphical depiction of a pair of conditions for having a rising
edge in an instant ¢, and in particular one for the case ¢t > 0 and one for the case
t = 0. More precisely, Fig. shows a situation in which the second disjunct
of the right-hand side of Formula holds: one of the clocks associated with
0, say z}, is reset at position k > 0 of the CLTLoc interpretation corresponding
to instant ¢, and when this clock takes value b (without having been reset in
the meantime) v becomes true, hence one of its zZY clocks (zg in the example
depicted) is also reset there, and the other one, which is not reset, has value
> b; this, in turn, entails that the last time that v became false was before ¢,
hence at t formula 6 has a rising edge. Similarly, Fig. depicts a case in
which the first condition of the right-hand side of Formula holds: ¢ is the
origin (hence zJ is reset there) and there is an instant before z) takes value b in
which « becomes true. In this case 6 holds in the origin, too, so 1y is true there.

Formula @D below states that, if v becomes true at a time ¢ > b (i.e., when
clock Now introduced in Section [3|has value > b), and -y was false in the interval
of length b preceding ¢, at t one of the clocks associated with 6 has value b, since
F(9,5)(7) started holding b time units before time ¢. The formula is necessary
to make sure that, if v becomes true (and it was false for the last b time units,
hence 6 must have also become true b time units before), the right hand side of
Formula holds when 6 becomes true, forcing Iy to hold there.

¥ . )
Nowzb/\j/\\/zfy>b = \/zézb (9)

i€{0,1} je{0,1}
When 6 becomes false, hence v becomes false and a clock zfy is reset, it is

either with a falling edge (Ly) or in a singular manner (). In the former
case, Formula , then v cannot become true again as long as the clock that

~
is reset with L, is not greater than b. In the latter case, Formula , v must

5
become true again exactly when the clock that is reset with L, is equal to b.

v v ,
—Le@a)/\ﬁX fU _TA\/0<zf/<b (10)
i€{0,1}
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g v .
Ty < —On U AX AU 2 A \/ z,=b (11)
1€{0,1}

Then, for 6 = F g4 (), m(0) is AR A @) A A (T3).
Finally, MITLg o, formula ¢ is satisfiable if, and only if, it holds in the first

instant of the interval starting at 0, i.e., inity =14. Then, for an MITLg
formula ¢, the corresponding CLTLoc formula is:

inity A /\ (cko A G (m(0))). (12)
Oesub(¢p)

The next section shows the correctness of the translation.

5.8. Correctness and complezity of the reduction

To complete the results of this section, we need to show that an MITLg
formula ¢ is satisfiable if, and only if, there exists a pair (7, o) that satisfies
Formula .

First of all, we define a correspondence between MITL o, signals and CLT-
Loc interpretations. Given a finitely variable signal M and a finite set F of
MITLy,o formulae, we define function ryz(M) which associates with M the set
of corresponding CLTLoc interpretations, where each formula of F is considered
as an atomic proposition, thus disregarding its subformulae.

Definition 1. Let M be a finitely variable signal, I < N be a nonempty finite set
and F = {0;}icr be a finite set of MITLg o formulae. Let (mr,or) be a CLTLoc

interpretation such that 7 : N — p({Tgﬂ(H_i}iE[) and og : N x {Zgi,Zéi}iej V)

{Now} — R, where Now is the clock defined in Section @ In the following

we call ty the timestamp corresponding to position k € N in (wr,0F), i.e.,

tr = or(k, Now), and we call T the set of timestamps, i.e., T = {tx}reny < Ro.
We have that (mr,0r) € r(M) if the following conditions hold.

1. Ift is a change point in M for some 6; € F, thent € T, i.e., thereisk € N
such that t =t = ox(k, Now).

In addition, for all 0; € F:
2. If Mty = 0;, then 1g,€ mx(k), otherwise 1g,¢ 7r (k).

.
3. If for allt’ € (tx,tr+1) it holds that M,t' k=0, then 6;€ wx(k), otherwise

il
91¢ 7T]:(]i}),

4. Ifty, € T is a change point for 0;, then either oz (k,z9.) = 0 or ox(k, zj,) =
0.

5. 07(0,29) =0.

6. After 0, the clocks associated with 0; are reset modulo 2, i.e., if o r(k, Zgi) =
0, and U;(k’,zgi) = 0, where j € {0,1} and k' > k, then there is a

k<j <k st U]—'(jlyzéerl) mod 2) —0
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Note that, in Definition |1} sequence T is well-defined, as by Proposition
the set of change points in M for each 6; € F is countable. In addition, if

.
0:¢ 7x(k), then for all ¢ € (¢, tr4+1) it holds that M, ¢’ }= 6; since, by condition
1 in Definition [1] there cannot be a change point in (tx,tr41)-

It is easy to see that the following holds.

Proposition 4. Let M be a finitely variable signal and F a finite set of MITLg
formulae. If (mr,07) € re(M), then for all k € N and 0 € F we have that
M, t, |= el if, and only if, (nF,07),k = Tg. Similarly for ed, s¥, s& and the
corresponding Lg, Mg, 1g.

It is clear from Proposition [4] that if in ¢, € T there are no change points
for 6 € F, then none of {7y, Ly, Ny, Ty} holds at position k in (7r,07) (so
e mr(k — 1) if, and only if, 19, o€ 77 (k)).

Note that, for any signal M, rz(M) contains more than one CLTLoc in-
terpretation; for example, given a signal in which AP = {p} and p is always
true, () (M) contains both an interpretation in which ¢, = k and one in which
ti, = 2k, and so on.

Not all CLTLoc interpretations (mz,or) represent MITL o, signals. For
example, for an interpretation (’/T{ILF(O’I)Z,},O’{p,F(O’l)p}) in which, for all k£ € N,

1p€ (k) and pe m(k), but Tp,, ¢ 7(k) and F((:l)p¢ m(k) there is no sig-
nal M such that (7, %, ,p) T F o)) € TpFonp(M). We indicate by
r7 ((m7,07)) the — possibly empty — set of signals such that for each M in
the set we have (mx,0x) € re(M).

The following result shows that formulae cky impose that the clocks associ-
ated with each 6 € F are reset in a way that respects mapping rz.

Lemma 9. Let M be a signal and F be a finite set of MITLg o, formulae. For
all interpretations (7r,0r) € rr(M) we have (mr,07),0 = \ger cKo-

Proof. The lemma is a consequence of the definition of the map rz(M) and of
the sequence of change points occurring in M for each 6 € F .

In fact, by definition of rz(M), when a change point for some 6 € F occurs
in M, one of the two clocks zg , z; is reset. Note also that by Proposition 4| if

6 6
M, ty |= ef v sy then (7, 07), k =2, and if Mty |= edvsd then (77, 07), k =1,
hence, we have Formula . Moreover, resets are defined circularly modulo 2,
ie., if (mr,07),k |= 25 = 0 then
e cither no reset of zj) occurs after k (i.e., V&' > k: (nr,07),k | 2} #0),

e or there exists a position ¥’ > k such that (77,0x), k" |= 2, = 0, and there
isk<j<k (rr,o0r),jE= zé”l) mod 2 _ g,

Then, we have (rr,07),k+1 (zé”l) mod 2 _ 0)R(z} # 0), so Formula
holds.

Finally, by condition 5 of Definition |1} 2J is reset in the origin, so we have
Formula . O
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Given a formula ¢, each (m,0) € 744 (M) partitions R, in intervals
{[tk,tk+1)}ken and, for each of them, it captures the value that each subfor-
mula of ¢ has in M there. Dually, if M € r;ulb(¢)((7r,a)), then M is a signal
such that, for each ¢t € R, and for each subformula 6 of ¢, the value of 6 at ¢ in
M is captured by (7, 0). We have the following result.

Lemma 10. Let M be a signal, and ¢ be an MITLg o formula. For all (w,0) €
Tsub(e) (M) we have (7,0),0 |= /\Oesub(¢) ckg and for all k € N, 6 € sub(¢) we
have (m, o),k |=m(0). Conversely, if (m,0),0 = Ngegup(s) ko A G (m(0)), then
there is a signal M such that (7,0) € Tsyup(g)(M).

Proof. The proof is split into two parts. More precisely, we show that:

L. for all (m,0) € Tup(e) (M) we have (7,0),0 = /\9€sub(¢) cky and for all
ke N, 0 € sub(¢) we have (m,0),k = m(0).

2. if (m,0),0 = Agesun(p) ko A G(m(0)), then there is M € r;ulb(¢)((7r, a)).

Part 1.
The fact that (7,0),0 &= AGEsub(¢) cky is a direct application of Lemma

The rest of the proof is by case analysis on the kinds of subformulae that
can appear in ¢. Suppose t; € T. The case of § € AP, for which no constraint
m(0) is defined, is trivial.

The rest of the cases is listed below.

Cases = —y and 0 = v A 1. These cases are a straightforward consequence
of conditions 1 and 2 of Definition [

Case 0 = YU (g y9. The first conjunct of Formula @ holds in ¢; by conditions
1 and 2 of Definition[[Jand Lemma[2] The second conjunct is also a consequence
of conditions 1-2 of Definition for 6 to hold in tj, either both v and %

p
hold throughout (tg,tx+1) (i-e., (w,0),k |=’(§ A 1), or there is a future interval
(tk’; tk’+1)7 with trr > Tk such that:

e cither M, ¢t =1 and v holds throughout (¢, tx)

e or for all ¢/ € (ty,ti+1) we have M,t' = ¢ and v holds throughout
(tg,tgr+1) (hence including the whole interval (tg/,tx41))-

By definition of 7,44 (M), in the first case (7,0),k )=$ AX(;UTw) holds. In
— -— —
the second case 7 AX(YU(7 A 1)) holds. All in all, Formula (@) holds in k.

Case § = F(o)(7). By Lemma |4} we have that in this case 6 cannot become
true in a singular manner, so sy never holds in M. Also, by the same lemma
we have that if 6 holds in ¢, it must also hold in (t5—1,tx) (if it exists, i.e., if
tr #0) and in (tg,tg41), SO T9:>§ /\(Y(g) v O) holds in k. In addition, when
0 switches value in a non-singular manner, the way it changes (left-open or left-
closed) is always the same for falling edges (in which case it is left-closed), and
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for rising edges the only instant in which it is undetermined is the origin (in all
other instants it is left-open). Hence, we have to consider only three cases: 6
becomes true in t;, (i.e., M, t |= ey); 6 becomes false in t;, (i.e., M, t = ed); 0 is
false in ¢, in a singular manner (i.e., M, t; = s4). We consider them separately.

Subcase ey. Suppose ey holds in ¢,. We separate the cases t; > 0 and ¢, = 0.

If t;, > 0, for 6 to become true in tj, it must be that + holds at ¢ + b, or
there is € > 0 such that v holds throughout the interval (ty + b,t; + b+ €) and
it does not hold throughout the interval [ty — e, ¢ + b), for some € > 0. Hence,
in ¢}, + b 7 either el holds, or s does, so by definition of re,g)(M) there is

tw = ti + b and we have (7, 0),k" = I v L, which is jT In addition, one of
the clocks associated with 6 must be equal to b in k’. Since in 5 v has a change
point, by definition of g,y (M) one of 29, 2] is reset in k’; the other clock in
k" must be > b, since in [tg, tx + b) there are no change points for 4. Then, one
of the clocks associated with 6 is reset in k, and since 6 stays true throughout
the interval ¢, t; + b, none of them is reset between k and k', so the clock that
is reset in k has value > 0 throughout (k,%’), and it has value b in k’. Finally,

by Lemma [4] we have M, t; [~ 6, so we also have (m,0),k = — 1g.
Hence, =0 A — 15 and also z) = 0 A X(z] > 0 U(j‘ AZ)=bA Vieto1y 75 > b))
holds in k for some j € {0,1}.

If tx = 0, we have two cases. The case when v becomes true at time b, but
it is false throughout (0,b), is very similar to the one for ¢, > 0 (except that
the clock that is reset in t; is 28, and that v must have a falling edge in 0). If,
instead,  is true for some 0 <t < b, then # in 0 becomes true in a left-closed
manner (i.e., Tg holds in 0). For 7 to be true sometime in (0, b), it must be that
either it has a rising edge in 0 (i.e., M,t; [= e, so it holds in an interval (0, ¢)
for some e > 0), or there is a 0 < t;» < b in which v becomes true, i.e., we have

.
Mty = e v s4. Then, by definition of ) (M) we have (7,0),k" E2. As
9 stays true throughout [0,#4), clock z), which by definition of 74,49 (M) is
reset in 0, is positive throughout interval (0, ¢ ), and it is still < b in ¢5/. Then,

the formula 19 A(O v 2§ > 0) U(jT A< 20 <b v 5 A0) holds in the origin.
All in all, Formula holds at position k.

If instead M, 5 ~ e, then if ¢, > 0 no clock associated with 6 is reset in
k; if, instead, t; = 0, then - remains false throughout (0, b]. In both cases the
right hand side of Formula does not hold, so Formula does, since, by
definition of r,4(9) (M) we have (m,0), k = Ty.

Finally, Formula @D holds in all k € N, since if the antecedent holds in &,
then in ¢; — b, which is > 0 because Now > 0 in k, § becomes true, so there is
k' such that t;, = t;, — b where one of the clocks zé is reset, and zg, =bin k.

Subcase eg. Suppose 0 has a falling edge in t;. In this case it must be that
if ¢, # 0, v holds in t; or throughout the interval (t; — &,t)) for some ¢ > 0,
and it does not become true throughout interval (tx, tx 4+ b]. Note that v cannot
become true in ¢, + b either, or 4 is true right after {5, whereas we are assuming
that in ¢ it has a falling edge. Then, we have M, = efiy v sY, so by definition
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ot
of 7sup(9) (M) we have (m,0),k L. Also, since v has a change point in t,
one of zg,z,ly is reset in k and, for v not to become true in (¢g,tr + b] by
definition of r4,4(9)(M) the next time after ¢; that either e or s% occurs the

clock that is reset at k cannot still be less than or equal to b. Then, we have

that (m,0),k = ﬁX(:Z‘ U(} A Viefo13 0 < z! < b)), and Formula holds at
position k.

If 6 does not have a falling edge in ¢, (i.e., M, [~ el), then either v does
not become false in ¢y, or, if it does, it becomes true anew in (ty,t; + b]. In all
these cases, the right hand side of Formula does not hold in k, so Formula
does, as (m,0), k = Ly by definition of 7,4 (M).

Subcase sg. Suppose 0 has a down-singularity in ¢;. In this case it must be
that t5 # 0 (i.e., =O holds in k) and (i) 7 holds in ¢; or throughout the interval
(tx —e,tx) for some e > 0; (ii) at ¢, +0 either ¥ or s} occur; and (iii) throughout
interval (tg, tx + b) there are no change points where v becomes true . This case
is similar to Subcase ef,?‘, except that we require v to become true in t; + b, i.e.,

when the clock related to «y that is reset at k takes value b. Hence, we have that

Y .
(m,0), k |=C, AX (AU A Viggoy 2 = b)), and Formula holds at position
k.
If 6 does not have a down-singularity in ¢ (i.e., M,t; [~ si), then one can
show, as for case Subcase g, that the right hand side of Formula does not
hold at k, so the whole formula does.

Part 2.

Let us consider (m,0) such that (7,0),0 = \gegup(g) ko A G(m(9)). Since, as
mentioned in Section time is progressing in (7, o), for all t € R, thereis k € N
such that t € [t tx11) (we recall that t = o(k, Now)).

To show that there exists M € r;ulb( ¢)((7T,0')) we first describe how M is

obtained, then we show that, for each ¢ € Ry, where t € [tg,tx+1), and for
each 0 € sub(¢), M,t = 0, if, and only if, either ¢ = t; and (7,0),k =g, or

t € (b, trsr) and (m,0), k 0.
To define M, we impose that, for each p € AP and t € Ry, where t €
[tk,tk+1), p € M(t) if, and only if, either ¢ = t;, and 1,e w(k), or t € (tg,tg+1)

and pe (k).

The rest of the proof is carried out by induction on the structure of ¢.

The base case is given by # € AP, for which the result holds by construction.

The cases = —v, 8 = v A 1 are straightforward.

The case for 6 = YU g )¢ is also easily shown, when one considers that,
because of Lemma [2| for ¢ € [tg,tr1+1) we have that M, ¢, |= 6 if, and only if,
Mt = 0.

Finally, we consider the case 6 = F g 4)(7).

To achieve the desired goal, we show that 6 in M has a change point if,
and only if, the corresponding propositions hold in (7, o). More precisely, we
show that, for all t € Ry, M,t |= ej if, and only if, there is ¢, = ¢ such that
(m,0) | Tp, and similarly for ef, s§ (by Lemma 4] s§ never occurs).
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We sketch the first case, the others are similar.

We first show that, if ¢ is such that there is ¢, = ¢t and Iy € w(k), then
M,t = ey. In this case, the right hand side of Formula holds in k. Let
us consider the case k > 0 (i.e., (m,0),k = O). This entails that a clock zg is

reset at k, and there is ¥’ > k such that (w,0), % |=jT /\zg = b, and v stays
false throughout [k, k'), because in k' the clock of v that is not reset is > b.
Then, tx = t; + b, and by inductive hypothesis M, typ = ey v sy and for all
t' € [tk, tr + b) we have M, t’ |~ v; hence, there is € > 0 such that in (¢ — €, tx)
6 does not hold, but it holds in (¢, tx +¢). Hence, M, t; |= ej. The case k =0
is similar.

Suppose there is no k € N such that ¢t = ¢ or, if such k exists, then Iy ¢ 7(k).
Suppose ¢t > 0. We show that it cannot be that M,¢ = ej. In fact, suppose
M,t = ef; then v becomes true in t + b, and it is false in [¢,¢ + b); hence,
by inductive hypothesis there is k" such that ¢;» = t 4+ b and the antecedent of
Formula @D holds in k’. As a consequence, one of the clocks z} has value b in
tyr, so there is k € N where o(k, ) = 0 and o(k, Now) = t — b = t, so it is not
true that there is no k£ € N such that ¢ = t;. Then, ¢t = t; for some k, and the
second disjunct in the right hand side of Formula holds in k, and so does
the whole formula on the right hand side, thus contradicting the assumption
T ¢ (k).

If, instead, t = 0, then ¢ = to; if M, ¢y = e}, then the first disjunct of the right
hand side of Formula would hold, which again would entail a contradiction
with the assumption Iy ¢ 7(0). O

Finally, from Lemma [10| the following theorem descends by observing that
signal M is model for ¢ if, and only if, M, 0 = ¢, which means that 7, holds in
0.

Theorem 1. An MITLy o formula ¢ is fv. satisfiable if, and only if, For-
mula is satisfiable.

Consider an MITLg o, formula ¢. The translation provided in this section

introduces, for each 6 € sub(¢), 2 atomic propositions Te,(g and 2 variables
29, z4. The size of every CLTLoc formula m () does not depend on |6, but only
(when 6 has the form F (g 4)(v)) on the binary encoding of constant b. Hence,
the size of Formula linearly depends on the size of ¢. [21] shows that
satisfiability for a CLTLoc formula is PSPACE in the number of subformulae
and in the size of the binary encoding of the maximum constant occurring in
it. Then our translation preserves the PSPACE complexity of the satisfiability
of MITLg o.

6. Reduction of MITL+Past to CLTLoc

We first extend the encoding of Section to deal with MITLg ,+Past,
by including also subformulae with past modalities of the forms: S )1 and
P (7). By Proposition this also gives an encoding for the full MITL+Past.
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Figure 3: An example of falling edge for 6 = P (g5 (7)-

However, we then show also a direct encoding of MITL+Past, without resorting
to an intermediate translation into MITLg o +Past.

Case 0 = ¥S(g,4.5)¥. S formulae cannot have singularity points, as they would
violate Lemma In addition, when an S formula changes its value after the
origin, it must do so in a left-open manner (i.e., the value at the change point is
the same as the one before the change point). In the origin, instead, 6 is false.
Then, we have

m(®) = (10> X(0)) » (97 (10 v D D). (13)

Case § = P(g)(7). Note that P ) () is false in ¢ = 0, no matter v. As for
F formulae, Lemma [5| implies that _[ 4 can never occur for #. In addition, by
Lemma 5 if 6 holds in the first instant of an interval ¢ (i.e., Tg), it must also
hold in the intervals before and after ¢. Then, the following constraint holds:

o= AY (2) . (14)

Formula states that for 6 to become true with a rising edge in ¢, v must
also become true (possibly in a singular manner). This is sufficient if ¢t = 0. If
t > 0, there are two cases: either v was never true before t (so it was false in
the origin and it stayed so), or the last change point of v before ¢ was before
t — b, so the clock associated with + that is not reset in ¢ is greater than b.

¥ g .
Toe 2 A OvY(ﬁS(OA’Y))v \/zﬁy>b (15)
. i€{0,1}
Formula states that 0 has a falling edge in ¢ if, and only if, either t = 0
and there is € such that + is false in [0, ), or the last time v became true was at

t—b (and it continues being false also after t). This corresponds to the condition
(depicted in Fig. ) that there is 2 that is equal to b in ¢, and the last time ~y

had a change point it was zi/ = 0 and vy became false. 7y cannot become true
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in t, or # would not have a falling edge; if v becomes true in ¢, then 6 has a
down-singularity, as specified by Formula .

e \/ (z;=bA(}s(ﬁ, Az =0 A —(OA '7))))\/(0/\ v)  (16)

Ty \/ (zg—bAY@s(l Azg—oAﬁ(oAZ))» (17)

1€{0,1}

Finally, we introduce the analogous of Formula @ for the eventuality in the
past. More precisely, following Formula specifies that if v becomes false
and there are no change points for «y for at least b time units, the CLTLoc model
includes a position in which the clock that is reset with the falling edge of ~ hits
value b. Formula is necessary to make sure that, if v becomes false (and
it does not become true again for b time units, hence # must also become false
after b), eventually the right hand side of Formulae and holds.

/\ (ll /\sz:O/\ﬁ(O/\Z)ﬁ X(zi>OU<Z§—bv(jTAO<zfy<b)>>>.
1€{0,1}
(18)
Then, for 6 = P ;)(7), define m(0) as A A A A .
Given an MITLg o, +Past formula ¢ and the translation m(6) as extended in
this section, the corresponding CLTLoc formula is still .

Correctness and complexity of the translation of the new modalities

Lemma 11. Lemma holds also when m(0) is extended to subformulae 6 of
the form vS(0,0)% and P o) (7).

Proof. The proof follows the same structure as the one for Lemma since the
statement is just an extension. It is hence enough to prove the result for the
kinds of subformulae considered in this section.

Part 1.
Suppose ti € T. We analyze the different types of subformulae introduced, and
we show that for all (7,0) € 7y (M) and for all k € N, ¢ € sub(¢) we have

(m,0), k = m(e).

Case 0 = vS(0,,0)%- The case for formulae for the form S )9 is similar to
the one for YU g )%, so we do not detail it for brevity.
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Case 0 = P (7). By Lemma in this case # cannot become true in a
singular manner, so sg never occurs. Also by Lemma [5| we have that if # holds
in tg, it must also hold in (tx—1,tx) (which must exist) and in (tg,tg+1), SO

T9=>(§ /\Y(E) holds in k. In addition, when 6 changes value in a non-singular
manner, the way it changes (left-open or left-closed) is always the same (left-
open for a rising edge, and left-closed for a falling one). Hence, there are only
three cases: 6 becomes true in ¢ (i.e., M, t; = eff); 0 becomes false in t; (i.e.,
M, ty |= ed); 0 is false in t in a singular manner (i.e., M, t; = s3). We consider
them separately.

Subcase epy. Suppose f has a rising edge in ¢;. In this case, it must be that
~ holds either in t; or in an interval (tg,tx + €), for some ¢ > 0, and it does
not hold throughout (tx — b,t), or tx = 0. Then, it must be that M, |= e,
or M.ty |= sy, ie., (m,0),k |:jT Since t}, is a change point for ~y, either zg or
z}y is reset at position k, by definition of r,,49)(M). Then, the condition that
v is not true in (ty — b,ty), since it becomes true in tx, corresponds to there
not being change points for « in [ty — b, ), i.e., the clock between zg and z,ly
that is not reset in k must be greater than b in k. If, however, t; < b, but
has remained false since the origin, the clock that is not reset in t; was reset
in 0, so it is less than b even if v never became true before. Hence, we have to
consider also the special case in which ~ is false throughout [0, ¢x); this occurs

if in the origin we have M,0 |= efly A =, and ef and s no dot hold since. This

v
corresponds to having (m,0),k = Y(£S(OA 7)). All in all, at position k in

(m,0) we have that jT A(O v Y(:Z‘ S(OnA Z)) V Vieqo,1} z!, > b) so Formula
holds at k.

If, instead M, t; [~ e}, then none of the conditions above occurs. In par-
ticular, at ¢; ~ either does not become true or there is 0 < £ < b such that
7 becomes true in ¢ —e. In both cases, the right hand side of Formula
does not hold, so Formula does, since, by definition of 7,9y (M) we have
(m,0), k= T5.

Subcase eg. Suppose 0 has a falling edge in t;. We separate the case t;, = 0
from t; > 0. In the former case, the falling edge simply corresponds to the fact
that 6 starts false, hence also v starts false; that is, (m,0),0 = OA 7.

In the latter case, it must be that v holds in ¢t — b, or in an interval (¢ —
1—e,tx —b), but it does not hold in (tx — b, tx). Then, v must have a change
point in ¢y — b, so, by definition of r,,,(9) (M), there must be a position k" with
tyr = t;, —b where one of zg, z}y is reset, and its value at position & is b (it cannot
be reset between k' and k, as v does not have change points there, and if « has
a change point in tg, then the clock that is reset at k is not the one reset at &').

Either Mty = e‘f/, or M,t |= sy holds, i.e., we have (m,0), k' Izll

, 2 ,
Overall, for one of 29, z1 we have, at position k in (7,0), 2% = b A (4 S(Il N2l =
0)) so Formula holds at position k.
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If 6 does not have a falling edge in t, (i.e., M,t; F= ed), then either v does
not become false in ¢; — b, or, if it does, it becomes true anew in [t — b, tx).
In all these cases, the right hand side of Formula does not hold in k, so
Formula does, as (m,0), k = Lg.

Subcase sg. Suppose 0 has a down-singularity in ¢, hence ¢, > 0. then,

~ holds in t; — b, or in an interval (¢, — b — &1,t; — b), and also in tg, or
in an interval (ty,tx + €2), but not in (fx — b,tx). Then, v must have a
change point (where either e or s% occurs) in #; — b (so there must be a
position &’ with t;, = t; —b), and one (where either e} or s¥ occurs) in ty,
but none in between. Also, one of zg, z,ly is reset in tx and the other is reset
in t;. This is just a combination of the conditions for Subcases e} and e,
s0 1 A Vieo.1) (z’ =bAY (} S (Il nZL = O)>> A —O holds at position £,

¥

hence also Formula holds at k.

If # does not have a down-singularity in ty (i.e., Mt } sg), then one can
show, as for Subcase eg, that the right hand side of Formula does not hold
at k, so the whole formula does.

Finally, Formula holds in each k € N since if v becomes false in t;, (hence

|1 holds in k), then either it becomes true again before t; + b, or it does not,
in which case 6 becomes false at t;, + b; in the latter case, there is k' such that
twr = ti + b, and the clock 2z that is reset in k has value b in &’. In both cases,
the right hand side of Formula holds.

Part 2.
The proof is similar to the one of Part 2 of Lemma We briefly sketch the
case 6 = P (g (7), focusing on change points of the form ed. More precisely,
we show that, for all te Ry, M,t = eg if, and only if, there is t; = ¢ such that
(m,0) E=Le.

If ), = ¢t and ¢ € w(k), the right hand side of Formula holds in k. Let
us focus on the case k > 0. Then, for some j € {0,1}, 2/ = b holds in k, and

there is ¥’ < k such that (w,0), k' |=ﬁ, Azl =0, and « stays false throughout
(K',k + €), for some € > 0. Then, tpr = t; — b, and by inductive hypothesis
M.ty | el v s and for all t' € (tp — b,y + €) we have M,t' [~ ~. Hence,
]\47 tr |= eg.

Suppose there is no k € N such that ¢t = ¢ or, if such k exists, then 1y ¢ 7 (k).
Let us focus on the case t > 0. Suppose M,t = eg; then v becomes false in
t —b, and it is false throughout (¢t — b, ¢+ €), for some € > 0; hence, by inductive
hypothesis there is &’ such that ¢, = t — b and the antecedent of Formula
holds in k’. As a consequence, one of the clocks z% has value b in tx + b, so
there is k € N where o(k, 27) = b and o(k, Now) = t}s + b = ¢, so it is not true
that there is no k£ € N such that ¢ = t,. Then, ¢t = t; for some k, and the first
disjunct in the right hand side of Formula holds in k, and so does the whole
formula on the right hand side, thus contradicting the assumption g4 ¢ 7 (k).

O
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Theorem 2. An MITLy o + Past formula ¢ is f.v. satisfiable if, and only if,
Formula is satisfiable.

We now show that our reduction of MITLg +Past to CLTLoc induces a
PSPACE decision procedure also when the constants are encoded in binary.

In fact, consider an MITLg o +Past formula ¢, and the corresponding equi-
satisfiable CLTLoc Formula . As in the case of the translation for MITLg o,
even with the new modalities the size of Formula linearly depends on the
size of ¢ and on the binary encoding of constants. Since the satisfiability of a
CLTLoc formula is PSPACE in the number of subformulae and in the binary
encoding of the constants, the decision procedure induced by our encoding is in
PSPACE.

Since, by Proposition [2| an MITL+Past formula may be translated into an
equivalent MITLg ,+Past formula, whose size is however exponential in the
binary encoding of the maximum constant occurring in the formula, it follows:

Corollary 3. The reduction of MITL+Past to CLTLoc induces an EXPSPACE
decision procedure for the fv. satisfiability problem, when the constants are
encoded in binary, and a PSPACE procedure when the constants are encoded in
unary.

This is in line with the well-known fact that the satisfiability of MITL is
EXPSPACE-complete [6] when the constants are encoded in binary.

6.1. A direct encoding for F (4 )

Here we extend the encoding to include also subformulae of the form F, (7).
The case of the form P, (v) is similarly defined and can be found in Ap-
pendix A. Although this direct encoding is not necessary for proving equisatisfi-
ability and theoretical complexity results, nonetheless it may be smaller than the
encoding obtained by eliminating F(, ;)(y) using Proposition For instance,
the elimination applied to formula F (1 11(7) actually produces 20 more subfor-
mulae, each one with a pair of clocks and three predicates (with the associated
formulae), so in total 42 clocks and 63 predicates; our direct encoding only deals
with one subformula, adding in total 22 clocks and only three predicates.

The encoding can easily be extended to provide direct support also for in-
tervals of the form [a, b], (a,b] or [a,b), but these cases are omitted for brevity.

First of all, we remark that Lemma [ holds also for formulae of the form
F(,5)(7). As a consequence, change points where sy holds cannot occur for
these kinds of formulae. In case of subformulae of the form 6 = F (4 () we

introduce, in addition to clocks zg, zé of Section d=2 [ﬁ] auziliary clocks

{a:g }jefo,...,d—1} which, by Corollary are enough to store the time elapsed since
the occurrence of change points for § between the current time instant ¢ and ¢+b.
Observe that clocks zg and z; could be removed, since in any discrete position
their value can equivalently be obtained from the value of the last auxiliary clock
that has been reset. However, we still use them to obtain a simpler translation.
The behavior of the auxiliary clocks is defined by the following formulae.

25



| |
0 I I I I
| | | |
o o N " 6
0 _ 1 _ 0 _ 1 _ 0 _
29 = 29 = 29 = %0 = Zp =
0 _ 1 _ 2 _ 3 _ 0 _
Ty =0 Ty = Ty = Ty = Ty =

Figure 4: Sequence of circular resets for a formula F, ;) () with four auxiliary clocks.

Each reset zi, = 0 entails one of e¥, eg, Sg and each change point is marked
by a single reset zj; = 0 (Formula (19)).

g A1 d—1 d-1 A '
(Igvié\/mfo:O) A </\ /\ ﬁ(:r§=0/\x§:0)> (19)

i=0 i=0 j=0,i£]

The occurrence of resets for clocks zi is circularly ordered and the sequence of
resets starts from the origin by z§) (see an example in Figure . If 2, = 0, then,

from the next position, all the other clocks are strictly greater than 0 until the
(i4+1) mod d

next x, = 0 occurs.
d—1 4 ‘ ‘
/\ .’L‘é —0=X (xéz+1) mod d _ O)R /\ (xéjJrl) mod d > 0) (20)
i=0 je[0,d—1], j#i

Formula z) = 0, evaluated at position 0, sets the first reset of the sequence,
constrained by formulae —.

Formula (z) = 0) A G ((19) A (20)) is denoted as auxcky.

The next formulae capture the semantics of the F, ;) modality. For the sake
of simplicity, the translation only considers the case a > 0 although a general
translation including the case a = 0 of Section [5| can be devised. However, deal-
ing with two different translations is simpler and allows one to obtain much more
efficient decision procedures based on a direct translation of the metric modal-
ities that actually occur in a formula. Because of Lemma 4] an up-singularity
1Ly can never occur for 6 = F(, ) (7). Then, as for F (), Formula (7)) holds in
every instant.

Formula is similar to ; it differs from the latter in that it specifies
that, for 6 to have a rising edge, v must become true after time b, but it only
needs to be false in the b — a instants before b, rather than throughout the
interval up to time b.
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Figure 5: Examples of conditions for rising edges for 6 = F (4 3)(7) at t > 0 and ¢t = 0|(b)

g 0
tra<zg<bv

1o A (Ova)>0)U . v

0 0
Y Axg <anX(xg>a
O A ‘ (o ) v

~ X

To < — 1o AX |2 >0U |+ Azh=bnA \/ zizb—a
i€{0,1}

d—1 . . Y . .

—‘O/\—‘Tg/\\/ (=0 AX|z)>0U0 [+ Az)=bn \/ zh>b—a
=0 i€{0,1}

(21)

Fig. [5| shows a pair of examples of conditions in which 6 = F(,)(v) has a
rising edge. Fig. depicts a case in which the second disjunct of the right-
hand side of Formula is true. In this case at position k£ > 0 of the CLTLoc
interpretation, which corresponds to an instant £ > 0 in the signal, one of the d
auxiliary clocks of 6, say x7, is reset and exactly when it takes value b subformula
~ becomes true (hence one of its associated clocks, say zg is reset); in addition,
the clock that is not reset when  becomes true (z} in our example) has value
that is greater that b — a, which entails that the last time v became false was
more than b — a instants before, hence 0 is false before instant ¢, and it becomes
true at t. Similarly, Fig. depicts a case in which # becomes true in the
origin (when z is reset by definition), and corresponds to the first condition of
the right-hand side of Formula . In the example represented, v is true in
an interval that starts before (or when) z) takes value a, and ends when ) is
greater than a; hence, this interval includes an interval (a,a + €), so F(q)(7)
has a rising edge in 0, and also it holds in 0 itself (i.e., g is true in 0).

Formulae - are similar to @D-.

d
Now)b/\}/\ \/ zi}(b—a):> x) =0 (22)
1€{0,1} j

|
—

<
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o
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d—1
Ly = \/ (mje =0A X((xé > O)U(B, /\acg =anA ﬁX<:Z‘ U(jT na < xjé < b)))))

Jj=0

8l v . ,
Now=a nl AX|3R-[2 A /\ 2z, <(b—a)||= zh=a (24)

i={0,1} §=0

d—1 . . ¥ . Y Yy .
Ty < —'OA\/ (xé =0A X((xé > 0)U<|_> AT)=a A X<j U(_T AT = b)))))
j=0
(25)
Then,m(Q)iS/\/\/\/\/\.

Given an MITL+Past formula ¢ also with temporal modalities of the form
F(4,1), define the corresponding CLTLoc formula as:

inity A /\ (cko AG(m(0) A\ auxck. (26)
Oesub(p) Oesub(p)
0=F (a,5)(77)

Proof of correctness of the encoding for 6 = F(,4)(7).  To show the correctness
of the translation we first extend mapping rx(M) to include also the auxiliary
clocks, which are introduced in a similar manner as zg, zé. First, for all positions
k>0, 0r(kz)) =0or or(k,z5) = 0 if, and only if, \/?;3 O']-'(k,x'g) =0, i.e,
whenever a change point for 6 occurs, an auxiliary clock is reset. To avoid
simultaneous resets of different clocks, if xg is reset then no :L'g is reset, for
j' # j. Auxiliary clocks are circularly reset modulo d; i.e., if ;vg is reset at
position k, then the next reset of w§7 if it exists, occurs in a position ¥’ > k such
that all other clocks :cg (j' # j) are reset, in order, exactly once in (k, k’). Note
that, if a clock xg is reset at position k, the next position &’ when the clock is
reset must be such that ¢,y > 5 + b, i.e., given a formula 6 = F(, ;(7), every

clock xg is reset only once over intervals of length b. The sequence of resets
starts with 2 = 0.

The following lemma is the analogous of Lemma |§| for auxcky (for brevity
we omit its proof, which is similar to the one of Lemma E[)

Lemma 12. Let M be a signal and F be a finite set of MITL+Past formulae.

For all interpretations (tr,07) € r7(M) we have (r,07),0 = A\ ser  auxcky.
0=F (4,5)(7)

Then, we have the following result, which extends Lemma

Lemma 13. Let M be a signal, and ¢ be an MITL+Past formula. For any

(7, 0) € Tsub(s) (M) we have (7,0),0 = Agegup(p) Cko A /\9 gi;ub(d,() )auxckg and
=F(a,)(v
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for all k € N, 0 € sub(¢) we have (7,0),k = m(0).

Conversely, if (m,0),0 = Agesun(s) (ko A G (m(0))) A /\ vecuns) auxcke, then
O=F (4,5)(7)
there is a signal M such that (7,0) € 7syup(g)(M).

Proof. The proof has the same structure as those of Lemmata [10] and We
focus on the case 6 = F(, 4)(7).

Part 1.

Lemmataﬂandﬁguaran‘cee that (7,0),0 &= /\Gesub(¢) CkoA A peaunis) aUxCky.
0=F (a.5)(7)

Then, suppose t, € T. To deal with F(,4)(7), we need to consider three

cases: M, ty, |= e, M,t, |= el and M, t, = si. Since they are very similar to

those of case F(o3)(7) in Lemma we only briefly sketch them.

Subcase e}f. We focus on the case M, t;, = e (the case M, t;, [~ e is analogous
to the one of Lemma .

Suppose t > 0. For 6 to become true in ¢, it must be that + holds at ¢ty + b,
or there is € > 0 such that « holds in interval (¢; + b,tx + b+ ¢€) and it does not
hold throughout interval (¢ + a,t, + b). Hence, the case is similar to the one
for F(o,)(7), with the only difference that we use auxiliary clocks x; instead of

2z}, and the value of z,JY must be > b — a instead of > b.
If t,, = 0, we have two cases. The case where v becomes true in b, but it is false
throughout (a,b), is very similar to the one for t; > 0 (except that the clock
that is reset in tj is 2J). The other case is when there is a < ¢t < b where 7 is
true, hence 6 in 0 becomes true in a left-closed manner (i.e., 1y holds in 0). For

~ to be true sometimes in (a,b), there must be a position &’ such that either (i)

a <t < b and vy becomes true in ty (i.e., (7,0), k' |=}) or (i) t < a < tg41
and v holds throughout (¢g/,tr41). By the usual arguments, this is captured
by the second part of the first disjunct of Formula .
All in all, Formula holds at position k if M, ¢ = ej.

Also, by similar arguments as those used for Formula @D in the proof of
Lemma Formula holds at all positions k € N.

Subcase eg. Suppose 6 has a falling edge in t;. If t;, = 0, this is equivalent ey
holding, since singularities cannot happen there, i.e., in kK = 0 we have O A —_I7.
Otherwise, it must be that + holds in ¢ + @ or in an interval (t; — e + a, tx + a)
for some e > 0, and it does not become true throughout interval (tx + a, ti + b].
Formula v cannot become true in t; + b, or 8 is true right after ¢, whereas we
are assuming that in ¢y it has a falling edge. Then, we have M, tx +a = e v sy,
so by definition of 7,,(9) (M) there is k&’ such that t)s = ¢ + a and We have

’y .
(m,0),k L. In addition, one of the z clocks is reset in k, which is not reset
again until after &', hence 2, = a in &’ and the next time v becomes true again
(i.e. _T holds), :Ee cannot be < b. Then, Formula holds at k.

If instead M, ty p= 697 then if ¢, > 0 no auxiliary clock associated with 0 is
reset in k; if, instead, ¢, = 0, then ~ is true is (0,¢), for some € > 0. In both
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cases the right hand side of Formula does not hold, so Formula does,
since, by definition of .49y (M) we have (7, 0), k (= L.

Similar arguments as those used for Formula @D in the proof of Lemma
show that Formula holds at all positions k € N.

Subcase sg. Suppose 0 has a down-singularity in t;. Then, by definition we

have t; > 0. In this case the conditions are similar to those for eg, except that

¥
exactly at tpr = ty + b formula v becomes true again (i.e., * Az; = b holds in
k"). The truth of Formula descends from there.

Part 2.

The proof that, if (7,0),0 = Apegupp) ko A G (m(0)) A A\ ocounis) auxcky,
O=F (a,5)(7)

then there is a signal M such that M = r;ulb(¢)((7r,a)) is analogous to the

corresponding ones in Lemmata [I0] and [T1], so we omit it for brevity. O

Complezity of the translation. Consider an MITL+Past formula ¢ with occur-
rences of F(, ;) and the corresponding equisatisfiable CLTLoc Formula .
Let K be the maximum constant appearing in ¢. Then, the size of the CLTLoc
translation is O(|¢|K), i.e., it is exponential in the size of the binary encoding
of K. Since the satisfiability of a CLTLoc formula is PSPACE in the size of
the formula and in the binary encoding of the constants, the decision procedure
induced by our encoding is in EXPSPACE, as expected.

7. Reduction of counting modalities to CLTLoc

The C,, operator is a generalization of F (g 1y, since C1(y) = F(o,1)(7). To
capture its semantics, we need to introduce more clocks than used in describing
the semantics of F(g 1), both for & = C;(7) and 7. Precisely, we introduce n.,

clocks zg, ey 22”71 for subformula vy, with n, > n + 1, and ¢y = 2n + 1 clocks
9, ... ,xgg_l for subformula 6. Note that the exact number of necessary n,

clocks depends on the operators in which v appears. For example, if n’ is the
largest number such that there is a subformula of the form C, (), n, = n' + 1.
If v does not appear in a formula of the form C,(y) or of the form Fj(y),
then n, = 2. Similarly, if formula 6 = C,,(7) itself appears in a formula of the
form C,(0), then it will be associated with both ny = n’ + 1 clocks z) and cg
clocks xé. Since clocks zg and zé play very similar roles, one could introduce a
single set of clocks with cardinality the maximum of ng and cy. However, in the
following encoding for reasons of clarity we keep the sets separate.

Consider now a formula ¢ that includes counting modalities. Its translation
to CLTLoc has, in addition to the parts introduced in Section [5| and |§| (with
the necessary adjustments to take into account the fact that the number of 27
clocks can be more than 2), the translation of the counting modalities. In the
rest of this section we show the translation m(#) for C,,, with n > 1.

Clocks zj play a role similar to those with the same name introduced in
Section[6] so their behavior is similarly governed by formula auxcky. In addition,
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Figure 6: A first batch of abbreviations:
upjl. q(By) = X(quw >0U (B,Y AO <z AT~ d))
up} 4 (By) =X (xZ) L >0 U(JL—Y A0 < z(]g <dn up?Zld(B.y)>) forn > 2
uP;Lfd(BV) =up? _,(By A z?, <d)forn>=1
y «
nspikes; (v) = Y(US(ULy v (14 A= 7 ~0)))
Y
nspikes,, (7) = Y(4S(JLy A nspikes,,_;(7))) for n > 2
820 (By) = By £ 25 <d
tpY(By) = By A zg < d A nspikes, (v) forn > 1

since Lemma [4 holds also for the C,, modalities, an up-singularity Ly can never
occur for a formula of the form C,(v), and Formula [7|is introduced as for the
F modality. ,

For the sake of readability, some shorthands are useful. Let 2j_ > 0 stand

for (xje >0n /\ie{0 =1} Z,Zy > 0), where n, is the number of clocks introduced
for 7. We also write z ~ d (where ~€ {<,<,=,>,>}) to state that there are
exactly p clocks of « satisfying ~ d. The following Formula defines z?? ~d

(where @ is the sum modulo n.).

n~—1
d~d=\/ AN E~dn AN & rad) (27)
=0 je{i®1,...,i®dp} je{i,...,i®(p+1)}

Let B, denote a CLTLoc formula associated with v (e.g., a Boolean com-

bination of I, }, zﬁ ~ d, etc.). Fig. |§| recursively defines upy’wd(B,y), whose
intuitive meaning is that it holds in every instant such that: 1) there is a future
time instant ¢ such that clock z, has value ~ d, B, holds; 2) v has at least
n — 1 up-singularities (i.e., instants where _IL, holds) before ¢. To ensure that,
moreover, in instant ¢ above there are only p clocks associated with v whose
value is < d (i.e., v has changed value p times between the instants in which
was 0 and d), we also define up}’”,(B,). Fig. [6(a)| depicts a situation in which
upf’i 4(J7y) holds. Notice that the formula upg _;(B,) will be used only when
evaluated in the origin O: the number of change points of v before B, holds is
certainly n, so parameter p is unnecessary.

Fig. |§| also introduces shortands similar to up;’i’ 4(By), but which refer to
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the interval before B, holds. Formula nspikes, (7) holds if the last n times
when « changed value before the current instant are of the form _,. Then,
formula §p7(B,) holds if B, holds, the last n times when  changed value
were up-singularities, and the number of clocks associated with v that are less
than d is p, hence, if p = n + 1, all n “spikes” occurred within the last d time
units. Fig. m shows an example of fpii(f ~) holding.

Using the abbreviations of Fig. [ we capture through CLTLoc formulae the
conditions that make 8 = C,(y) have a rising edge (i.e., that corresponds to
_Ty). Formula describes that, when 6 becomes true with a rising edge g
in an instant ¢ > 0, then it does so in a left-open manner (i.e., # does not hold
in t), a clock z is reset, and (i) either v has n — 1 up-singularities before z7
hits 1 and v becomes true again also with an up-singularity when mg =1, or
(ii) v has a rising edge when wg = 1 (hence it is true infinitely many times in
a right neighborhood of that instant) and it also has up to n — 1 (possibly 0)
up-singularities before z7, = 1. If instead 6 becomes true in t = 0 in a left-closed
manner (i.e., § holds in ¢; the left-open case is similar to the one above), before
clock xg = 1 either 7 has a rising edge (so it is true infinitely many times before
z9 = 1) preceded by up to n — 1 (possibly 0) up-singularities, or there are n
up-singularities before 2§ = 1.

Ton |y v ng,<1(Jl—v) v \/ up’g BREYE Y
ke{1,..., n}
(0N v
Ty ~toa(wn L)y N wb (1) (28)

ke{1,..., n}

cg—1 )

-0 A \/ = To Azy =0 Al(up;Z(JLy)A JL)) v \/ upffl(fw)
7j=0 ke{1,..., n}

Fig. [7| shows a pair of examples of conditions corresponding to § = C4(7)
having a rising edge. In particular, Fig. depicts a case in which the second
disjunct of the right-hand side of Formula holds. In this case, at t > 0,
corresponding to position £ > 0 of the CLTLoc interpretation, one of the ¢y
clocks associated with 6, say 7, is reset (note that in this example cg = 9, as
we are considering n = 4). Also, between ¢ and the instant in which xé takes
value 1 there are exactly 3 other instants in which v has an up-singularity, and
when z, = 1 subformula ~ has another up-singularity. All in all upf’il(j_/y)
holds at ¢, and so does the second disjunct of Formula . Fig. instead,
shows a situation in which § = C4(v) has a rising edge in ¢t = 0 (where z is
reset). More precisely, the case depicted corresponds to the first condition of
Formula being true. In fact, at an instant in which 2J < 1 subformula ~y
has a rising edge and between 0 an that instant there is one point in which ~
has an up-singularity. Hence, in 0 formula upa <1(7) holds, and so does the
first condition of Formula .
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Figure 8: A second batch of abbreviations:

upSub} ;(7) = ﬁx(} U(} A0 < 2 < d))

upSuby’ ;(7) = X(-} UL, A0 < z.{, <dn upSub;.L’;}j(fy)))
upSub! _,(B,) = X(fU(B, A = d))

~y .
upSub} _;(By) = X(A ULy A0 < 2 <dn upSub;gl(B.y)))

Formula states that if ¢ is an instant (such that ¢ > 1) in which either
(i) in the preceding interval of length 1 v has n — 1 up-singularities and ~y also
becomes true in ¢ with an up-singularity (i.e., &~ "(JL,) holds), or (ii) v
has a rising edge and in the preceding interval of length 1 v has at most n — 1
up-singularities (i.e., fpi}l’k(f,y) holds for some k < m), then in ¢ one of the
clocks associated with 6 must be 1 (indeed, C,,(7) started to hold exactly 1 time
unit before ¢, see also Fig. , and all others are greater than 1. Formula
plays a similar role as Formula @[): it makes sure that, if in the interval of
length 1 preceding ¢ the conditions hold for C,,(y) to become true in ¢ — 1, then
the right hand side of Formula holds at the position corresponding to t — 1,
thus forcing Iy to hold there.

\Voowhta) ) =

ke{l,...,n}

\/ xh =1

iE{O,...,ce—l}

& (L) v

Now>=1 A

(29)
To describe the conditions under which 6 becomes false, either with a falling
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edge (i.e., Lp holds), or with a singularity (i.e., 1y holds) we introduce a pair of
further shorthands, shown in Fig. |8l Formula upSubgéd(’y) (where <e {<,<})
holds if, from the current instant (excluded) until the instant when clock zJ
hits value d (included), v never becomes true. Then, upSub} _,(v) holds if,
in the interval that starts in the current instant and ends when clock zJ = d
(both endpoints excluded if < is <), v has exactly n up-singularities. Fig.
exemplifies when upSub?, ~4(7) holds. Note that if there are at least n + 1
clocks associated with ~, it may be the case (if z% has been reset ”recently”)
that upSub} _ 4(7) holds and z% is not reset before it becomes d. Similarly,
upSub’ _,;(B,) holds if, in the interval that starts in the current instant and
ends when Z,]Y = d (endpoints excluded), v has n — 1 up-singularities, and B,
holds when zJ = d. Fig. depicts a case where upSub? _,(1",) holds.

When 6 = C,,(y) becomes false with either a falling edge ("Lp) or in a singular
manner (1), v becomes false, and a clock 2! is reset. Consider first the former
condition (Formula (30])). There are two cases: v becomes false with a falling
edge L, or it has an up-singularity _[L,. In the former case, v can have up to
n — 1 up-singularities before z; = 1: it can have less than n — 1, since v holds
infinitely many times before it has a falling edge. In the latter case, v must have

exactly n — 1 up-singularities before zﬁY =1, or 6 does not have a falling edge.

L mat 1y A \/ upSubﬁgl(’y) v
Toyeba \ |#4=0= ke{0,....n—1} . (30)
i=0 I, A upSub!'Z{(7)

Finally, as captured by Formula , for 6 to have a down-singularity 1y,
not only v must become false with T, but it must also become true again
exactly when the clock 2%, which is reset with 1y, takes value 1.

upSub;'_; (1) Vv

n~y—1
¥ .
Ty —-OAL A 2L =0= n-l (31)
z/=\0 ! Ly A \/ UPSUbf,:1(I7)
k=1

Finally, for 6 = C,,(v7), m(#) is A A A A , and we have
the following result similar to Lemmata and

Lemma 14. Let M be a signal, and ¢ be an MITL+Past formula including
counting modalities. For all (m,0) € 7sup(g) (M) we have (7,0),0 = Ngegup(g) koA

Pesub(e) auxckg and for all k € N,0 € sub(¢p) we have (w,0),k =
0=F (a,0)(7) or 6=Cyn(7)
m(0).
Conversely, if (m,0),0 = Ngesup(s) (ko A G (m(0))) AN fesub(e) auxcky,

O=F (4,5)(7) or 0=Cxn(7)
then there is a signal M such that (7, 0) € Tgup(e) (M).
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Proof. The proof follows the same structure as those for Lemmata and
Here we focus on the case for subformulae of the form 6 = C,, (7).

Part 1.
Suppose t € T. As for Lemma Formula holds by Lemma As usual,
we separately consider the cases M, ty |= e, M.t = ed, and M, t;, |= sg.

Subcase ep. Suppose that eg holds in ¢;. Assume at first that ¢, > 0. For 6
to have a rising edge in tj, it cannot be that v has a rising edge e in interval
[tk,tr + 1), or given a small enough € > 0 in interval (¢, —e,tx — e + 1) there
would be an infinite number of instants in which + is true, hence 6 would hold
also before t;, instead of having a rising edge. For the same reason, v cannot
have a falling edge in t;. For 6 to become true in ¢, then, v must become true
in ¢, + 1. We have two cases: M,t, +1 = ey and Mty + 1 sy

If M tp, +1 = ey, this is enough to make ¢ become true in ;. However, in
[tk, . + 1) there can be up to n — 1 up-singularities s%.

If Mty +1 = s, for 6 to become true in t; there must be exactly n — 1
up-singularities s% in (tg,tx + 1), and none in t.

By definition of r,5(4) (M) we have that ¢, +1 = t)» € T, and also all instants
between t; and t; + 1 where there are singularities are in 7. In addition, in &’
one of the clocks associated with 6 must be 1; in fact, by Lemma [§] in interval
(t,tx + 1] 6 can change value at most 2n times, but there are 2n + 1 clocks
associated with the formula, so the clock that, by definition of 74,,(4) (M), is
reset at k can be reset again only after k’. Then, one of the clocks associated with
#is 0 in k. Also, for Lemma 6 cannot hold in tx, so by definition of 44y (M)
we have (m,0),k = — Tp. Finally, by the reasoning above, if M,#; + 1 | e,
we have (m,0),k = Vieq, o) upf”il(fv), while if M,t; + 1 | s we have
(m,0),k = up;Z; (JLy) A JL, so the right hand side of Formula holds.

If t, = 0 we have two further cases: the interval in which there are n

occurrences of 7 is (0,b], or it is a proper subset thereof (i.e., it is (0,¢), with
€ < 1). The former case is analogous to the case t;, > 0.
The latter case is also very similar, but the n occurrences of v are all such that
xg < 1 (in particular, it can happen that + has a rising edge in 0); also, in
this case 6 holds in 0, so we have (m,0),k =1g. Then, we have that formula
lo A(y v upg,<1(j—"/) v \/ke{l,‘..,n} up§,<1(J—’Y)) holds at k.

All in all, Formula in this case holds in k if M, = ef.

The case in which M, t; = ej is similar to the one in the proof of Lemma
so we omit if for brevity. Also, similar arguments as those used in the proof
of Lemma [10| to show that Formula @ holds in all £ € N are used to show the
same thing for Formula .

Subcase eg. For 6 to have a falling edge in tj, v must become false in 4, but
also there must be a € > 0 such that in (¢, — e, k) 0 holds (unless t; = 0), and
in (t,tr +€) it does not. We separate two cases: 7 becomes false with a falling
edge (i.e., M,tx = ei‘é), or it has an up-singularity (i.e., M,t; = s). In both
cases, it cannot be that + has a rising edge in (tx,tx + 1], or 8 would be true

also in (tg,tx + €). Let us consider the two cases separately.
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If M, t), b= e (which also includes the case in which ¢, = 0), then ~y can have
up to n — 1 singularities in (¢, tx + 1].

If M.ty |= sy, then v must have exactly n — 1 singularities in (¢, + 1),
and it cannot change value again in ¢ + 1.

By definition of 7,44 (M), all instants tz, in (¢, + 1] when 7 has up-
singularities are in 7. Also, in both cases above there is a clock 2! that is reset
at k, and that clock is not reset again in (¢, tx + 1] because v is associated with

at least n + 1 clocks. Hence, if M|ty = egl, there is h € {0,...,n — 1} such that

(m,0),k |=upSubl _, (7). Similarly, if M, t; |= s¥, then (7,0),k = upSubZ;%(’y).
In both cases, the right hand side of Formula holds at k.

If instead M, ty, }~= eg, then either v does not become false in t, or, if it does,
it becomes true n times anew in (tg,tr + 1]. In all these cases, the right hand
side of Formula does not hold in k, so Formula does, as (m,0), k I~ Lg.

Subcase sg. For 6 to have a down-singularity in ¢, v must become false in ¢
and there must be £ > 0 such that 6 holds in (t; — &,t;) (unless t; = 0), but
then for all ¢ € (t,t; + €) it must be that there are n instants in (¢, + 1)
when ~ holds. This corresponds to having conditions in ¢; similar to those of
Subcase eg, with the condition that v becomes true again in ¢; + 1. We skip
the rest of this case for brevity.

Part 2.

The proof that, if (7,0),0 = Ngegup(g) ko A G (m(0)) AN\ vesub() auxcky,
0=F (q,1)(7) or 6=Cn(7)
then there is a signal M such that M = r;ulbw) ((m,0)) is similar to those in Lem-

mata [T0] and [TT] so we omit it for brevity. O

Given an MITL+Past with counting formula ¢, define the corresponding
CLTLoc formula as:

inity A /\ (ckog A G (m(0))) A /\ auxcky. (32)
Oesub(e) Oesub(p)
0=F (a,)(7) or 0=Cp(7)

Theorem 3. An MITL+Past with counting formula ¢ is satisfiable if, and only
if, Formula @ 1s satisfiable.

Consider an MITL+Past formula ¢ with counting, with K and n being,
respectively, the largest constant in temporal modalities and the largest index
of the counting modalities occurring in ¢. The corresponding equisatisfiable
CLTLoc Formula differs from Formula (26]), whose size is O(|¢|K), only
because it also includes constraints for subformulae 6 of the form C,(y). For
each 0 of this form, the size and the number of clocks of m(C,, (7)) polynomially
depend on parameters ¢y and n., which are O(n). In particular, the size of
m(Cn (7)) is O(n*) because of Formula (28). In fact, formulae upf)’il(j ~) are
O(n?) as they include formulae 22 ~ d ([27), which are O(n?). Therefore, the size
of Formula, depends linearly on |¢| K +n* which is exponential in the size of
the binary encoding of K and of n. Its satisfiability is then in EXPSPACE when
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considering a binary encoding. It is nonetheless in PSPACE by considering the
unary encoding of both constants of temporal modalities and indexes of the
counting modalities, which is consistent with the PSPACE complexity (with a
unary encoding of the indexes) of QTL augmented with counting modalities
[31].

A simple generalization of the counting operators is a counting modality
C’ () in which v occurs at least n times in the interval (0,b), instead of only
(0,1). Tt is easy to see that our translation m(C,(y)) can be adapted to this
case simply by changing bounds 1 in formulae — to b. Hence, our trans-
lation shows that also the satisfiability of MITL+Past augmented with counting
modalities C};L(W) is PSPACE-complete when considering a unary encoding of
constants and indexes.

8. Implementation & Experimental Results

A decision procedure for CLTLoc [21] is implemented in a plugin, called
ae?zot, of our Zot toolkit [32], whereas all the reductions outlined in the paper
are implemented in the qtlsolver tool, available from [22]. The tool translates
MITL+Past into CLTLoc, which can be checked for satisfiability by ae?zot.

We carried out some experiments (available from the qtlsolver website
[22]), on a desktop computer with a 2.8GHz AMD PhenomTMII processor and
8GB RAM; the solver was Microsoft Z3 3.2.

Table[4]shows a few examples of formulae, together with a short explanation.
The abbreviation Gi(¢) = ¢ A G (0,00)(¢) enforces that ¢ holds also in the
current instant. Table [5| shows the result (SAT or UNSAT), the bound and the
approximate time taken by translation and solving.

Ref. Formula Comment
b1 P A Go,100)7P A G'(p = F(0,200)P) p occurs in isolated points
AG"(G(0,100)~P = G(100,200) D) with period 100, starting at 0.
b2 G (0,00) (p = Fo,1nq Vv P<0,1)q) q must hold within 1 time unit
before or after each p.
b3 G (0,00) (q = G(O,wO)ﬁq) q occurs at isolated points,
at least 100 time units apart.
Pa G (0,00) (q = G(Oyl()o]“q) Like ¢3, but strictly aperiodic.
P G0,0) (F(0,000q » (g — C3q)) q occurs infinitely often; when it
holds, 3 2 or more occurrences
in the adjacent interval of length 2.
P2 G (0,00) (q — F(Oyl)q) property not necessarily holding for 1
3 G (0,00 (F(o,oo) (q A F(O’Dq)) property holding for i1

Table 4: Examples of formulae (where C2 is defined at the end of Section .
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Formula Result | Bound Time
o1 SAT 10 10 seconds
d1 A P2 SAT 10 40 seconds
D1 A P2 A ¢3 SAT 20 10 minutes
$1 A P2 A @3

with periodic constraint on p, ¢ SAT 20 15 minutes
D1 A P2 A Pa SAT 30 80 minutes
¢1 A P2 A ¢4

with periodic constraint on p,q || UNSAT 30 12 hours
Y1 SAT 25 24 seconds
1 A = SAT 25 50 seconds
1 A T3 UNSAT 25 57 minutes

Table 5: Experimental Results

Note that, even if the constants appearing in Formula ¢, are in the order
of the hundreds, a bound of 10 positions is enough for qtlsolver to satisfy ¢,
since events in the corresponding models occur only sparsely.

Our tool allows one to add constraints also at the CLTLoc or at the SMT
levels. For example, in the experiments, we added SMT constraints imposing
that the values of the clocks (instead of the clock regions) associated with propo-
sitions p and ¢ be periodic; this allowed us to check that formula ¢; A ¢ A @3
admits periodic models, while ¢1 A ¢2 A ¢4 does not (i.e., it is unsatisfiable with
the periodic constraint, at least with bound 30).

Counting modalities, in the general version Cfl (7), were tested over speci-
fication v, checking also a property o that does not necessarily hold and a
property 13 that does instead hold.

9. Conclusions

We presented a satisfiability-preserving translation from continuous-time
metric temporal logics over signals to CLTLoc. In particular, we considered
MITL, MITLg, o and their extensions with past and counting modalities. As
CLTLoc is naturally defined over a pointwise semantics (i.e., on timed words),
the translation assumes that signals are finitely variable and leverage on the fun-
damental property for which all temporal modalities of MITL, and MITLg o,
may only finitely vary in time. This allows representing the real line as an
infinite sequence of intervals and, then, capturing the semantics of MITL and
MITLg o formulae through CLTLoc. The encoding has been implemented in
a prototype tool [22]. Preliminary experiments are promising, as the tool was
able to solve formulae representing significant temporal behaviors. To the best
of our knowledge, our approach is the first allowing an effective implementa-
tion of a fully automated verification tool for continuous-time metric temporal
logics. Verification of formulae requiring many clocks may be infeasible, since
satisfiability of MITL is EXPSPACE-complete. However, in practice a large
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number of clocks is not very frequent, and several examples of MITL formulae
could be verified.

The techniques presented in this paper for MITL can be tailored also to
other logics. We consider an example here. In [33], MITLg o, was shown to be
equivalent to another temporal logic, called Event-Clock Logic (ECL), which is
in PSPACE. Although our work only concerns MITL and MITLg o, our results
can directly be applied for solving the satisfiability of ECL as well, by means
of the above equivalence of the languages. However, an explicit, possibly more
efficient, encoding of ECL into CLTLoc may be devised, since only a finite
number of explicit clocks are known to be enough to capture ECL semantics.
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Appendix A. Encoding of 6 = P4 3)(7)

By Lemma [5 singularities s§ cannot occur in signals for formulae of the
form 0 = P, (7).

By Lemma[7] the distance between a change point where “f becomes true”
(possibly in the origin, or with a down singularity) and a change point where “0
becomes false” for formulae 6 = P, ) () cannot be less than b—a, so Corollary
holds also for P, ;). As for the case F(4y), this property will be exploited
below to define the translation of the P, ;) operator.

In case of subformulae of the form § = P(,;)(y) we introduce, similarly
for formulae of the form 6 = F(,;)(7), in addition to clocks 29,z of Section
d=2 [ﬁ] auziliary clocks {xg}ogjgd_l, which are used to store the time
elapsed since the occurrence of change points for v that cause 6 to change value
(hence, not all change points regarding + are taken into account) and the current
time instant ¢. Note that in the case of P, ;) auxiliary clocks {x}}; are reset
not when # has a change point, but when ~ has a change point that leads, later
on, to a change point of 6.

The behavior of the auxiliary clocks is defined by the following formulae.

Each reset z}) = 0 entails that the current instant is the origin, or one of
ex,efly,sfiy, s% occurs, but only in a situation where, a or b instants later, 6
changes value (Formula ) More precisely, there are three cases in which
one of the auxiliary clocks is reset:

1. In the origin.

2. When v becomes true at tx, and it was false throughout (¢ — b, tx). This
corresponds to the clock that is not reset in k being > b—a, or to v always
being false from the origin O until & (second disjunt of the left hand side

of Formula )

3. When v becomes false at i, and it stays false until at least ¢; + (b — a).
This corresponds to there not being a ti» where v become true such that
ti < tr + (b — a), which in turn corresponds to there not being &' > k

where the clock Z?Y that is reset at k has value < b — a and } holds (third
disjunct of the left hand side of Formula (A.1})).

0] v

A (\/ 2= (b—a) v (23>0)S(On Z)) v d-1

i—0

1
. . vy .
5 /\\/ z;—O/\ﬁX(zf/ > 00U Az, <b—a)>)
i=0

(A1)
Each change point of v that leads to a change in the value of 6 is marked by

42



a single reset x}, = 0 (Formula (A.2))).

—1 d-1
(/\ /\ ﬁ(xé:()/\xg=0)> (A.2)

i=0 j=0,i%]

The occurrence of resets for clocks xé is circularly ordered and the sequence of

resets starts from the origin by z9. If i = 0, then, from the next position,
(i+1) mod d

all the other clocks are strictly greater than 0 until the next x, =0
occurs.
d—1 ‘ ‘
/\ l‘é —0=X (xéhLl) mod d _ O)R /\ (xéjJrl) mod d > 0)
i=0 Jjelo,d—1], j#i
(A.3)

Formula xg = 0, evaluated at position 0, sets the first reset of the sequence,

constrained by formulae —.

Define formula pauxcky as (z§) = 0) A G ((AD) A ~ (A3)).

The next formulae capture the semantics of the P, ;) modality. For the
sake of simplicity, the translation only considers the case a > 0. Because of
Lemma an up-singularity ILy can never occur for § = P, (7). In addition,
P (41)(7) is false in the origin, no matter 7. Then, as for P g )(7), Formula
holds in every instant.

Formula defines that ¢ has a rising edge in t; if, and only if, there is
an auxiliary clock z that has value a in k, the last time 7, was reset v became
true — which entails, by Formula , that v is false throughout (¢ — b, tx, —a)
— and there is no t; = tx — b where v becomes false. Note that, if there were
tir = txr — b where v becomes false, then 6 in t; would not have a rising edge,
but a down-singularity.

d—1 d—1
T < \/l'é:a/\<x§>08(} /\xé:O))/\ﬁ\/xé:b/\<x§>OS(ll AxézO))
j i=0

7=0

(A.4)

Formula is similar, but for the falling edge. More precisely, ¢ has a
falling edge in t; if, and only if, either ¢; is the origin, or there is a clock z
whose value is b in k, the last time rvg was reset v became false — which entails,
by Formula 7 that + is false throughout (¢; — b,t; — a) — and there is no
ty =t —a where v becomes true. Note that, if there were ty = t;, —a where
becomes true, then 6 in t;, would not have a falling edge, but a down-singularity.
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d—1
\/xé=bA(mg>OS(&Axg=0))

7=0
Tle= |O v A (A.5)
d—1 _ 5 _
- \/a:le—aA(x19>OS(_TAxé—O)>
1=0

Formula (A.6) essentially combines the conditions of Formulae (A.4]) and
(A.5), and states that € in ¢; has a down-singularity if, and only if, v becomes
false in t; — b, it becomes true in t; — a, and it stays false in (¢t — b, — a).

a-1 d—1

. , - ‘ A ‘ .

Tgc)\/mé:aA(w§>OS(_TAx§=O))/\\/xgzb/\(:ri;>OS(ll/\x§=0))
j=0 i=0

(A.6)

Constraint is similar to Formulae and , as it guarantees that,
if in t) the conditions are met for 6 to become true (possibly with a down-
singularity) at t; + a, then there is a corresponding k' such that t; = t; + a
where one of the auxiliary clocks associated with 6 has value a, and where the
right hand side of Formula or the right hand side of Formula hold,
thus forcing 9 or 1Ty to hold in %'

d—
jTA (\1/23, >(b—a)v z?, > 0S(OA ’Y)) = \/1 (Jcé =0A X(:cg > OUmé = a))
L A

o (A7)

Formula plays a similar role as Formula , but for the case where
in tx + b 0 becomes false, possibly with a down-singularity. Hence, it forces a
k' such that ;. = t; + b to exist in the CLTLoc interpretation, where the right
hand side of Formula or the right hand side of Formula hold, thus
forcing Ly or Uy to hold in k’.

i
zy = 0A

d—1
Lwi\z/o ﬂx<z§>0U<}AZ;<b_a)> :>j\:/0(x§:0/\X(x§>0Ux§:b))

(A.8)

Then, m(6) is (14) ~ (A4) A (A5) A (A6) ~ (A7) A (AF).
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