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Abstract

We present a satisfiability-preserving reduction from MITL interpreted over
finitely-variable continuous behaviors to Constraint LTL over clocks, a variant
of CLTL that is decidable, and for which an SMT-based bounded satisfiability
checker is available. The result is a new complete and effective decision pro-
cedure for MITL. Although decision procedures for MITL already exist, the
automata-based techniques they employ appear to be very difficult to realize in
practice, and, to the best of our knowledge, no implementation currently exists
for them. A prototype tool for MITL based on the encoding presented here has,
instead, been implemented and is publicly available.

1. Introduction

Computer systems are inherently discrete-time objects, but their application
to real-time control and monitoring often requires to deal with external asyn-
chronous events that may not always happen at integer-valued times. Hence, a
discrete-time assumption requires to approximate continuous time by choosing
some fixed minimal interval, thus limiting the accuracy of modeling, verification
and validation of such systems. To overcome this restriction, many continuous-
time models have been developed, most notably Timed Automata [4], a dense-
time operational model based on finite-state machines, but also descriptive
models such as the continuous-time temporal logics MTL (Metric Temporal
Logic) [5, 6] and MITL (Metric Interval Temporal Logic) [6]. In general, the
role of temporal logics in verification and validation is two-fold. First, temporal
logic allows abstract, concise and convenient expression of required properties of
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a system. Linear Temporal Logic (LTL) is often used with this goal in the verifi-
cation of finite-state models, e.g., in model checking [7]. Second, temporal logic
allows a descriptive approach to specification and modeling (see, e.g., [8, 9]). A
descriptive model is based on axioms, written in some (temporal) logic, defining
a system by means of its general properties, rather than by an operational model
based on some kind of machine (e.g., a Timed Automaton) behaving in the de-
sired way. In this case, verification typically consists of satisfiability checking
of the conjunction of the model and of the (negation of) its desired properties.
An example of the latter approach is Bounded Satisfiability Checking (BSC)
[10], where MTL specifications and properties on discrete time are translated
into Boolean logic, in an approach similar to Bounded Model Checking of LTL
properties of finite-state machines.

In general, verification of continuous-time temporal logics is not as well sup-
ported as for discrete-time. Uppaal [11] is the de-facto standard tool for verifi-
cation of Timed Automata, but its query language, a simplification of TCTL,
falls short of being a full continuous-time temporal logics: not only satisfiabil-
ity checking is not available in Uppaal, but even the formalization of general
system properties in temporal logic may not be possible, aside from invariants,
reachability and simple liveness and safety properties. Rather, non-trivial prop-
erties to be verified on an operational model must be expressed as other Timed
Automata, i.e., at a lower level of abstraction. The main technique for the
translation of MITL formulae into Timed Automata was first proposed in [6],
with a more recent solution in [12]. Alternatively, in [13] it is shown that any
formula of MITL can be translated into a formula of Event-Clock Logic (ECL)
whose satisfiability is decidable. All these works deal with with the continuous
semantics of MITL, based on finitely variable signals. A signal (also called a
timed state sequence) is a mapping associating nonnegative real numbers with
states. Finite variability is a very common requirement for continuous-time sys-
tems, ruling out only pathological behaviors (e.g., Zeno [9]) which do not have
much practical interest.

However, to the best of our knowledge, neither proposal has been imple-
mented, raising some doubts over the possibility of their actual application.
Both [12] and [6] leverage on a fundamental property of MITL, namely that
“Future” formulae Fxa,by may only finitely vary over any interval of length b´a.
Hence, the delay between change points of Future can be measured by a finite
set of clocks, whose cardinality depends on the constants a, b. Recent works
by [14, 15] propose an automata-based approach to MITL by a translation into
alternating timed automata, which could allow for efficient implementations in
the case of the less general pointwise semantics (i.e., when interpreting formulae
over timed words rather than over signals).

Rather than going through a translation into Timed Automata, in this paper
we propose a new logic-based approach, which still exploits the previous prop-
erty of the finite number of clocks for Future (and Until) formulae. Our work
also assumes the continuous semantics of MITL over finitely-variable models.
Our technique is based on generalizing BSC to MITL, by reducing satisfiability
of MITL to satisfiability of Constraint LTL over clocks (CLTLoc), a decidable
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M, t |ù pô p PMptq p P AP

M, t |ù  φôM, t ­|ù φ

M, t |ù φ^ ψ ôM, t |ù φ and M, t |ù ψ

M, t |ù φUIψ ô Dt1 ą t, t1 ´ t P I, M, t1 |ù ψ and @t2 P pt, t1q M, t2 |ù φ

Table 1: Semantics of MTL.

variant of CLTL [16]. CLTLoc allows explicit clocks that, similarly to clocks
of Timed Automata, can be compared with integer constants and reset to 0.
In particular, an MITL formula is encoded into an equisatisfiable CLTLoc for-
mula, which can be solved through the same techniques presented in [17, 18, 19].
The approach in generalizes BSC to CLTL, generating an encoding suitable for
verification with standard Satisfiability Modulo Theories (SMT) solvers such as
Z3 [20]. In [21], we show the decidability of CLTLoc and the modifications to
the the procedure for CLTL of [19] to deal with clocks and time progress. An
open-source prototype tool [22] implements our technique of BSC for MITL.

The paper is organized as follows. Section 2 defines MITL and its relevant
variants, and Section 3 defines CLTLoc. Sections 4, 5, 6 and 7 define reductions
from MITL and its variants to CLTLoc. Section 8 presents some experimental
results with the prototype tool implementing the encodings, which shows the
feasibility in practice of our approach. Section 9 concludes.

2. MTL, MITL, MITL0,8, past operators and counting modalities

Let R denote the set of real numbers, Rą0 the set of positive reals and R`
the set of nonnegative reals. An interval I is a convex subset of R` of the form
xa, by or xa,8q, where a ď b are nonnegative integers, symbol x is either p or r
and symbol y is either q or s.

Let AP be a finite set of atomic propositions. The syntax of (well-formed)
formulae of MTL is defined by the grammar, with p P AP :

φ :“ p | φ^ φ |  φ | φUIφ

The globally GI and eventually FI modalities can be defined as usual: FIpφq “
JUIφ and GIpφq “  FIp φq.

The semantics of MTL is defined in Table 1 with respect to a signal and
a real number. A signal is a function M : R` Ñ ℘pAP q, that throughout
the paper is assumed to be finitely variable (f.v. for short), i.e., such that in
every bounded interval there is a finite number of changes in the value of atomic
propositions in AP . An MTL formula φ is (f.v.) satisfiable if there exists a (f.v.)
signal M such that M, 0 |ù φ (in this case, M is called a model of φ). Note that
the semantics of Table 1 uses the “strict” version of the until operator, hence
the values of φ and ψ in the current instant do not influence the truth of φUIψ.
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Hence, the modalities Ur0,by and Ur0,8q are equivalent, respectively, to Up0,by

and to Up0,8q, for all b ě 0. To include also the current instant, we can define
φUi

Iψ as an abbreviation for φ^ φUIψ.
We denote with MITL [6] the syntactic fragment of MTL such that the

intervals of the form xa, by, with a, b P N, are such that b ą a. We denote
with MITL0,8 [6] the syntactic fragment of MITL such that the only allowed
intervals have the form xa,8q, for a ě 0, or the form p0, by, for b ą 0. Therefore,
in MITL0,8 bounded intervals with nonzero left end points are prohibited.

MITL can be extended with the “since” SI past modality [23], obtaining the
language MITL+Past. The definition of SI is symmetric to UI :

M, t |ù φSIψ ô Dt1 ă t, t´ t1 P I, M, t1 |ù ψ and M, t2 |ù φ @t2 P pt1, tq

The historically HI and eventually in the past PI operators can be defined
symmetrically to their corresponding future modalities:

PIpφq “ JSIφ and HIpφq “  PIp φq.
The relations among various logics are recalled in the following proposition,

assuming, as everywhere in this paper, the continuous semantics (i.e., signals):

Proposition 1.

1. MITL is as expressive as MITL0,8 [13], but it is exponentially more suc-
cinct.

2. MITL+Past is strictly more expressive than MITL [24, 25].

3. Satisfiability is EXPSPACE-complete for MITL [6] when constants are
encoded in binary, and it is PSPACE when the constants are encoded in
unary; it is PSPACE-complete for MITL0,8 [6], also in the case of the
binary encoding of constants.

2.1. Normal forms

Define two MTL formulae φ, ψ to be equivalent, written φ ” ψ, if for every
signal M , for every instant t ě 0, we have M, t |ù φ if, and only if, M, t |ù ψ.
As in [12, 26], it is convenient to introduce a normal form, where Up0,8q and
FI (and their past counterparts) are the only temporal modalities, and consider
the “metric” until UI as derived.

By Lemma 4.1.1.2 of [6], for every MITL formula φ there exists an equivalent
MITL formula φ1 that uses only the temporal modalities Up0,8q, Fp0,by, with
b ą 0, and Uxa,by, with 0 ă a ă b. Also, the number of distinct syntactic
subformulae of φ1 is linearly related to the size of φ, defined as the number
of propositions, Boolean connectives and temporal modalities occurring in φ.
A symmetrical result clearly holds also for past modalities in an MITL+Past
formula. This property, together with the following well-known lemma, makes
it possible to confine metric issues only to the operators FI and PI , with I
bounded, whose translation into CLTLoc is much simpler than the general case
of UI and SI .
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Lemma 1. For all 0 ă a ă b, the following equivalences hold for all MTL
formulae φ, ψ:

p1q φUra,byψ ” Gp0,aq

´

φUi
p0,8qψ

¯

^Gp0,as

´

ψ _ φUi
p0,8qψ

¯

^ Fpa,bypψq

p2q φUpa,byψ ” Gp0,as

´

φUi
p0,8qψ

¯

^ Fpa,bypψq

Symmetrical results hold for Sxa,by.

The following corollary of Lemma 1 allows for the elimination of Uxa,by in
favor of Up0,8q and Fp0,by (and similarly for Sxa,by).

Corollary 1.
(1) For every MITL0,8 formula φ there exists an equivalent MITL0,8 formula
φ1 that uses only the temporal modalities Up0,8q and Fp0,by, for b ą 0.
(2) For every MITL+Past formula ψ there exists an equivalent MITL+Past
formula ψ1 that uses only the temporal modalities Up0,8q, Fxa,by, Sp0,8q, Pxa,by,
for 0 ď a ă b.
The number of distinct syntactic subformulae of φ1 and ψ1 are linearly related
to the size of φ and ψ, respectively.

By the proof of Lemma 38 of [27], an MITL+Past formula Fpa,bqpφq may be
replaced by a sequence of a alternations of Fp0,1qGp0,1q in front of Fp0,b´aqpφq;
more precisely, it is equivalent to the formula Fp0,1qGp0,1q . . .Fp0,1qGp0,1qFp0,b´aqpφq.
An analogous result holds for Ppa,bq. Moreover, by the same proof in [27], all
temporal modalities in MITL+Past may be assumed to consider only open
intervals of the form pa, bq or p0, bq. For instance, Fp0,bspφq is equivalent to

Fp0,bqpφq _
`

p φUp0,8qφq ^Gp0,1qFp0,bqpφq
˘

. In fact, either φ occurs in the in-
terval p0, bq, hence Fp0,bqpφq holds, or φ does not occur in p0, bq, but it must
occur exactly in b. In the latter case, since formula  φUp0,8qφ captures the
fact that φ becomes true in a left-closed manner, then Fp0,bqpφq and  φUp0,8qφ
hold for 1 time unit, therefore Gp0,1qpφq holds at the current position.

Therefore, if we call MITL0,8+Past the fragment of MITL+Past where the
only allowed temporal modalities are Up0,8q, Sp0,8q, Fp0,bq and Pp0,bq, for b ą 0,
the following result holds:

Proposition 2. For every MITL+Past formula ψ there exists an equivalent
MITL0,8+Past formula ψ1. The size of ψ1 is linear in the size of φ and in
the unary encoding of the the maximum constant K occurring in φ, but it is
exponential in the binary encoding of K.

2.2. Counting modalities

Pnueli conjectured that logics such as MITL are unable to express naturally-
occurring constraints, such as “Event θ1 will occur, followed by event θ2, both
within the next time unit”. This has led [28] to define a new “Pnueli modality”
Pn: for every natural number n ą 0, the modality Pnpθ1, . . . , θnq holds at time
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t if there exists an increasing sequence of time instants t ă t1 ă t2 ă ¨ ¨ ¨ ă

tn ă t ` 1 such that θi holds at ti, for all 1 ď i ď n. The Pnueli modalities
were introduced for a syntactic fragment of MITL+Past, namely Quantified
Temporal Logic (QTL for short) [29], where only Up0,8q,Sp0,8q, Fp0,1q and Pp0,1q
are allowed, but which is as expressive as MITL+Past. Embedding Pnueli
modalities into QTL induces a hierarchy with respect to n. In fact, given n ą
0, all modalities Ph, with 0 ă h ă n, can be expressed in terms of Pn as
Phpθ1, . . . , θhq “ Pnpθ1, . . . , θh, true, . . . , trueq by simply considering true as
a formula. The hierarchy is strict, since QTL (hence also MITL+Past and
MITL0,8) augmented with the Pn modality is strictly more expressive than
QTL with the modality Pn´1 only (Theorem 7 of [28]). A simpler “counting”
modality Cn, also introduced in [28], is defined as Cnpθq “ Pnpθ, . . . , θq, i.e., θ
must hold in at least n time instants in the open unit interval ahead. For every
n ě 1, the semantics of counting modality Cn is:

M, t |ù Cnpφq ô Dt1 . . . Dtn : t ă t1 ă ¨ ¨ ¨ ă tn ă t` 1 and M, tk |ù φ @k P t1, . . . , nu.

Each Cn modality is strictly more powerful than the Cn´1 modality; moreover,
QTL extended with every counting modality is as expressive as QTL extended
with every Pnueli modality [30]. Satisfiability of QTL with counting modalities
is PSPACE-complete when each index n in a modality Cn is encoded in unary,
although it is EXPSPACE-complete if n is encoded in binary [31].

In the transformation into CLTLoc defined in this paper, we will also con-
sider a language called MITL+Past with counting, which is the logic MITL+Past
extended with counting modalities.

3. Constraint LTL over clocks

Constraint LTL (CLTL [16, 18]) is an extension of LTL allowing atomic
formulae over a constraint system D “ pD,Rq, where D is a specific domain of
interpretation for a finite set of variables V and for constants, and R is a finite
family of relations on D (of various arities). CLTLoc is a special case of CLTL,
where the domain D is R`, the set R of relations is tă,“u and the variables in
V are interpreted as clocks.

Let AP be a finite set of atomic propositions. Well-formed CLTLoc formulae
are defined as follows:

φ :“ p | α „ α | φ^ φ |  φ | Xpφq | Ypφq | φUφ | φSφ

where p P AP , symbol „ stands for ă or “, α is a constant c P N or a clock
x P V , and X, Y, U and S are the usual “next”, “previous”, “until” and “since”
operators of LTL. Boolean operators _,J,K,ñ can be introduced as usual; the
“globally” G, “eventually” F, “release” R, and “trigger” T operators may be
defined as in LTL, i.e., φRψ is  p φU ψq, φTψ is  p φS ψq, Gφ is KRφ
and Fφ is JUφ.

The semantics of CLTLoc is defined with respect to the constraint system
pR,ă,“q and the strict linear order pN,ăq representing positions in time. The
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valuation of clocks is defined by a mapping σ : NˆV Ñ R`, assigning, for every
position i P N, a real value σpi, xq to each clock x P V . Intuitively, a clock x
measures the time elapsed since the last time when x “ 0, i.e., the last “reset”
of x. To ensure that time progresses at the same rate for every clock, σ must
satisfy the following condition: for every position i P N, there exists a “time
delay” δi ą 0 such that for every clock x P V :

σpi` 1, xq “

#

σpi, xq ` δi, progress

0 reset x.

In this case, σ is called a clock assignment. In order to compare CLTLoc with
MITL, in this paper we always assume that a clock assignment is such that
ř

iPN δi “ 8 (i.e., time is always progressing).
An interpretation of CLTLoc is a pair pπ, σq, where σ is a clock assignment

and π : N Ñ ℘pAP q is a mapping associating a set of propositions πpiq with
each position i in N. The semantics of CLTLoc at a position i P N over an
interpretation pπ, σq is defined in Table 2, where we assume that σpi, cq “ c
whenever c is a constant. A formula φ P CLTLoc is satisfiable if there exists an

pπ, σq, i |ù pô p P πpiq for p P AP

pπ, σq, i |ù α1 „ α2 ô pσpi, α1q „ σpi, α2qq

pπ, σq, i |ù  φô pπ, σq, i ­|ù φ

pπ, σq, i |ù φ^ ψ ô pπ, σq, i |ù φ and pπ, σq, i |ù ψ

pπ, σq, i |ù Xpφq ô pπ, σq, i` 1 |ù φ

pπ, σq, i |ù Ypφq ô pπ, σq, i´ 1 |ù φ^ i ą 0

pπ, σq, i |ù φUψ ô D j ě i : pπ, σq, j |ù ψ ^ @ i ď n ă j pπ, σq, n |ù φ

pπ, σq, i |ù φSψ ô D 0 ď j ď i : pπ, σq, j |ù ψ ^ @ j ă n ď i pπ, σq, n |ù φ

Table 2: Semantics of CLTLoc.

interpretation pπ, σq such that pπ, σq, 0 |ù φ. In this case, we say that pπ, σq is
a model of φ and we write simply pπ, σq |ù φ.

By definition, the initial value σp0, xq of a clock x may be any non-negative
value, but if needed any clock x may be initialized to 0 just by adding a con-
straint of the form x “ 0. It is often convenient to assume that at every position
there is at least one clock which is not reset. If this is the case, just add a new
clock Now, which is never reset, except possibly at position 0. Hence, the time
delay δi may uniquely be defined in each position i as σpi`1,Nowq´σpi,Nowq.

An example. Consider a simple channel, that receives an in event at one end and
delivers it as an out event at the other end, with a variable delay of 3 to 5 time
units. It is assumed that no other in event may occur until the corresponding
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out event has been issued. Let AP “ tin, outu, V “ txu. The conjunction of
the following formulae, within a G operator, specifies the system:

inñ px “ 0^Xppx ą 0^ out^ inqUpout^ 3 ď x ď 5qqq

outñ Yp out S inq

When an in arrives, clock x is set to 0; we require that both no out and no
in occur and also that the clock is not reset again until an out occurs; out can
occur only at a position where the clock is between 3 and 5. To ensure that no
spurious out without a corresponding in is generated, we also require that an
occurrence of out is preceded by an occurrence of in that was not followed by a
different occurrence of out.

4. Reducing finitely variable signals to CLTLoc interpretations

In this section, a formula φ is in general a formula of MITL+Past with
counting. We denote with subpφq the set of all subformulae of φ.

Let M be a signal and let θ P subpφq. We say that “θ becomes true”, denoted
euθ , at instant t ě 0 of signal M when θ holds right after t, but not before it, or
t is the origin:

Dε ą 0,@t1 P pt, t` εq : M, t1 |ù θ and

t “ 0 or Dε1 ą 0,@t1 P pt´ ε1, tq : M, t1 |ù  θ.

The opposite one “θ becomes false”, denoted as edθ , is simply the definition
above with  θ instead of θ.

Formula θ has an “up-singularity” suθ for signal M at instant t (in words, “θ
becomes true in a singular manner”) if the following holds:

t ą 0, M, t |ù θ and Dε ą 0 s.t. @t1 ‰ t P pt´ ε, t` εq : M, t1 |ù  θ.

Formula θ has a “down-singularity” sdθ (in words, “θ becomes false in a singular
manner”) at instant t for signal M if the formula above holds with  θ instead
of θ. By definition, singularities do not occur in the origin.

If one of euθ , e
d
θ , s

u
θ , s

d
θ holds for M at t, we say that θ changes in M at t.

A change point in a signal M for a formula φ is a time instant t such that
there exists a subformula θ P subpφq which changes in M at t.

When dealing with finitely variable signals, the following proposition is im-
mediate:

Proposition 3. For all f.v. signals M , the set of change points in M for φ is
countable. Moreover, if the set is infinite, then it is also unbounded.

Henceforth, also in the statements of lemmata and theorems, all signals are
always assumed to be finitely variable.

Reducing MITL+Past with counting modalities to CLTLoc requires to rep-
resent continuous-time signals by CLTLoc models where positions in time are
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Figure 1: Example of a signal and a corresponding CLTLoc model (clocks not shown).

discrete. Positions in CLTLoc models represent change points and truth values
of MITL formulae, while CLTLoc variables, behaving as clocks, measure the
time progress between two consecutive change points. Every position in a CLT-
Loc model captures the “configuration” (the truth value of all the subformulae
of φ) of one of the intervals in which the continuous-time signal is partitioned
by the change points of φ. All the change points occurring in the signal are
captured by the associated CLTLoc model and the value of a formula is stable
between its change points (i.e., it does not vary). Figure 1 shows an example
of a signal and a corresponding CLTLoc model. Our reduction thus defines the
semantics of all subformulae occurring in φ by suitable CLTLoc formulae.

We now explain how to represent the value of MITL formulae and their
change points on a signal through a CLTLoc model. For each subformula θ of φ

we introduce two CLTLoc atomic propositions, qθ and
�

θ , called first and rest,
to represent the value of θ in, respectively, the first instant and the rest of an
interval rt, t1q such that there are no change points in pt, t1q. We also introduce
two clocks, z0θ and z1θ , with the intended meaning to measure the time elapsed
since the last two change points of θ.

In Table 3, we introduce some abbreviations, through combinations of the

basic predicates qξ and
�

ξ , with the goal of representing various conditions on
the values of an MITL+Past formula ξ. In particular, the CLTLoc formulae
 ξ, !ξ, "ξ and #ξ are intended to represent, respectively, euξ , edξ , s

u
ξ and sdξ .

Notice that at position 0, both Yp
�

ξ q and Yp 
�

ξ q are false, no matter ξ, and

elsewhere  Yp 
�

ξ q ” Yp
�

ξ q, Therefore, at position 0  ξ holds if, and only if,
�

ξ holds in 0, while "ξ can never hold at 0; similarly for !ξ and #ξ. The
other shorthands may informally be explained as follows. Formula O is true

only in the origin. Formula
ξè

denotes that formula ξ has become true, possibly
in a singular manner, or that the current position is the origin and ξ is true;

symmetrically for
ξ

ê. Formula
ξ
é (resp.

ξ
ë) holds if ξ holds (resp. does not

hold) in an interval starting from the current position. Also, formula
r

ξ (resp.
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 ξ “  Yp
�

ξ q^
�

ξ "ξ “ Yp 
�

ξ q^ qξ ^ 
�

ξ

!ξ “  Yp 
�

ξ q ^  
�

ξ #ξ “ Yp
�

ξ q ^  qξ ^
�

ξ
O “  YpJq
ξè

“  ξ _"ξ _ pO^ qξq
ξ
é “  ξ _#ξ

ξ

ê “ !ξ _#ξ _ pO ^ qξq
ξ
ë “ !ξ _"ξ

r

ξ “qξ ^
�

ξ ξ
r

“  qξ ^ 
�

ξ

Table 3: CLTLoc shorthands used in the encoding.

ξ
r

) holds if ξ is true (resp. false) throughout the current interval, including the

current position.
We need also recall some preliminary results, whose trivial proofs are omit-

ted. The following two lemmata characterize the change points of Up0,`8q and
Sp0,`8q formulae. When the value of formula Up0,`8q (resp. Sp0,`8q) changes
on a signal M , the signal only varies in a left-closed (resp. left-open) manner
because the formula holds in t if, and only if, it holds over a non-empty inter-
val including t. This also guarantees that no singularity can occur for these
formulae.

Lemma 2. If θ “ γUp0,`8qψ and M is a signal, then for all t P R` there is
ε P Rą0 such that M, t |ù θ if, and only if, M, t1 |ù θ for all t1 P pt, t` εs.

Lemma 3. If θ “ γSp0,`8qψ and M is a signal, then, for all t P R` there is
ε P Rą0 such that M, t |ù θ if, and only if, M, t1 |ù θ for all t1 P rt´ ε, tq.

Note that, in t “ 0, γSp0,`8qψ is false, and, for any ε P Rą0, r´ε, 0q is
not an interval of R`, so the lemma is trivially true. Singularities su cannot
occur in signals associated with formulae Fpa,bqpγq or Cnpγq. In fact, the next
Lemma 4 states that Fpa,bqpγq or Cnpγq holds in t if, and only if, it holds over
two nonempty left and right intervals including t.

Lemma 4. Let θ be Fpa,bqpγq (with 0 ď a ă b) or Cnpγq. If M, t |ù θ then there
is ε P Rą0 such that, for all t1 P rt, t ` εs we have M, t1 |ù θ and, when t ą 0,
there is also ε P Rą0 such that ε ă t and for all t1 P rt´ ε, ts we have M, t1 |ù θ.

A similar result can be given also for formulae Ppa,bqpγq.

Lemma 5. Let θ be Ppa,bqpγq (with 0 ď a ă b). If θ holds for a signal M in
an instant t (i.e., M, t |ù θ), then there is ε P Rą0 such that M, t1 |ù θ for all
t1 P rt´ ε, t` εs.

Finally, the following result from [12] shows that formulae of the form Fpa,bqpγq
have inherent bounded variability.
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Lemma 6 ([12]). Let θ be Fpa,bqpγq, let M be a signal and let 0 ă t1 ă t2 be

two instants such that M, t1 |ù euθ and M, t2 |ù edθ _ s
d
θ. Then, t2 ´ t1 ě b´ a.

By Lemma 6, the distance between a change point where “θ becomes true”
outside the origin and one where “θ becomes false” (possibly in a singular man-
ner) for formulae θ “ Fpa,bqpγq cannot be less than b´a. However, this property
does not hold when euθ occurs at t “ 0 and γ becomes false before b. For in-
stance, let M,a |ù p and M,a ` ε |ù edp, where ε ą 0 is such that a ` ε ă b;
assume for simplicity that p remains false, i.e., for all t P ra` ε,`8q, M, t ­|ù p.
Then, if θ “ Fpa,bqppq we have that M, 0 |ù euθ and M, ε |ù edθ . This property will
be exploited below to define the translation of the F operator. It is fundamental
in our construction, because it allows us to introduce a finite number of clocks
that measure time elapsing between change points.

A property analogous to Lemma 6 holds for Ppa,bq.

Lemma 7. Let θ be Ppa,bqpγq (with 0 ă a ă b), M be a signal and 0 ă t1 ă t2
two instants such that M, t1 |ù euθ _ s

d
θ and M, t2 |ù edθ. Then, t2 ´ t1 ě b´ a.

Corollary 2. Let θ be Fpa,bqpγq or Ppa,bqpγq, with a ě 0, b ą 0, and let t be an
instant of time. If M is a signal such that M, t |ù θ, then, in rt, t` bs there are

at most d “ 2
Q

b
b´a

U

change points in M .

We have a similar result for operator Cn.

Lemma 8. Let θ “ Cnpγq, let t be an instant of time and M be a signal.
Then, in interval rt, t` 1s of M there are at most 2n change points.

Proof. Let t be an instant where euθ holds. Then, either there are exactly n
singularities suγ in pt, t` 1s, including one in t` 1, or γ becomes true in t` 1 in
a non-singular manner. In the latter case, θ is true throughout pt, t` 1s. In the
former case, θ can become false only at each singularity, and become true again
in between two of them, hence there can only be 2n change points. Similar
reasoning holds in the other cases, when edθ , s

d
θ or none of them hold in t.

5. Reducing MITL0,8 to CLTLoc

We define the translation from MITL0,8 to CLTLoc, preserving the sat-
isfiability over finitely variable signals. First, Section 5.1 introduces a set of
general formulae, for every subformula θ of φ, defining constraints to guaran-
tee that clock resets occur at suitable points. Then, in Section 5.2, we provide
the operator-specific CLTLoc formulae that capture the semantics of MITL0,8

connectives and temporal operators.

5.1. General Constraints on Clocks

This section describes the behavior of clocks in relation to change points. In
general, clocks in CLTLoc are very similar to clocks of Timed Automata, but
with one difference: a clock in CLTLoc is a variable, hence it cannot be reset
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and tested at the same time. Therefore, if we need to test a clock x against a
positive constant and then to start a new time measure, we may introduce a
pair of clocks, x0, x1 instead of one clock x, which are alternatively reset and
tested. For instance, x0 is reset at a position; at a later position x0 is tested
while at the same position x1 may be reset; at a later position, x1 is tested and
x0 is reset, and then later x0 is tested and x1 is reset, etc.

To represent the semantics of the temporal modality θ “ Fp0,bqpγq, we intro-
duce two pairs of clocks, z0θ , z1θ and z0γ , z1γ . Each pair of clocks is alternatively
reset, with the technique described above. By Corollary 2, θ may vary at most
once in any interval of length b: if θ becomes true at t then γ must become true
at t ` b and, over the interval pt, t ` bq, θ does not change its value anymore.
Clocks z0θ and z1θ are used to measure the time elapsing between two consecutive
change points of θ. Hence, if ziθ (i “ 0 or i “ 1) is reset in a position corre-
sponding to time t, then there exists a position (corresponding to time t ` b)
where ziθ “ b and also γ becomes true. Clocks z0γ and z1γ are used to measure
the time elapsing between two consecutive change points of γ: a change point
of γ may influence the truth value of θ only if the previous change point of γ
occurred more than b time units earlier.

For all θ P subpφq, such that θ is Fp0,bq or it occurs as argument of Fp0,bq the
following CLTLoc formula holds at position 0, simply stating that clock z0θ is
reset at 0 (while z1θ can have any value):

z0θ “ 0. (1)

The other formulae of this section must hold at each position; for simplicity, the
globally operator G is inserted explicitly only at the end of the section.

Whenever subformula θ changes its value (it becomes true or false, possibly
in a singular way), one of its associated clocks z0θ and z1θ is reset:

θè

_
θ

ê ô z0θ “ 0_ z1θ “ 0. (2)

The clocks associated with θ are alternatively reset, i.e., between any two resets
of clock z0θ there must be a reset of clock z1θ , and vice-versa:

ľ

iPt0,1u

pziθ “ 0q ñ X
´

pz
pi`1q mod 2
θ “ 0qRpziθ ‰ 0q

¯

. (3)

In the following, ckθ denotes the formula (1)^Gp(2)^ (3)q.

5.2. Semantics of MITL0,8 temporal modalities

This section presents the definition of mpθq, the translation of every sub-
formula θ of an MITL0,8 formula into a suitable CLTLoc formula encoding its
semantics. Essentially, mpθq describes how θ becomes true and false depending
on the value of its own subformulae.

The translation considers every possible case for θ, i.e., when θ has one of
the forms  ψ, γ^ψ, γUp0,8qψ,Fp0,bqpγq. The case of intervals of the form p0, bs
is omitted for brevity.
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Case θ “  ψ. The predicates for θ are the opposite ones of ψ:

mpθq “ pqθô  qψq ^ p
�

θô  
�

ψq. (4)

Case θ “ γ ^ ψ. The semantics of θ is the conjunction of the predicates for γ
and ψ:

mpθq “ pqθôqγ ^ qψq ^ p
�

θô
�
γ ^

�

ψq (5)

Case θ “ γUp0,8qψ. U formulae cannot have singularities, as this would violate
Lemma 2. This means that when a U formula changes its value, it must do so
in a left-closed manner (i.e., the value at the change point is the same as the
one after the change point). Then, we have (6) below.

mpθq “

ˆ

qθô
�

θ

˙

^

ˆ

�

θô
�
γ ^

ˆ

�

ψ _X

ˆ

r
γU

ˆ

p
r
γ ^

�

ψq_ qψ

˙˙˙˙

(6)

In particular, the second conjunct of Formula (6) states that θ holds in an
interval if, and only if, either both ψ and γ hold in it, or there is a future
interval in which ψ holds (either throughout the interval, or in its first instant),
and γ holds throughout all intervals (including their first instants) in between.

Case θ “ Fp0,bqpγq. By Lemma 4, an up-singularity "θ can never occur for a
formula of the form Fp0,bqpγq. Also, if θ holds at the beginning of an interval
(i.e., qθ holds), then it must hold also in the rest of the interval and, if t ą 0,
it must also hold in the interval before. Then, the following constraint holds in
every position:

qθñ
�

θ ^pYp
�

θq _Oq (7)

Formula (8) states that, when θ becomes true with a rising edge  θ, in an

instant other than the origin, a clock zjθ is reset, and
γè

will eventually be true

exactly after time b from the reset of clock zjθ ; if θ becomes true in the origin,
then either it does so in a left-closed manner, and γ becomes true before clock
z0θ becomes b, or it becomes true in a left-open manner, and γ becomes true
exactly after time b.

 θ ô

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

O ^

¨

˚

˚

˚

˚

˝

qθ ^ pO _ z
0
θ ą 0qU

ˆ

γè

^0 ă z0θ ă b _
�
γ ^O

˙

_

 qθ ^ X

¨

˝z0θ ą 0 U

¨

˝

γè

^z0θ “ b^
ł

iPt0,1u

ziγ ě b

˛

‚

˛

‚

˛

‹

‹

‹

‹

‚

_

 O ^ qθ ^
ł

jPt0,1u

¨

˝zjθ “ 0^X

¨

˝zjθ ą 0 U

¨

˝

γè

^zjθ “ b^
ł

iPt0,1u

ziγ ą b

˛

‚

˛

‚

˛

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(8)
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zj
✓ = bzj

✓ = 0

z0
� = 0

z1
� > b

z1
� = 0

… …    θ

zj
✓ < b

0 < zj
✓

zj
✓ < b

γγ

0 < zj
✓

γ γθ

M

(π,σ)

(a)

θ

z0
✓ < bz0

✓ = 0

…    θ

z0
✓ < b

0 < z0
✓

γ

M

(π,σ)

γθ

(b)

Figure 2: Examples of conditions for rising edges for θ “ Fp0,bqpγq at t ą 0 (a) and t “ 0 (b).

Fig. 2 shows a graphical depiction of a pair of conditions for having a rising
edge in an instant t, and in particular one for the case t ą 0 and one for the case
t “ 0. More precisely, Fig. 2(a) shows a situation in which the second disjunct
of the right-hand side of Formula (8) holds: one of the clocks associated with
θ, say zjθ , is reset at position k ą 0 of the CLTLoc interpretation corresponding
to instant t, and when this clock takes value b (without having been reset in
the meantime) γ becomes true, hence one of its ziγ clocks (z0γ in the example
depicted) is also reset there, and the other one, which is not reset, has value
ą b; this, in turn, entails that the last time that γ became false was before t,
hence at t formula θ has a rising edge. Similarly, Fig. 2(b) depicts a case in
which the first condition of the right-hand side of Formula (8) holds: t is the
origin (hence z0θ is reset there) and there is an instant before z0θ takes value b in
which γ becomes true. In this case θ holds in the origin, too, so qθ is true there.

Formula (9) below states that, if γ becomes true at a time t ě b (i.e., when
clock Now introduced in Section 3 has value ě b), and γ was false in the interval
of length b preceding t, at t one of the clocks associated with θ has value b, since
Fp0,bqpγq started holding b time units before time t. The formula is necessary
to make sure that, if γ becomes true (and it was false for the last b time units,
hence θ must have also become true b time units before), the right hand side of
Formula (8) holds when θ becomes true, forcing  θ to hold there.

¨

˝Now ě b^
γè

^
ł

iPt0,1u

ziγ ě b

˛

‚ñ
ł

jPt0,1u

zjθ “ b (9)

When θ becomes false, hence γ becomes false and a clock ziγ is reset, it is
either with a falling edge (!θ) or in a singular manner (#θ). In the former
case, Formula (10), then γ cannot become true again as long as the clock that

is reset with
γ
ë is not greater than b. In the latter case, Formula (11), γ must

become true again exactly when the clock that is reset with
γ
ë is equal to b.

!θ ô
γ
ë ^ X

¨

˝

γ

­

è

U

¨

˝

γè

^
ł

iPt0,1u

0 ă ziγ ď b

˛

‚

˛

‚ (10)
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#θ ô  O^
γ
ë ^X

¨

˝

γ

­

è

U

¨

˝

γè

^
ł

iPt0,1u

ziγ “ b

˛

‚

˛

‚ (11)

Then, for θ “ Fp0,bqpγq, mpθq is (7)^ (8)^ (9)^ (10)^ (11).

Finally, MITL0,8 formula φ is satisfiable if, and only if, it holds in the first
instant of the interval starting at 0, i.e., initφ “qφ. Then, for an MITL0,8

formula φ, the corresponding CLTLoc formula is:

initφ ^
ľ

θPsubpφq

pckθ ^G pmpθqqq . (12)

The next section shows the correctness of the translation.

5.3. Correctness and complexity of the reduction

To complete the results of this section, we need to show that an MITL0,8

formula φ is satisfiable if, and only if, there exists a pair pπ, σq that satisfies
Formula (12).

First of all, we define a correspondence between MITL0,8 signals and CLT-
Loc interpretations. Given a finitely variable signal M and a finite set F of
MITL0,8 formulae, we define function rF pMq which associates with M the set
of corresponding CLTLoc interpretations, where each formula of F is considered
as an atomic proposition, thus disregarding its subformulae.

Definition 1. Let M be a finitely variable signal, I Ă N be a nonempty finite set
and F “ tθiuiPI be a finite set of MITL0,8 formulae. Let pπF , σF q be a CLTLoc

interpretation such that πF : N Ñ ℘ptqθi ,
�

θiuiPIq and σθ : N ˆ tz0θi , z
1
θi
uiPI Y

tNowu Ñ R`, where Now is the clock defined in Section 3. In the following
we call tk the timestamp corresponding to position k P N in pπF , σF q, i.e.,
tk “ σF pk,Nowq, and we call T the set of timestamps, i.e., T “ ttkukPN Ă R`.

We have that pπF , σF q P rF pMq if the following conditions hold.

1. If t is a change point in M for some θi P F , then t P T , i.e., there is k P N
such that t “ tk “ σF pk,Nowq.

In addition, for all θi P F :

2. If M, tk |ù θi, then qθiP πF pkq, otherwise qθiR πF pkq.

3. If for all t1 P ptk, tk`1q it holds that M, t1 |ù θ, then
�

θiP πF pkq, otherwise
�

θiR πF pkq.

4. If tk P T is a change point for θi, then either σF pk, z
0
θi
q “ 0 or σF pk, z

1
θi
q “

0.

5. σF p0, z
0
θi
q “ 0.

6. After 0, the clocks associated with θi are reset modulo 2, i.e., if σF pk, z
j
θi
q “

0, and σF pk
1, zjθiq “ 0, where j P t0, 1u and k1 ą k, then there is a

k ă j1 ă k1 s.t. σF pj
1, z
pj`1q mod 2
θi

q “ 0.
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Note that, in Definition 1, sequence T is well-defined, as by Proposition 3
the set of change points in M for each θi P F is countable. In addition, if
�

θiR πF pkq, then for all t1 P ptk, tk`1q it holds that M, t1 ­|ù θi since, by condition
1 in Definition 1, there cannot be a change point in ptk, tk`1q.

It is easy to see that the following holds.

Proposition 4. Let M be a finitely variable signal and F a finite set of MITL0,8

formulae. If pπF , σF q P rF pMq, then for all k P N and θ P F we have that
M, tk |ù euθ if, and only if, pπF , σF q, k |ù  θ. Similarly for edθ, suθ , sdθ and the
corresponding !θ, "θ, #θ.

It is clear from Proposition 4 that if in tk P T there are no change points
for θ P F , then none of t θ,!θ,"θ,#θu holds at position k in pπF , σF q (so
�

θP πF pk ´ 1q if, and only if, qθ,
�

θP πF pkq).
Note that, for any signal M , rF pMq contains more than one CLTLoc in-

terpretation; for example, given a signal in which AP “ tpu and p is always
true, rtpupMq contains both an interpretation in which tk “ k and one in which
tk “ 2k, and so on.

Not all CLTLoc interpretations pπF , σF q represent MITL0,8 signals. For
example, for an interpretation pπtp,Fp0,1qpu, σtp,Fp0,1qpuq in which, for all k P N,

qpP πpkq and
�
pP πpkq, but qFp0,1qpR πpkq and

�

Fp0,1qpR πpkq there is no sig-
nal M such that pπtp,Fp0,1qpu, σtp,Fp0,1qpuq P rtp,Fp0,1qpupMq. We indicate by

r´1
F ppπF , σF qq the – possibly empty – set of signals such that for each M in

the set we have pπF , σF q P rF pMq.
The following result shows that formulae ckθ impose that the clocks associ-

ated with each θ P F are reset in a way that respects mapping rF .

Lemma 9. Let M be a signal and F be a finite set of MITL0,8 formulae. For
all interpretations pπF , σF q P rF pMq we have pπF , σF q, 0 |ù

Ź

θPF ckθ.

Proof. The lemma is a consequence of the definition of the map rF pMq and of
the sequence of change points occurring in M for each θ P F .

In fact, by definition of rF pMq, when a change point for some θ P F occurs
in M , one of the two clocks z0θ , z

1
θ is reset. Note also that by Proposition 4 if

M, tk |ù euθ_s
u
θ then pπF , σF q, k |ù

θè

, and if M, tk |ù edθ_s
d
θ then pπF , σF q, k |ù

θ

ê,
hence, we have Formula (2). Moreover, resets are defined circularly modulo 2,
i.e., if pπF , σF q, k |ù ziθ “ 0 then

• either no reset of ziθ occurs after k (i.e., @k1 ą k: pπF , σF q, k
1 |ù ziθ ‰ 0),

• or there exists a position k1 ą k such that pπF , σF q, k
1 |ù ziθ “ 0, and there

is k ă j ă k1 pπF , σF q, j |ù z
pi`1q mod 2
θ “ 0.

Then, we have pπF , σF q, k ` 1 |ù pz
pi`1q mod 2
θ “ 0qRpziθ ‰ 0q, so Formula (3)

holds.
Finally, by condition 5 of Definition 1, z0θ is reset in the origin, so we have

Formula (1).
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Given a formula φ, each pπ, σq P rsubpφqpMq partitions R` in intervals
trtk, tk`1qukPN and, for each of them, it captures the value that each subfor-
mula of φ has in M there. Dually, if M P r´1

subpφqppπ, σqq, then M is a signal

such that, for each t P R` and for each subformula θ of φ, the value of θ at t in
M is captured by pπ, σq. We have the following result.

Lemma 10. Let M be a signal, and φ be an MITL0,8 formula. For all pπ, σq P
rsubpφqpMq we have pπ, σq, 0 |ù

Ź

θPsubpφq ckθ and for all k P N, θ P subpφq we

have pπ, σq, k |ù mpθq. Conversely, if pπ, σq, 0 |ù
Ź

θPsubpφq ckθ^G pmpθqq, then

there is a signal M such that pπ, σq P rsubpφqpMq.

Proof. The proof is split into two parts. More precisely, we show that:

1. for all pπ, σq P rsubpφqpMq we have pπ, σq, 0 |ù
Ź

θPsubpφq ckθ and for all

k P N, θ P subpφq we have pπ, σq, k |ù mpθq.

2. if pπ, σq, 0 |ù
Ź

θPsubpφq ckθ ^Gpmpθqq, then there is M P r´1
subpφqppπ, σqq.

Part 1.
The fact that pπ, σq, 0 |ù

Ź

θPsubpφq ckθ is a direct application of Lemma 9.
The rest of the proof is by case analysis on the kinds of subformulae that

can appear in φ. Suppose tk P T . The case of θ P AP , for which no constraint
mpθq is defined, is trivial.

The rest of the cases is listed below.

Cases θ “  γ and θ “ γ ^ ψ. These cases are a straightforward consequence
of conditions 1 and 2 of Definition 1.

Case θ “ γUp0,8qψ. The first conjunct of Formula (6) holds in tk by conditions
1 and 2 of Definition 1 and Lemma 2. The second conjunct is also a consequence
of conditions 1-2 of Definition 1: for θ to hold in tk, either both γ and ψ

hold throughout ptk, tk`1q (i.e., pπ, σq, k |ù
�
γ ^

�

ψ), or there is a future interval
ptk1 , tk1`1q, with tk1 ą tk such that:

• either M, tk1 |ù ψ and γ holds throughout ptk, tk1q

• or for all t1 P ptk1 , tk1`1q we have M, t1 |ù ψ and γ holds throughout
ptk, tk1`1q (hence including the whole interval ptk1 , tk1`1q).

By definition of rsubpφqpMq, in the first case pπ, σq, k |ù
�
γ ^Xp

r
γUqψq holds. In

the second case
�
γ ^Xp

r
γUp

r
γ ^

�

ψqq holds. All in all, Formula (6) holds in k.

Case θ “ Fp0,bqpγq. By Lemma 4, we have that in this case θ cannot become
true in a singular manner, so suθ never holds in M . Also, by the same lemma
we have that if θ holds in tk, it must also hold in ptk´1, tkq (if it exists, i.e., if

tk ‰ 0) and in ptk, tk`1q, so qθñ
�

θ ^pYp
�

θq _ Oq holds in k. In addition, when
θ switches value in a non-singular manner, the way it changes (left-open or left-
closed) is always the same for falling edges (in which case it is left-closed), and
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for rising edges the only instant in which it is undetermined is the origin (in all
other instants it is left-open). Hence, we have to consider only three cases: θ
becomes true in tk (i.e., M, tk |ù euθ ); θ becomes false in tk (i.e., M, tk |ù edθ); θ is
false in tk in a singular manner (i.e., M, tk |ù sdθ). We consider them separately.

Subcase eu
θ . Suppose euθ holds in tk. We separate the cases tk ą 0 and tk “ 0.

If tk ą 0, for θ to become true in tk, it must be that γ holds at tk ` b, or
there is ε ą 0 such that γ holds throughout the interval ptk ` b, tk ` b` εq and
it does not hold throughout the interval rtk ´ ε, tk ` bq, for some ε ą 0. Hence,
in tk ` b γ either euγ holds, or suγ does, so by definition of rsubpθqpMq there is

tk1 “ tk ` b and we have pπ, σq, k1 |ù  γ _"γ , which is
γè

. In addition, one of
the clocks associated with θ must be equal to b in k1. Since in tk1 γ has a change
point, by definition of rsubpθqpMq one of z0γ , z

1
γ is reset in k1; the other clock in

k1 must be ą b, since in rtk, tk ` bq there are no change points for γ. Then, one
of the clocks associated with θ is reset in k, and since θ stays true throughout
the interval tk, tk ` b, none of them is reset between k and k1, so the clock that
is reset in k has value ą 0 throughout pk, k1q, and it has value b in k1. Finally,
by Lemma 4, we have M, tk ­|ù θ, so we also have pπ, σq, k |ù  qθ.

Hence,  O^ qθ and also zjθ “ 0^Xpzjθ ą 0 Up
γè

^zjθ “ b^
Ž

iPt0,1u z
i
γ ą bqq

holds in k for some j P t0, 1u.
If tk “ 0, we have two cases. The case when γ becomes true at time b, but

it is false throughout p0, bq, is very similar to the one for tk ą 0 (except that
the clock that is reset in tk is z0θ , and that γ must have a falling edge in 0). If,
instead, γ is true for some 0 ă t ă b , then θ in 0 becomes true in a left-closed
manner (i.e., qθ holds in 0). For γ to be true sometime in p0, bq, it must be that
either it has a rising edge in 0 (i.e., M, tk |ù euγ , so it holds in an interval p0, εq
for some ε ą 0), or there is a 0 ă tk1 ă b in which γ becomes true, i.e., we have

M, tk1 |ù euγ _ suγ . Then, by definition of rsubpθqpMq we have pπ, σq, k1 |ù
γè

. As
θ stays true throughout r0, tk1q, clock z0θ , which by definition of rsubpθqpMq is
reset in 0, is positive throughout interval p0, tk1q, and it is still ă b in tk1 . Then,

the formula qθ ^pO _ z
0
θ ą 0qUp

γè

^0 ă z0θ ă b _
�
γ ^Oq holds in the origin.

All in all, Formula (8) holds at position k.
If instead M, tk ­|ù euθ , then if tk ą 0 no clock associated with θ is reset in

k; if, instead, tk “ 0, then γ remains false throughout p0, bs. In both cases the
right hand side of Formula (8) does not hold, so Formula (8) does, since, by
definition of rsubpθqpMq we have pπ, σq, k ­|ù  θ.

Finally, Formula (9) holds in all k P N, since if the antecedent holds in k,
then in tk ´ b, which is ě 0 because Now ě 0 in k, θ becomes true, so there is
k1 such that tk1 “ tk ´ b where one of the clocks zjθ is reset, and zjθ “ b in k.

Subcase ed
θ . Suppose θ has a falling edge in tk. In this case it must be that

if tk ‰ 0, γ holds in tk or throughout the interval ptk ´ ε, tkq for some ε ą 0,
and it does not become true throughout interval ptk, tk` bs. Note that γ cannot
become true in tk` b either, or θ is true right after tk, whereas we are assuming
that in tk it has a falling edge. Then, we have M, tk |ù edγ _ s

u
γ , so by definition
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of rsubpθqpMq we have pπ, σq, k |ù
γ
ë. Also, since γ has a change point in tk,

one of z0γ , z
1
γ is reset in k and, for γ not to become true in ptk, tk ` bs by

definition of rsubpθqpMq the next time after tk that either euγ or suγ occurs the
clock that is reset at k cannot still be less than or equal to b. Then, we have

that pπ, σq, k |ù  Xp
γ

­

è

Up
γè

^
Ž

iPt0,1u 0 ă ziγ ď bqq, and Formula (10) holds at
position k.

If θ does not have a falling edge in tk (i.e., M, tk ­|ù edθ), then either γ does
not become false in tk, or, if it does, it becomes true anew in ptk, tk ` bs. In all
these cases, the right hand side of Formula (10) does not hold in k, so Formula
(10) does, as pπ, σq, k ­|ù !θ by definition of rsubpφqpMq.

Subcase sdθ . Suppose θ has a down-singularity in tk. In this case it must be
that tk ‰ 0 (i.e.,  O holds in k) and (i) γ holds in tk or throughout the interval
ptk´ε, tkq for some ε ą 0; (ii) at tk`b either euγ or suγ occur; and (iii) throughout
interval ptk, tk` bq there are no change points where γ becomes true . This case
is similar to Subcase ed

θ , except that we require γ to become true in tk ` b, i.e.,
when the clock related to γ that is reset at k takes value b. Hence, we have that

pπ, σq, k |ù
γ
ë ^Xp

γ

­

è

Up
γè

^
Ž

iPt0,1u z
i
γ “ bqq, and Formula (11) holds at position

k.
If θ does not have a down-singularity in tk (i.e., M, tk ­|ù sdθ), then one can

show, as for case Subcase ed
θ , that the right hand side of Formula (11) does not

hold at k, so the whole formula does.

Part 2.
Let us consider pπ, σq such that pπ, σq, 0 |ù

Ź

θPsubpφq ckθ ^Gpmpθqq. Since, as

mentioned in Section 3, time is progressing in pπ, σq, for all t P R` there is k P N
such that t P rtk, tk`1q (we recall that tk “ σpk,Nowq).

To show that there exists M P r´1
subpφqppπ, σqq we first describe how M is

obtained, then we show that, for each t P R`, where t P rtk, tk`1q, and for
each θ P subpφq, M, t |ù θ, if, and only if, either t “ tk and pπ, σq, k |ùqθ, or

t P ptk, tk`1q and pπ, σq, k |ù
�

θ .
To define M , we impose that, for each p P AP and t P R`, where t P

rtk, tk`1q, p P Mptq if, and only if, either t “ tk and qpP πpkq, or t P ptk, tk`1q

and
�
pP πpkq.

The rest of the proof is carried out by induction on the structure of φ.
The base case is given by θ P AP , for which the result holds by construction.
The cases θ “  γ, θ “ γ ^ ψ are straightforward.
The case for θ “ γUp0,8qψ is also easily shown, when one considers that,

because of Lemma 2, for t P rtk, tk`1q we have that M, t, |ù θ if, and only if,
M, tk |ù θ.

Finally, we consider the case θ “ Fp0,bqpγq.
To achieve the desired goal, we show that θ in M has a change point if,

and only if, the corresponding propositions hold in pπ, σq. More precisely, we
show that, for all t P R`, M, t |ù euθ if, and only if, there is tk “ t such that
pπ, σq |ù  θ, and similarly for edθ , s

d
θ (by Lemma 4 suθ never occurs).
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We sketch the first case, the others are similar.
We first show that, if t is such that there is tk “ t and  θ P πpkq, then

M, t |ù euθ . In this case, the right hand side of Formula (8) holds in k. Let

us consider the case k ą 0 (i.e., pπ, σq, k ­|ù O). This entails that a clock zjθ is

reset at k, and there is k1 ą k such that pπ, σq, k1 |ù
γè

^zjθ “ b, and γ stays
false throughout rk, k1q, because in k1 the clock of γ that is not reset is ą b.
Then, tk1 “ tk ` b, and by inductive hypothesis M, tk1 |ù euγ _ suγ and for all
t1 P rtk, tk ` bq we have M, t1 ­|ù γ; hence, there is ε ą 0 such that in ptk ´ ε, tkq
θ does not hold, but it holds in ptk, tk ` εq. Hence, M, tk |ù euθ . The case k “ 0
is similar.

Suppose there is no k P N such that t “ tk or, if such k exists, then θ R πpkq.
Suppose t ą 0. We show that it cannot be that M, t |ù euθ . In fact, suppose
M, t |ù euθ ; then γ becomes true in t ` b, and it is false in rt, t ` bq; hence,
by inductive hypothesis there is k1 such that tk1 “ t ` b and the antecedent of
Formula (9) holds in k1. As a consequence, one of the clocks zjθ has value b in

tk1 , so there is k P N where σpk, zjθq “ 0 and σpk,Nowq “ tk1 ´ b “ t, so it is not
true that there is no k P N such that t “ tk. Then, t “ tk for some k, and the
second disjunct in the right hand side of Formula (8) holds in k, and so does
the whole formula on the right hand side, thus contradicting the assumption
 θ R πpkq.
If, instead, t “ 0, then t “ t0; if M, t0 |ù euθ , then the first disjunct of the right
hand side of Formula (8) would hold, which again would entail a contradiction
with the assumption  θ R πp0q.

Finally, from Lemma 10 the following theorem descends by observing that
signal M is model for φ if, and only if, M, 0 |ù φ, which means that qφ holds in
0.

Theorem 1. An MITL0,8 formula φ is f.v. satisfiable if, and only if, For-
mula (12) is satisfiable.

Consider an MITL0,8 formula φ. The translation provided in this section

introduces, for each θ P subpφq, 2 atomic propositions qθ,
�

θ and 2 variables
z0θ , z

1
θ . The size of every CLTLoc formula mpθq does not depend on |θ|, but only

(when θ has the form Fp0,bqpγq) on the binary encoding of constant b. Hence,
the size of Formula (12) linearly depends on the size of φ. [21] shows that
satisfiability for a CLTLoc formula is PSPACE in the number of subformulae
and in the size of the binary encoding of the maximum constant occurring in
it. Then our translation preserves the PSPACE complexity of the satisfiability
of MITL0,8.

6. Reduction of MITL+Past to CLTLoc

We first extend the encoding of Section 5.3 to deal with MITL0,8+Past,
by including also subformulae with past modalities of the forms: γSp0,8qψ and
Pp0,bqpγq. By Proposition 2, this also gives an encoding for the full MITL+Past.
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Figure 3: An example of falling edge for θ “ Pp0,bqpγq.

However, we then show also a direct encoding of MITL+Past, without resorting
to an intermediate translation into MITL0,8+Past.

Case θ “ γSp0,`8qψ. S formulae cannot have singularity points, as they would
violate Lemma 3. In addition, when an S formula changes its value after the
origin, it must do so in a left-open manner (i.e., the value at the change point is
the same as the one before the change point). In the origin, instead, θ is false.
Then, we have

mpθq “

ˆ

qθô Yp
�

θq

˙

^

ˆ

�

θô
r
γ Sppqψ _

�

ψq^
�
γq

˙

. (13)

Case θ “ Pp0,bqpγq. Note that Pp0,bqpγq is false in t “ 0, no matter γ. As for
F formulae, Lemma 5 implies that "θ can never occur for θ. In addition, by
Lemma 5, if θ holds in the first instant of an interval t (i.e., qθ), it must also
hold in the intervals before and after t. Then, the following constraint holds:

qθñ
�

θ ^Y

ˆ

�

θ

˙

. (14)

Formula (15) states that for θ to become true with a rising edge in t, γ must
also become true (possibly in a singular manner). This is sufficient if t “ 0. If
t ą 0, there are two cases: either γ was never true before t (so it was false in
the origin and it stayed so), or the last change point of γ before t was before
t´ b, so the clock associated with γ that is not reset in t is greater than b.

 θ ô
γè

^

¨

˝O _Y

ˆ

γ

­

è

S pO^ γ
r
q

˙

_
ł

iPt0,1u

ziγ ą b

˛

‚ (15)

Formula (16) states that θ has a falling edge in t if, and only if, either t “ 0
and there is ε such that γ is false in r0, εq, or the last time γ became true was at
t´b (and it continues being false also after t). This corresponds to the condition
(depicted in Fig. 3) that there is ziγ that is equal to b in t, and the last time γ

had a change point it was ziγ “ 0 and γ became false. γ cannot become true
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in t, or θ would not have a falling edge; if γ becomes true in t, then θ has a
down-singularity, as specified by Formula (17).

!θ ô
ł

iPt0,1u

ˆ

ziγ “ b^

ˆ

γ

­

è

S

ˆ

γ
ë ^ziγ “ 0^ pO^ γ

r
q

˙˙˙

_ pO^ γ
r
q (16)

#θ ô
γè

^
ł

iPt0,1u

ˆ

ziγ “ b^Y

ˆ

γ

­

è

S

ˆ

γ
ë ^ziγ “ 0^ pO^ γ

r
q

˙˙˙

(17)

Finally, we introduce the analogous of Formula (9) for the eventuality in the
past. More precisely, following Formula (18) specifies that if γ becomes false
and there are no change points for γ for at least b time units, the CLTLoc model
includes a position in which the clock that is reset with the falling edge of γ hits
value b. Formula (18) is necessary to make sure that, if γ becomes false (and
it does not become true again for b time units, hence θ must also become false
after b), eventually the right hand side of Formulae (16) and (17) holds.

ľ

iPt0,1u

ˆ

γ
ë ^ziγ “ 0^ pO^ γ

r
q ñ X

ˆ

ziγ ą 0 U

ˆ

ziγ “ b_ p
γè

^0 ă ziγ ă bq

˙˙˙

.

(18)
Then, for θ “ Pp0,bqpγq, define mpθq as (14)^ (15)^ (16)^ (17)^ (18).
Given an MITL0,8+Past formula φ and the translation mpθq as extended in

this section, the corresponding CLTLoc formula is still (12).

Correctness and complexity of the translation of the new modalities

Lemma 11. Lemma 10 holds also when mpθq is extended to subformulae θ of
the form γSp0,8qψ and Pp0,bqpγq.

Proof. The proof follows the same structure as the one for Lemma 10, since the
statement is just an extension. It is hence enough to prove the result for the
kinds of subformulae considered in this section.

Part 1.
Suppose tk P T . We analyze the different types of subformulae introduced, and
we show that for all pπ, σq P rsubpφqpMq and for all k P N, φ P subpφq we have
pπ, σq, k |ù mpφq.

Case θ “ γSp0,8qψ. The case for formulae for the form γSp0,8qψ is similar to
the one for γUp0,8qψ, so we do not detail it for brevity.
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Case θ “ Pp0,bqpγq. By Lemma 5, in this case θ cannot become true in a
singular manner, so suθ never occurs. Also by Lemma 5, we have that if θ holds
in tk, it must also hold in ptk´1, tkq (which must exist) and in ptk, tk`1q, so

qθñ
�

θ ^Yp
�

θq holds in k. In addition, when θ changes value in a non-singular
manner, the way it changes (left-open or left-closed) is always the same (left-
open for a rising edge, and left-closed for a falling one). Hence, there are only
three cases: θ becomes true in tk (i.e., M, tk |ù euθ ); θ becomes false in tk (i.e.,
M, tk |ù edθ); θ is false in tk in a singular manner (i.e., M, tk |ù sdθ). We consider
them separately.

Subcase eu
θ . Suppose θ has a rising edge in tk. In this case, it must be that

γ holds either in tk or in an interval ptk, tk ` εq, for some ε ą 0, and it does
not hold throughout ptk ´ b, tkq, or tk “ 0. Then, it must be that M, tk |ù euγ ,

or M, tk |ù suγ , i.e., pπ, σq, k |ù
γè

. Since tk is a change point for γ, either z0γ or
z1γ is reset at position k, by definition of rsubpθqpMq. Then, the condition that
γ is not true in ptk ´ b, tkq, since it becomes true in tk, corresponds to there
not being change points for γ in rtk ´ b, tkq, i.e., the clock between z0γ and z1γ
that is not reset in k must be greater than b in k. If, however, tk ă b, but γ
has remained false since the origin, the clock that is not reset in tk was reset
in 0, so it is less than b even if γ never became true before. Hence, we have to
consider also the special case in which γ is false throughout r0, tkq; this occurs
if in the origin we have M, 0 |ù edγ ^ γ, and euγ and suγ no dot hold since. This

corresponds to having pπ, σq, k |ù Yp
γ

­

è

SpO^ γ
r
qq. All in all, at position k in

pπ, σq we have that
γè

^pO_Yp
γ

­

è

SpO^ γ
r
qq _

Ž

iPt0,1u z
i
γ ą bq so Formula (15)

holds at k.
If, instead M, tk ­|ù euθ , then none of the conditions above occurs. In par-

ticular, at tk γ either does not become true or there is 0 ă ε ă b such that
γ becomes true in tk ´ ε. In both cases, the right hand side of Formula (15)
does not hold, so Formula (15) does, since, by definition of rsubpθqpMq we have
pπ, σq, k ­|ù  γ .

Subcase ed
θ . Suppose θ has a falling edge in tk. We separate the case tk “ 0

from tk ą 0. In the former case, the falling edge simply corresponds to the fact
that θ starts false, hence also γ starts false; that is, pπ, σq, 0 |ù O^ γ

r
.

In the latter case, it must be that γ holds in tk ´ b, or in an interval ptk ´
1 ´ ε, tk ´ bq, but it does not hold in ptk ´ b, tkq. Then, γ must have a change
point in tk ´ b, so, by definition of rsubpθqpMq, there must be a position k1 with
tk1 “ tk´b where one of z0γ , z

1
γ is reset, and its value at position k is b (it cannot

be reset between k1 and k, as γ does not have change points there, and if γ has
a change point in tk, then the clock that is reset at k is not the one reset at k1).

Either M, tk1 |ù edγ , or M, tk1 |ù suγ holds, i.e., we have pπ, σq, k1 |ù
γ
ë.

Overall, for one of z0γ , z
1
γ we have, at position k in pπ, σq, ziγ “ b^p

γ

­

è

Sp
γ
ë ^ziγ “

0qq so Formula (16) holds at position k.
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If θ does not have a falling edge in tk (i.e., M, tk ­|ù edθ), then either γ does
not become false in tk ´ b, or, if it does, it becomes true anew in rtk ´ b, tkq.
In all these cases, the right hand side of Formula (16) does not hold in k, so
Formula (16) does, as pπ, σq, k ­|ù !θ.

Subcase sdθ . Suppose θ has a down-singularity in tk, hence tk ą 0. then,
γ holds in tk ´ b, or in an interval ptk ´ b ´ ε1, tk ´ bq, and also in tk, or
in an interval ptk, tk ` ε2q, but not in ptk ´ b, tkq. Then, γ must have a
change point (where either edγ or suγ occurs) in tk ´ b (so there must be a
position k1 with tk1 “ tk ´ b), and one (where either euγ or suγ occurs) in tk,
but none in between. Also, one of z0γ , z

1
γ is reset in tk1 and the other is reset

in tk. This is just a combination of the conditions for Subcases eu
θ and ed

θ ,

so
γè

^
Ž

iPt0,1u

ˆ

ziγ “ b^Y

ˆ

γ

­

è

S
´ γ

ë ^ziγ “ 0
¯

˙˙

^  O holds at position k,

hence also Formula (17) holds at k.
If θ does not have a down-singularity in tk (i.e., M, tk ­|ù sdθ), then one can

show, as for Subcase ed
θ , that the right hand side of Formula (17) does not hold

at k, so the whole formula does.

Finally, Formula (18) holds in each k P N since if γ becomes false in tk (hence
γ
ë holds in k), then either it becomes true again before tk ` b, or it does not,
in which case θ becomes false at tk ` b; in the latter case, there is k1 such that
tk1 “ tk ` b, and the clock zjγ that is reset in k has value b in k1. In both cases,
the right hand side of Formula (18) holds.

Part 2.
The proof is similar to the one of Part 2 of Lemma 10. We briefly sketch the
case θ “ Pp0,bqpγq, focusing on change points of the form edθ . More precisely,

we show that, for all t P R`, M, t |ù edθ if, and only if, there is tk “ t such that
pπ, σq |ù !θ.

If tk “ t and !θ P πpkq, the right hand side of Formula (16) holds in k. Let
us focus on the case k ą 0. Then, for some j P t0, 1u, zjγ “ b holds in k, and

there is k1 ă k such that pπ, σq, k1 |ù
γ
ë ^zjγ “ 0, and γ stays false throughout

pk1, k ` εq, for some ε ą 0. Then, tk1 “ tk ´ b, and by inductive hypothesis
M, tk1 |ù edγ _ suγ and for all t1 P ptk ´ b, tk ` εq we have M, t1 ­|ù γ. Hence,

M, tk |ù edθ .
Suppose there is no k P N such that t “ tk or, if such k exists, then!θ R πpkq.

Let us focus on the case t ą 0. Suppose M, t |ù edθ ; then γ becomes false in
t´ b, and it is false throughout pt´ b, t` εq, for some ε ą 0; hence, by inductive
hypothesis there is k1 such that tk1 “ t´ b and the antecedent of Formula (18)
holds in k1. As a consequence, one of the clocks zjγ has value b in tk1 ` b, so

there is k P N where σpk, zjγq “ b and σpk,Nowq “ tk1 ` b “ t, so it is not true
that there is no k P N such that t “ tk. Then, t “ tk for some k, and the first
disjunct in the right hand side of Formula (16) holds in k, and so does the whole
formula on the right hand side, thus contradicting the assumption !θ R πpkq.
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Theorem 2. An MITL0,8 ` Past formula φ is f.v. satisfiable if, and only if,
Formula (12) is satisfiable.

We now show that our reduction of MITL0,8+Past to CLTLoc induces a
PSPACE decision procedure also when the constants are encoded in binary.

In fact, consider an MITL0,8+Past formula φ, and the corresponding equi-
satisfiable CLTLoc Formula (12). As in the case of the translation for MITL0,8,
even with the new modalities the size of Formula (12) linearly depends on the
size of φ and on the binary encoding of constants. Since the satisfiability of a
CLTLoc formula is PSPACE in the number of subformulae and in the binary
encoding of the constants, the decision procedure induced by our encoding is in
PSPACE.

Since, by Proposition 2, an MITL+Past formula may be translated into an
equivalent MITL0,8+Past formula, whose size is however exponential in the
binary encoding of the maximum constant occurring in the formula, it follows:

Corollary 3. The reduction of MITL+Past to CLTLoc induces an EXPSPACE
decision procedure for the f.v. satisfiability problem, when the constants are
encoded in binary, and a PSPACE procedure when the constants are encoded in
unary.

This is in line with the well-known fact that the satisfiability of MITL is
EXPSPACE-complete [6] when the constants are encoded in binary.

6.1. A direct encoding for Fpa,bq

Here we extend the encoding to include also subformulae of the form Fpa,bqpγq.
The case of the form Ppa,bqpγq is similarly defined and can be found in Ap-
pendix A. Although this direct encoding is not necessary for proving equisatisfi-
ability and theoretical complexity results, nonetheless it may be smaller than the
encoding obtained by eliminating Fpa,bqpγq using Proposition 2. For instance,
the elimination applied to formula Fp10,11qpγq actually produces 20 more subfor-
mulae, each one with a pair of clocks and three predicates (with the associated
formulae), so in total 42 clocks and 63 predicates; our direct encoding only deals
with one subformula, adding in total 22 clocks and only three predicates.

The encoding can easily be extended to provide direct support also for in-
tervals of the form ra, bs, pa, bs or ra, bq, but these cases are omitted for brevity.

First of all, we remark that Lemma 4 holds also for formulae of the form
Fpa,bqpγq. As a consequence, change points where suθ holds cannot occur for
these kinds of formulae. In case of subformulae of the form θ “ Fpa,bqpγq we

introduce, in addition to clocks z0θ , z
1
θ of Section 5, d “ 2

Q

b
b´a

U

auxiliary clocks

txjθujPt0,...,d´1u which, by Corollary 2, are enough to store the time elapsed since
the occurrence of change points for θ between the current time instant t and t`b.
Observe that clocks z0θ and z1θ could be removed, since in any discrete position
their value can equivalently be obtained from the value of the last auxiliary clock
that has been reset. However, we still use them to obtain a simpler translation.
The behavior of the auxiliary clocks is defined by the following formulae.
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z0θ “ 0

x0θ “ 0

z1θ “ 0

x1θ “ 0

z0θ “ 0

x2θ “ 0

z1θ “ 0

x3θ “ 0

z0θ “ 0

x0θ “ 0

θ

Figure 4: Sequence of circular resets for a formula Fpa,bqpγq with four auxiliary clocks.

Each reset xiθ “ 0 entails one of euθ , e
d
θ , s

d
θ and each change point is marked

by a single reset xiθ “ 0 (Formula (19)).

˜

 θ_
θ

êô

d´1
ł

i“0

xiθ “ 0

¸

^

˜

d´1
ľ

i“0

d´1
ľ

j“0,i­“j

 pxiθ “ 0^ xjθ “ 0q

¸

(19)

The occurrence of resets for clocks xiθ is circularly ordered and the sequence of
resets starts from the origin by x0θ (see an example in Figure 4). If xiθ “ 0, then,
from the next position, all the other clocks are strictly greater than 0 until the

next x
pi`1q mod d
θ “ 0 occurs.

d´1
ľ

i“0

¨

˝xiθ “ 0 ñ X

¨

˝px
pi`1q mod d
θ “ 0qR

ľ

jPr0,d´1s, j ­“i

px
pj`1q mod d
θ ą 0q

˛

‚

˛

‚ (20)

Formula x0θ “ 0, evaluated at position 0, sets the first reset of the sequence,
constrained by formulae (19)-(20).

Formula px0θ “ 0q ^G pp19q ^ p20qq is denoted as auxckθ.
The next formulae capture the semantics of the Fpa,bq modality. For the sake

of simplicity, the translation only considers the case a ą 0 although a general
translation including the case a “ 0 of Section 5 can be devised. However, deal-
ing with two different translations is simpler and allows one to obtain much more
efficient decision procedures based on a direct translation of the metric modal-
ities that actually occur in a formula. Because of Lemma 4, an up-singularity
"θ can never occur for θ “ Fpa,bqpγq. Then, as for Fp0,bq, Formula (7) holds in
every instant.

Formula (21) is similar to (8); it differs from the latter in that it specifies
that, for θ to have a rising edge, γ must become true after time b, but it only
needs to be false in the b ´ a instants before b, rather than throughout the
interval up to time b.
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Figure 5: Examples of conditions for rising edges for θ “ Fpa,bqpγq at t ą 0 (a) and t “ 0 (b).
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˝

γè

^a ă x0θ ă b _

�
γ ^x0θ ď a^X

`

x0θ ą a
˘

˛

‚_

 qθ ^X

¨

˝x0θ ą 0U

¨

˝

γè

^x0θ “ b^
ł

iPt0,1u

ziγ ě b´ a

˛

‚

˛

‚

˛

‹

‹

‹

‹

‹

‹

‚

_

 O ^ qθ ^
d´1
ł

j“0

¨

˝pxjθ “ 0q ^X

¨

˝xjθ ą 0U

¨

˝

γè

^xjθ “ b^
ł

iPt0,1u

ziγ ą b´ a

˛

‚

˛

‚

˛

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(21)

Fig. 5 shows a pair of examples of conditions in which θ “ Fpa,bqpγq has a
rising edge. Fig. 5(a) depicts a case in which the second disjunct of the right-
hand side of Formula (21) is true. In this case at position k ą 0 of the CLTLoc
interpretation, which corresponds to an instant t ą 0 in the signal, one of the d
auxiliary clocks of θ, say xjθ, is reset and exactly when it takes value b subformula
γ becomes true (hence one of its associated clocks, say z0γ is reset); in addition,
the clock that is not reset when γ becomes true (z1γ in our example) has value
that is greater that b ´ a, which entails that the last time γ became false was
more than b´a instants before, hence θ is false before instant t, and it becomes
true at t. Similarly, Fig. 5(b) depicts a case in which θ becomes true in the
origin (when x0θ is reset by definition), and corresponds to the first condition of
the right-hand side of Formula (21). In the example represented, γ is true in
an interval that starts before (or when) x0θ takes value a, and ends when x0θ is
greater than a; hence, this interval includes an interval pa, a ` εq, so Fpa,bqpγq
has a rising edge in 0, and also it holds in 0 itself (i.e., qθ is true in 0).

Formulae (22)-(25) are similar to (9)-(11).

Now ě b ^
γè

^
ł

iPt0,1u

ziγ ě pb´ aq ñ
d´1
ł

j“0

xjθ “ b (22)

27



!θ ô

¨

˚

˚

˝

O ^  θ _

d´1
ł

j“0

ˆ

xjθ “ 0^X

ˆ

pxjθ ą 0qU

ˆ

γ
ë ^xjθ “ a^ X

ˆ

γ

­

è

U

ˆ

γè

^a ă xjθ ď b

˙̇˙̇˙

˛

‹

‹

‚

(23)

Now ě a ^
γ
ë ^X

¨

˝

γè

R 

¨

˝

γè

^
ľ

i“t0,1u

ziγ ď pb´ aq

˛

‚

˛

‚ñ

d´1
ł

j“0

xjθ “ a (24)

#θ ô  O^
d´1
ł

j“0

ˆ

xjθ “ 0^X

ˆ

pxjθ ą 0qU

ˆ

γ
ë ^xjθ “ a ^X

ˆ

γ

­

è

U

ˆ

γè

^xjθ “ b

˙̇˙̇˙

(25)
Then, mpθq is (7)^ (21)^ (22)^ (23)^ (24)^ (25).
Given an MITL+Past formula φ also with temporal modalities of the form

Fpa,bq, define the corresponding CLTLoc formula as:

initφ ^
ľ

θPsubpφq

pckθ ^G pmpθqqq ^
ľ

θPsubpφq

θ“Fpa,bqpγq

auxckθ. (26)

Proof of correctness of the encoding for θ “ Fpa,bqpγq. To show the correctness
of the translation we first extend mapping rF pMq to include also the auxiliary
clocks, which are introduced in a similar manner as z0θ , z

1
θ . First, for all positions

k ě 0, σF pk, z
0
θq “ 0 or σF pk, z

1
θq “ 0 if, and only if,

Žd´1
j“0 σF pk, x

j
θq “ 0, i.e,

whenever a change point for θ occurs, an auxiliary clock is reset. To avoid

simultaneous resets of different clocks, if xjθ is reset then no xj
1

θ is reset, for

j1 ­“ j. Auxiliary clocks are circularly reset modulo d; i.e., if xjθ is reset at

position k, then the next reset of xjθ, if it exists, occurs in a position k1 ą k such

that all other clocks xj
1

θ (j1 ‰ j) are reset, in order, exactly once in pk, k1q. Note

that, if a clock xjθ is reset at position k, the next position k1 when the clock is
reset must be such that tk1 ą tk ` b, i.e., given a formula θ “ Fpa,bqpγq, every

clock xjθ is reset only once over intervals of length b. The sequence of resets
starts with x0θ “ 0.

The following lemma is the analogous of Lemma 9 for auxckθ (for brevity
we omit its proof, which is similar to the one of Lemma 9).

Lemma 12. Let M be a signal and F be a finite set of MITL+Past formulae.
For all interpretations pπF , σF q P rF pMq we have pπF , σF q, 0 |ù

Ź

θPF
θ“Fpa,bqpγq

auxckθ.

Then, we have the following result, which extends Lemma 10.

Lemma 13. Let M be a signal, and φ be an MITL+Past formula. For any
pπ, σq P rsubpφqpMq we have pπ, σq, 0 |ù

Ź

θPsubpφq ckθ ^
Ź

θPsubpφq

θ“Fpa,bqpγq
auxckθ and
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for all k P N, θ P subpφq we have pπ, σq, k |ù mpθq.
Conversely, if pπ, σq, 0 |ù

Ź

θPsubpφq pckθ ^G pmpθqqq ^
Ź

θPsubpφq

θ“Fpa,bqpγq
auxckθ, then

there is a signal M such that pπ, σq P rsubpφqpMq.

Proof. The proof has the same structure as those of Lemmata 10 and 11. We
focus on the case θ “ Fpa,bqpγq.

Part 1.
Lemmata 9 and 12 guarantee that pπ, σq, 0 |ù

Ź

θPsubpφq ckθ^
Ź

θPsubpφq

θ“Fpa,bqpγq
auxckθ.

Then, suppose tk P T . To deal with Fpa,bqpγq, we need to consider three

cases: M, tk |ù euθ , M, tk |ù edθ and M, tk |ù sdθ . Since they are very similar to
those of case Fp0,bqpγq in Lemma 10, we only briefly sketch them.

Subcase eu
θ . We focus on the case M, tk |ù euθ (the case M, tk ­|ù euθ is analogous

to the one of Lemma 10).
Suppose tk ą 0. For θ to become true in tk, it must be that γ holds at tk ` b,
or there is ε ą 0 such that γ holds in interval ptk ` b, tk ` b` εq and it does not
hold throughout interval ptk ` a, tk ` bq. Hence, the case is similar to the one
for Fp0,bqpγq, with the only difference that we use auxiliary clocks xjθ instead of

zjθ , and the value of zjγ must be ą b´ a instead of ą b.
If tk “ 0, we have two cases. The case where γ becomes true in b, but it is false
throughout pa, bq, is very similar to the one for tk ą 0 (except that the clock
that is reset in tk is z0θ). The other case is when there is a ă t ă b where γ is
true, hence θ in 0 becomes true in a left-closed manner (i.e., qθ holds in 0). For
γ to be true sometimes in pa, bq, there must be a position k1 such that either (i)

a ă tk1 ă b and γ becomes true in tk1 (i.e., pπ, σq, k1 |ù
γè

), or (ii) tk1 ď a ă tk1`1

and γ holds throughout ptk1 , tk1`1q. By the usual arguments, this is captured
by the second part of the first disjunct of Formula (21).
All in all, Formula (21) holds at position k if M, tk |ù euθ .

Also, by similar arguments as those used for Formula (9) in the proof of
Lemma 10, Formula (22) holds at all positions k P N.

Subcase ed
θ . Suppose θ has a falling edge in tk. If tk “ 0, this is equivalent euθ

holding, since singularities cannot happen there, i.e., in k “ 0 we have O^  θ.
Otherwise, it must be that γ holds in tk ` a or in an interval ptk ´ ε` a, tk ` aq
for some ε ą 0, and it does not become true throughout interval ptk ` a, tk ` bs.
Formula γ cannot become true in tk ` b, or θ is true right after tk, whereas we
are assuming that in tk it has a falling edge. Then, we have M, tk`a |ù edγ_s

u
γ ,

so by definition of rsubpθqpMq there is k1 such that tk1 “ tk ` a and we have

pπ, σq, k1 |ù
γ
ë. In addition, one of the xjθ clocks is reset in k, which is not reset

again until after k1, hence xjθ “ a in k1 and the next time γ becomes true again

(i.e.,
γè

holds), xjθ cannot be ď b. Then, Formula (23) holds at k.
If instead M, tk ­|ù edθ , then if tk ą 0 no auxiliary clock associated with θ is

reset in k; if, instead, tk “ 0, then γ is true is p0, εq, for some ε ą 0. In both
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cases the right hand side of Formula (23) does not hold, so Formula (23) does,
since, by definition of rsubpθqpMq we have pπ, σq, k ­|ù !θ.

Similar arguments as those used for Formula (9) in the proof of Lemma 10,
show that Formula (24) holds at all positions k P N.

Subcase sdθ . Suppose θ has a down-singularity in tk. Then, by definition we
have tk ą 0. In this case the conditions are similar to those for edθ , except that

exactly at tk1 “ tk ` b formula γ becomes true again (i.e.,
γè
^xj “ b holds in

k1). The truth of Formula (25) descends from there.

Part 2.
The proof that, if pπ, σq, 0 |ù

Ź

θPsubpφq ckθ ^G pmpθqq ^
Ź

θPsubpφq

θ“Fpa,bqpγq
auxckθ,

then there is a signal M such that M “ r´1
subpφqppπ, σqq is analogous to the

corresponding ones in Lemmata 10 and 11, so we omit it for brevity.

Complexity of the translation. Consider an MITL+Past formula φ with occur-
rences of Fpa,bq and the corresponding equisatisfiable CLTLoc Formula (26).
Let K be the maximum constant appearing in φ. Then, the size of the CLTLoc
translation is Op|φ|Kq, i.e., it is exponential in the size of the binary encoding
of K. Since the satisfiability of a CLTLoc formula is PSPACE in the size of
the formula and in the binary encoding of the constants, the decision procedure
induced by our encoding is in EXPSPACE, as expected.

7. Reduction of counting modalities to CLTLoc

The Cn operator is a generalization of Fp0,1q, since C1pγq “ Fp0,1qpγq. To
capture its semantics, we need to introduce more clocks than used in describing
the semantics of Fp0,1q, both for θ “ C1pγq and γ. Precisely, we introduce nγ

clocks z0γ , . . . , z
nγ´1
γ for subformula γ, with nγ ě n` 1, and cθ “ 2n` 1 clocks

x0θ, . . . , x
cθ´1
θ for subformula θ. Note that the exact number of necessary nγ

clocks depends on the operators in which γ appears. For example, if n1 is the
largest number such that there is a subformula of the form Cn1pγq, nγ “ n1` 1.
If γ does not appear in a formula of the form Cnpγq or of the form FIpγq,
then nγ “ 2. Similarly, if formula θ “ Cnpγq itself appears in a formula of the

form Cn1pθq, then it will be associated with both nθ “ n1 ` 1 clocks zjθ and cθ
clocks xjθ. Since clocks zjθ and xjθ play very similar roles, one could introduce a
single set of clocks with cardinality the maximum of nθ and cθ. However, in the
following encoding for reasons of clarity we keep the sets separate.

Consider now a formula φ that includes counting modalities. Its translation
to CLTLoc has, in addition to the parts introduced in Section 5 and 6 (with
the necessary adjustments to take into account the fact that the number of zjγ
clocks can be more than 2), the translation of the counting modalities. In the
rest of this section we show the translation mpθq for Cn, with n ě 1.

Clocks xjθ play a role similar to those with the same name introduced in
Section 6, so their behavior is similarly governed by formula auxckθ. In addition,
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Figure 6: A first batch of abbreviations:

up1j,„dpBγq “ X
´

xjθ,γ ą 0 U
´

Bγ ^ 0 ă xjθ ^ x
j
θ „ d

¯¯

upnj,„dpBγq “ X
´

xjθ,γ ą 0 U
´

"γ ^ 0 ă xjθ ă d^ upn´1
j,„dpBγq

¯¯

for n ě 2

up
n,p
j,„dpBγq “ upnj,„dpBγ ^ z

p̂
γ ď dq for n ě 1

ÐÝÝÝÝÝ
nspikes1pγq “ Yp

γ

­ëSp"γ _ pqγ ^ 
�
γ ^Oqqq

ÐÝÝÝÝÝ
nspikesnpγq “ Yp

γ

­ëSp"γ ^
ÐÝÝÝÝÝ
nspikesn´1pγqqq for n ě 2

ÐÝup
0,p
“dpBγq “ Bγ ^ z

p̂
γ ă d

ÐÝup
n,p
“d pBγq “ Bγ ^ z

p̂
γ ă d^ÐÝÝÝÝÝnspikesnpγq for n ě 1

since Lemma 4 holds also for the Cn modalities, an up-singularity "θ can never
occur for a formula of the form Cnpγq, and Formula 7 is introduced as for the
F modality.

For the sake of readability, some shorthands are useful. Let xjθ,γ ą 0 stand

for pxjθ ą 0^
Ź

iPt0,...,nγ´1u z
i
γ ą 0q, where nγ is the number of clocks introduced

for γ. We also write zp̂γ „ d (where „P tă,ď,“,ě,ąu) to state that there are

exactly p clocks of γ satisfying „ d. The following Formula (27) defines zp̂γ „ d
(where ‘ is the sum modulo nγ).

zp̂γ „ d “

nγ´1
ł

i“0

¨

˝

ľ

jPti‘1,...,i‘pu

pziγ „ dq ^
ľ

jPti,...,i‘pp`1qu

pzjγ  dq

˛

‚ (27)

Let Bγ denote a CLTLoc formula associated with γ (e.g., a Boolean com-

bination of  γ ,
γè

, zp̂γ „ d, etc.). Fig. 6 recursively defines upnj,„dpBγq, whose
intuitive meaning is that it holds in every instant such that: 1) there is a future
time instant t such that clock xjθ has value „ d, Bγ holds; 2) γ has at least
n ´ 1 up-singularities (i.e., instants where "γ holds) before t. To ensure that,
moreover, in instant t above there are only p clocks associated with γ whose
value is ď d (i.e., γ has changed value p times between the instants in which xjθ
was 0 and d), we also define up

n,p
j,„dpBγq. Fig. 6(a) depicts a situation in which

up
3,3
j,“dp γq holds. Notice that the formula upn0,„dpBγq will be used only when

evaluated in the origin O: the number of change points of γ before Bγ holds is
certainly n, so parameter p is unnecessary.

Fig. 6 also introduces shortands similar to up
n,p
j,“dpBγq, but which refer to
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the interval before Bγ holds. Formula
ÐÝÝÝÝÝ
nspikesnpγq holds if the last n times

when γ changed value before the current instant are of the form "γ . Then,
formula ÐÝupn,p

“d pBγq holds if Bγ holds, the last n times when γ changed value
were up-singularities, and the number of clocks associated with γ that are less
than d is p, hence, if p “ n ` 1, all n “spikes” occurred within the last d time
units. Fig. 6(b) shows an example of ÐÝup2,3

“dp γq holding.
Using the abbreviations of Fig. 6, we capture through CLTLoc formulae the

conditions that make θ “ Cnpγq have a rising edge (i.e., that corresponds to
 θ). Formula (28) describes that, when θ becomes true with a rising edge  θ
in an instant t ą 0, then it does so in a left-open manner (i.e., θ does not hold
in t), a clock xjθ is reset, and (i) either γ has n ´ 1 up-singularities before xjθ
hits 1 and γ becomes true again also with an up-singularity when xjθ “ 1, or

(ii) γ has a rising edge when xjθ “ 1 (hence it is true infinitely many times in
a right neighborhood of that instant) and it also has up to n ´ 1 (possibly 0)
up-singularities before xjθ “ 1. If instead θ becomes true in t “ 0 in a left-closed
manner (i.e., θ holds in t; the left-open case is similar to the one above), before
clock x0θ “ 1 either γ has a rising edge (so it is true infinitely many times before
x0θ “ 1) preceded by up to n ´ 1 (possibly 0) up-singularities, or there are n
up-singularities before x0θ “ 1.

 θ ô

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

O ^

¨

˚

˚

˚

˚

˚

˚

˝

qθ ^

¨

˝ γ _ up
n
0,ă1p"γq _

ł

kPt1,...,nu

up
k
0,ă1p γq

˛

‚ _

 qθ ^

¨

˝up
n
0,“1p"γq _

ł

kPt1,...,nu

up
k
0,“1p γq

˛

‚

˛

‹

‹

‹

‹

‹

‹

‚

_

 O ^

cθ´1
ł

j“0

¨

˝ qθ ^x
j
θ “ 0^

¨

˝pup
n,n
j,“1p"γq^ /"γq _

ł

kPt1,...,nu

up
k,k
j,“1p γq

˛

‚

˛

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(28)

Fig. 7 shows a pair of examples of conditions corresponding to θ “ C4pγq
having a rising edge. In particular, Fig. 7(a) depicts a case in which the second
disjunct of the right-hand side of Formula (28) holds. In this case, at t ą 0,
corresponding to position k ą 0 of the CLTLoc interpretation, one of the cθ
clocks associated with θ, say xjθ, is reset (note that in this example cθ “ 9, as

we are considering n “ 4). Also, between t and the instant in which xjθ takes
value 1 there are exactly 3 other instants in which γ has an up-singularity, and
when xjθ “ 1 subformula γ has another up-singularity. All in all up4,4j,“1p"γq

holds at t, and so does the second disjunct of Formula (28). Fig. 7(b), instead,
shows a situation in which θ “ C4pγq has a rising edge in t “ 0 (where x0θ is
reset). More precisely, the case depicted corresponds to the first condition of
Formula (28) being true. In fact, at an instant in which x0θ ă 1 subformula γ
has a rising edge and between 0 an that instant there is one point in which γ
has an up-singularity. Hence, in 0 formula up20,ă1p γq holds, and so does the
first condition of Formula (28).
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Figure 7: Examples of conditions for rising edges for θ “ C4pγq at t ą 0 (a) and t “ 0 (b).
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Figure 8: A second batch of abbreviations:

upSub0j,Àdpγq “  Xp
γ

­
è

Up
γè

^0 ă zjγ ď dqq

upSubnj,Àdpγq “ Xp
γ

­

è

Up"γ ^ 0 ă zjγ À d^ upSubn´1
j,Àdpγqqq

upSub1j,“dpBγq “ Xp
γ

­

è

UpBγ ^ z
j
γ “ dqq

upSubnj,“dpBγq “ Xp
γ

­

è

Up"γ ^ 0 ă zjγ ă d^ upSubn´1
j,d pBγqqq

Formula (29) states that if t is an instant (such that t ě 1) in which either
(i) in the preceding interval of length 1 γ has n´ 1 up-singularities and γ also
becomes true in t with an up-singularity (i.e., ÐÝupn´1,n

ă1 p"γq holds), or (ii) γ
has a rising edge and in the preceding interval of length 1 γ has at most n´ 1
up-singularities (i.e., ÐÝupk´1,k

“1 p γq holds for some k ď n), then in t one of the
clocks associated with θ must be 1 (indeed, Cnpγq started to hold exactly 1 time
unit before t, see also Fig. 6(b)), and all others are greater than 1. Formula
(29) plays a similar role as Formula (9): it makes sure that, if in the interval of
length 1 preceding t the conditions hold for Cnpγq to become true in t´ 1, then
the right hand side of Formula (28) holds at the position corresponding to t´1,
thus forcing  θ to hold there.

Now ě 1 ^

¨

˝

ÐÝup
n´1,n
“1 p"γq _

ł

kPt1,...,nu

ÐÝup
k´1,k
“1 p γq

˛

‚ñ
ł

iPt0,...,cθ´1u

xiθ “ 1.

(29)
To describe the conditions under which θ becomes false, either with a falling
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edge (i.e., !θ holds), or with a singularity (i.e., #θ holds) we introduce a pair of
further shorthands, shown in Fig. 8. Formula upSub0j,Àdpγq (where ÀP tă,ďu)

holds if, from the current instant (excluded) until the instant when clock zjγ
hits value d (included), γ never becomes true. Then, upSubnj,Àdpγq holds if,

in the interval that starts in the current instant and ends when clock zjγ “ d
(both endpoints excluded if À is ă), γ has exactly n up-singularities. Fig. 8(a)
exemplifies when upSub2j,ădpγq holds. Note that if there are at least n ` 1

clocks associated with γ, it may be the case (if zjγ has been reset ”recently”)

that upSubnj,ădpγq holds and zjγ is not reset before it becomes d. Similarly,
upSubnj,“dpBγq holds if, in the interval that starts in the current instant and

ends when zjγ “ d (endpoints excluded), γ has n ´ 1 up-singularities, and Bγ
holds when zjγ “ d. Fig. 8(b) depicts a case where upSub3j,“dp γq holds.

When θ “ Cnpγq becomes false with either a falling edge (!θ) or in a singular
manner (#θ), γ becomes false, and a clock ziγ is reset. Consider first the former
condition (Formula (30)). There are two cases: γ becomes false with a falling
edge !γ , or it has an up-singularity "γ . In the former case, γ can have up to
n ´ 1 up-singularities before ziγ “ 1: it can have less than n ´ 1, since γ holds
infinitely many times before it has a falling edge. In the latter case, γ must have
exactly n´ 1 up-singularities before ziγ “ 1, or θ does not have a falling edge.

!θ ô
γ
ë ^

nγ´1
ľ

i“0

¨

˚

˝

ziγ “ 0 ñ

¨

˚

˝

!γ ^
ł

kPt0,...,n´1u

upSubki,ď1pγq _

"γ ^ upSubn´1
i,ă1pγq

˛

‹

‚

˛

‹

‚

. (30)

Finally, as captured by Formula (31), for θ to have a down-singularity #θ,
not only γ must become false with #θ, but it must also become true again
exactly when the clock ziγ , which is reset with #θ, takes value 1.

#θ ô  O^
γ
ë ^

nγ´1
ľ

i“0

¨

˚

˝

ziγ “ 0 ñ

¨

˚

˝

upSubni,“1p

è

γq _

!γ ^

n´1
ł

k“1

upSubki,“1p γq

˛

‹

‚

˛

‹

‚

. (31)

Finally, for θ “ Cnpγq, mpθq is (7)^ (28)^ (29)^ (30)^ (31), and we have
the following result similar to Lemmata 10, 11, and 13.

Lemma 14. Let M be a signal, and φ be an MITL+Past formula including
counting modalities. For all pπ, σq P rsubpφqpMq we have pπ, σq, 0 |ù

Ź

θPsubpφq ckθ^
Ź

θPsubpφq

θ“Fpa,bqpγq or θ“Cnpγq
auxckθ and for all k P N, θ P subpφq we have pπ, σq, k |ù

mpθq.
Conversely, if pπ, σq, 0 |ù

Ź

θPsubpφq pckθ ^G pmpθqqq^
Ź

θPsubpφq

θ“Fpa,bqpγq or θ“Cnpγq
auxckθ,

then there is a signal M such that pπ, σq P rsubpφqpMq.
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Proof. The proof follows the same structure as those for Lemmata 10, 11, and
13. Here we focus on the case for subformulae of the form θ “ Cnpγq.

Part 1.
Suppose tk P T . As for Lemma 10, Formula (7) holds by Lemma 4. As usual,
we separately consider the cases M, tk |ù euθ , M, tk |ù edθ , and M, tk |ù sdθ .

Subcase eu
θ . Suppose that euθ holds in tk. Assume at first that tk ą 0. For θ

to have a rising edge in tk, it cannot be that γ has a rising edge euγ in interval
rtk, tk ` 1q, or given a small enough ε ą 0 in interval ptk ´ ε, tk ´ ε ` 1q there
would be an infinite number of instants in which γ is true, hence θ would hold
also before tk, instead of having a rising edge. For the same reason, γ cannot
have a falling edge in tk. For θ to become true in tk, then, γ must become true
in tk ` 1. We have two cases: M, tk ` 1 |ù euγ and M, tk ` 1 |ù suγ .

If M, tk ` 1 |ù euγ , this is enough to make θ become true in tk. However, in
rtk, tk ` 1q there can be up to n´ 1 up-singularities suγ .

If M, tk ` 1 |ù suγ , for θ to become true in tk there must be exactly n ´ 1
up-singularities suγ in ptk, tk ` 1q, and none in tk.

By definition of rsubpφqpMq we have that tk`1 “ tk1 P T , and also all instants
between tk and tk ` 1 where there are singularities are in T . In addition, in k1

one of the clocks associated with θ must be 1; in fact, by Lemma 8 in interval
ptk, tk ` 1s θ can change value at most 2n times, but there are 2n ` 1 clocks
associated with the formula, so the clock that, by definition of rsubpφqpMq, is
reset at k can be reset again only after k1. Then, one of the clocks associated with
θ is 0 in k. Also, for Lemma 4, θ cannot hold in tk, so by definition of rsubpφqpMq
we have pπ, σq, k |ù  qθ. Finally, by the reasoning above, if M, tk ` 1 |ù euγ ,

we have pπ, σq, k |ù
Ž

kPt1,...,nu up
k,k
j,“1p γq, while if M, tk ` 1 |ù suγ we have

pπ, σq, k |ù up
n,n
j,“1p"γq^ /"γ , so the right hand side of Formula (28) holds.

If tk “ 0 we have two further cases: the interval in which there are n
occurrences of γ is p0, bs, or it is a proper subset thereof (i.e., it is p0, εq, with
ε ă 1). The former case is analogous to the case tk ą 0.
The latter case is also very similar, but the n occurrences of γ are all such that
x0θ ă 1 (in particular, it can happen that γ has a rising edge in 0); also, in
this case θ holds in 0, so we have pπ, σq, k |ùqθ. Then, we have that formula
qθ ^p γ _ upn0,ă1p"γq _

Ž

kPt1,...,nu up
k
0,ă1p γqq holds at k.

All in all, Formula (28) in this case holds in k if M, tk |ù euθ .
The case in which M, tk ­|ù euθ is similar to the one in the proof of Lemma

10, so we omit if for brevity. Also, similar arguments as those used in the proof
of Lemma 10 to show that Formula (9) holds in all k P N are used to show the
same thing for Formula (29).

Subcase ed
θ . For θ to have a falling edge in tk, γ must become false in tk, but

also there must be a ε ą 0 such that in ptk ´ ε, tkq θ holds (unless tk “ 0), and
in ptk, tk ` εq it does not. We separate two cases: γ becomes false with a falling
edge (i.e., M, tk |ù edγ), or it has an up-singularity (i.e., M, tk |ù suγ). In both
cases, it cannot be that γ has a rising edge in ptk, tk ` 1s, or θ would be true
also in ptk, tk ` εq. Let us consider the two cases separately.
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If M, tk |ù edγ (which also includes the case in which tk “ 0), then γ can have
up to n´ 1 singularities in ptk, tk ` 1s.

If M, tk |ù suγ , then γ must have exactly n ´ 1 singularities in ptk, tk ` 1q,
and it cannot change value again in tk ` 1.

By definition of rsubpφqpMq, all instants tki in ptk, tk ` 1s when γ has up-
singularities are in T . Also, in both cases above there is a clock ziγ that is reset
at k, and that clock is not reset again in ptk, tk`1s because γ is associated with
at least n` 1 clocks. Hence, if M, tk |ù edγ , there is h P t0, . . . , n´ 1u such that

pπ, σq, k |ù upSubhi,ď1pγq. Similarly, if M, tk |ù suγ , then pπ, σq, k |ù upSubn´1
i,ă1pγq.

In both cases, the right hand side of Formula (30) holds at k.
If instead M, tk ­|ù edθ , then either γ does not become false in tk, or, if it does,

it becomes true n times anew in ptk, tk ` 1s. In all these cases, the right hand
side of Formula (30) does not hold in k, so Formula (30) does, as pπ, σq, k ­|ù !θ.

Subcase sdθ . For θ to have a down-singularity in tk, γ must become false in tk
and there must be ε ą 0 such that θ holds in ptk ´ ε, tkq (unless tk “ 0), but
then for all t1 P ptk, tk ` εq it must be that there are n instants in pt1, t1 ` 1q
when γ holds. This corresponds to having conditions in tk similar to those of
Subcase ed

θ , with the condition that γ becomes true again in tk ` 1. We skip
the rest of this case for brevity.

Part 2.
The proof that, if pπ, σq, 0 |ù

Ź

θPsubpφq ckθ ^G pmpθqq^
Ź

θPsubpφq

θ“Fpa,bqpγq or θ“Cnpγq
auxckθ,

then there is a signal M such that M “ r´1
subpφqppπ, σqq is similar to those in Lem-

mata 10 and 11, so we omit it for brevity.

Given an MITL+Past with counting formula φ, define the corresponding
CLTLoc formula as:

initφ ^
ľ

θPsubpφq

pckθ ^G pmpθqqq ^
ľ

θPsubpφq

θ“Fpa,bqpγq or θ“Cnpγq

auxckθ. (32)

Theorem 3. An MITL+Past with counting formula φ is satisfiable if, and only
if, Formula (32) is satisfiable.

Consider an MITL+Past formula φ with counting, with K and n being,
respectively, the largest constant in temporal modalities and the largest index
of the counting modalities occurring in φ. The corresponding equisatisfiable
CLTLoc Formula (32) differs from Formula (26), whose size is Op|φ|Kq, only
because it also includes constraints for subformulae θ of the form Cnpγq. For
each θ of this form, the size and the number of clocks of mpCnpγqq polynomially
depend on parameters cθ and nγ , which are Opnq. In particular, the size of

mpCnpγqq is Opn4q because of Formula (28). In fact, formulae up
k,k
j,“1p γq are

Opn2q as they include formulae zp̂γ „ d (27), which are Opn2q. Therefore, the size
of Formula (32) depends linearly on |φ|K`n4 which is exponential in the size of
the binary encoding of K and of n. Its satisfiability is then in EXPSPACE when
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considering a binary encoding. It is nonetheless in PSPACE by considering the
unary encoding of both constants of temporal modalities and indexes of the
counting modalities, which is consistent with the PSPACE complexity (with a
unary encoding of the indexes) of QTL augmented with counting modalities
[31].

A simple generalization of the counting operators is a counting modality
Cbnpγq in which γ occurs at least n times in the interval p0, bq, instead of only
p0, 1q. It is easy to see that our translation mpCnpγqq can be adapted to this
case simply by changing bounds 1 in formulae (28)-(31) to b. Hence, our trans-
lation shows that also the satisfiability of MITL+Past augmented with counting
modalities Cbnpγq is PSPACE-complete when considering a unary encoding of
constants and indexes.

8. Implementation & Experimental Results

A decision procedure for CLTLoc [21] is implemented in a plugin, called
ae2zot, of our Zot toolkit [32], whereas all the reductions outlined in the paper
are implemented in the qtlsolver tool, available from [22]. The tool translates
MITL+Past into CLTLoc, which can be checked for satisfiability by ae2zot.

We carried out some experiments (available from the qtlsolver website
[22]), on a desktop computer with a 2.8GHz AMD PhenomTMII processor and
8GB RAM; the solver was Microsoft Z3 3.2.

Table 4 shows a few examples of formulae, together with a short explanation.
The abbreviation Gipφq “ φ ^ Gp0,8qpφq enforces that φ holds also in the
current instant. Table 5 shows the result (SAT or UNSAT), the bound and the
approximate time taken by translation and solving.

Ref. Formula Comment

φ1 p^Gp0,100q p^Gi
ppñ Fp0,200qpq p occurs in isolated points

^Gi
pGp0,100q pñ Gp100,200q pq with period 100, starting at 0.

φ2 Gp0,8q

`

pñ Fp0,1qq _Pp0,1qq
˘

q must hold within 1 time unit
before or after each p.

φ3 Gp0,8q

`

q ñ Gp0,100q q
˘

q occurs at isolated points,
at least 100 time units apart.

φ4 Gp0,8q

`

q ñ Gp0,100s q
˘

Like φ3, but strictly aperiodic.

ψ1 Gp0,8q

`

Fp0,8qq ^ pq Ñ C2
2qq

˘

q occurs infinitely often; when it
holds, D 2 or more occurrences

in the adjacent interval of length 2.

ψ2 Gp0,8q

`

q Ñ Fp0,1qq
˘

property not necessarily holding for ψ1

ψ3 Gp0,8q

`

Fp0,8q
`

q ^ Fp0,1qq
˘˘

property holding for ψ1

Table 4: Examples of formulae (where C2
2 is defined at the end of Section 7).
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Formula Result Bound Time

φ1 SAT 10 10 seconds

φ1 ^ φ2 SAT 10 40 seconds

φ1 ^ φ2 ^ φ3 SAT 20 10 minutes

φ1 ^ φ2 ^ φ3

with periodic constraint on p, q SAT 20 15 minutes

φ1 ^ φ2 ^ φ4 SAT 30 80 minutes

φ1 ^ φ2 ^ φ4

with periodic constraint on p, q UNSAT 30 12 hours

ψ1 SAT 25 24 seconds

ψ1 ^ ψ2 SAT 25 50 seconds

ψ1 ^ ψ3 UNSAT 25 57 minutes

Table 5: Experimental Results

Note that, even if the constants appearing in Formula φ1 are in the order
of the hundreds, a bound of 10 positions is enough for qtlsolver to satisfy φ1,
since events in the corresponding models occur only sparsely.

Our tool allows one to add constraints also at the CLTLoc or at the SMT
levels. For example, in the experiments, we added SMT constraints imposing
that the values of the clocks (instead of the clock regions) associated with propo-
sitions p and q be periodic; this allowed us to check that formula φ1 ^ φ2 ^ φ3
admits periodic models, while φ1^φ2^φ4 does not (i.e., it is unsatisfiable with
the periodic constraint, at least with bound 30).

Counting modalities, in the general version Cbnpγq, were tested over speci-
fication ψ1, checking also a property ψ2 that does not necessarily hold and a
property ψ3 that does instead hold.

9. Conclusions

We presented a satisfiability-preserving translation from continuous-time
metric temporal logics over signals to CLTLoc. In particular, we considered
MITL, MITL0,8 and their extensions with past and counting modalities. As
CLTLoc is naturally defined over a pointwise semantics (i.e., on timed words),
the translation assumes that signals are finitely variable and leverage on the fun-
damental property for which all temporal modalities of MITL, and MITL0,8,
may only finitely vary in time. This allows representing the real line as an
infinite sequence of intervals and, then, capturing the semantics of MITL and
MITL0,8 formulae through CLTLoc. The encoding has been implemented in
a prototype tool [22]. Preliminary experiments are promising, as the tool was
able to solve formulae representing significant temporal behaviors. To the best
of our knowledge, our approach is the first allowing an effective implementa-
tion of a fully automated verification tool for continuous-time metric temporal
logics. Verification of formulae requiring many clocks may be infeasible, since
satisfiability of MITL is EXPSPACE-complete. However, in practice a large
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number of clocks is not very frequent, and several examples of MITL formulae
could be verified.

The techniques presented in this paper for MITL can be tailored also to
other logics. We consider an example here. In [33], MITL0,8 was shown to be
equivalent to another temporal logic, called Event-Clock Logic (ECL), which is
in PSPACE. Although our work only concerns MITL and MITL0,8 our results
can directly be applied for solving the satisfiability of ECL as well, by means
of the above equivalence of the languages. However, an explicit, possibly more
efficient, encoding of ECL into CLTLoc may be devised, since only a finite
number of explicit clocks are known to be enough to capture ECL semantics.

Acknowledgements The authors wish to thank the editors for their help
and the anonymous reviewers for their invaluable constructive comments.
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Appendix A. Encoding of θ “ Ppa,bqpγq

By Lemma 5, singularities suθ cannot occur in signals for formulae of the
form θ “ Ppa,bqpγq.

By Lemma 7, the distance between a change point where “θ becomes true”
(possibly in the origin, or with a down singularity) and a change point where “θ
becomes false” for formulae θ “ Ppa,bqpγq cannot be less than b´a, so Corollary
2 holds also for Ppa,bq. As for the case Fpa,bq, this property will be exploited
below to define the translation of the Ppa,bq operator.

In case of subformulae of the form θ “ Ppa,bqpγq we introduce, similarly
for formulae of the form θ “ Fpa,bqpγq, in addition to clocks z0θ , z

1
θ of Section

5, d “ 2
Q

b
b´a

U

auxiliary clocks txjθu0ďjďd´1, which are used to store the time

elapsed since the occurrence of change points for γ that cause θ to change value
(hence, not all change points regarding γ are taken into account) and the current
time instant t. Note that in the case of Ppa,bq auxiliary clocks txjθuj are reset
not when θ has a change point, but when γ has a change point that leads, later
on, to a change point of θ.

The behavior of the auxiliary clocks is defined by the following formulae.
Each reset xiθ “ 0 entails that the current instant is the origin, or one of

euγ , e
d
γ , s

d
γ , suγ occurs, but only in a situation where, a or b instants later, θ

changes value (Formula (A.1)). More precisely, there are three cases in which
one of the auxiliary clocks is reset:

1. In the origin.

2. When γ becomes true at tk, and it was false throughout ptk ´ b, tkq. This
corresponds to the clock that is not reset in k being ě b´a, or to γ always
being false from the origin O until k (second disjunt of the left hand side
of Formula (A.1)).

3. When γ becomes false at tk, and it stays false until at least tk ` pb ´ aq.
This corresponds to there not being a tk1 where γ become true such that
tk1 ă tk ` pb ´ aq, which in turn corresponds to there not being k1 ą k

where the clock ziγ that is reset at k has value ă b´ a and
γè

holds (third
disjunct of the left hand side of Formula (A.1)).

¨

˚

˚

˚

˚

˚

˚

˚

˝

O _

γè

^

˜

1
ł

i“0

ziγ ě pb´ aq _ pz0γ ą 0qSpO^ γ
r
q

¸

_

γ
ë ^

1
ł

i“0

ˆ

ziγ “ 0^ X

ˆ

ziγ ą 0Up
γè

^ziγ ă b´ aq

˙̇

˛

‹

‹

‹

‹

‹

‹

‹

‚

ô

d´1
ł

j“0

xjθ “ 0

(A.1)
Each change point of γ that leads to a change in the value of θ is marked by
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a single reset xiθ “ 0 (Formula (A.2)).

˜

d´1
ľ

i“0

d´1
ľ

j“0,i­“j

 pxiθ “ 0^ xjθ “ 0q

¸

(A.2)

The occurrence of resets for clocks xiθ is circularly ordered and the sequence of
resets starts from the origin by x0θ. If xiθ “ 0, then, from the next position,

all the other clocks are strictly greater than 0 until the next x
pi`1q mod d
θ “ 0

occurs.

d´1
ľ

i“0

¨

˝xiθ “ 0 ñ X

¨

˝px
pi`1q mod d
θ “ 0qR

ľ

jPr0,d´1s, j ­“i

px
pj`1q mod d
θ ą 0q

˛

‚

˛

‚

(A.3)
Formula x0θ “ 0, evaluated at position 0, sets the first reset of the sequence,
constrained by formulae (A.1)-(A.3).

Define formula pauxckθ as px0θ “ 0q ^G p(A.1)^ (A.2)^ (A.3)q.
The next formulae capture the semantics of the Ppa,bq modality. For the

sake of simplicity, the translation only considers the case a ą 0. Because of
Lemma 5, an up-singularity "θ can never occur for θ “ Ppa,bqpγq. In addition,
Ppa,bqpγq is false in the origin, no matter γ. Then, as for Pp0,bqpγq, Formula 14
holds in every instant.

Formula (A.4) defines that θ has a rising edge in tk if, and only if, there is
an auxiliary clock xjθ that has value a in k, the last time xjθ was reset γ became
true – which entails, by Formula (A.1), that γ is false throughout ptk´ b, tk´aq
– and there is no tk1 “ tk ´ b where γ becomes false. Note that, if there were
tk1 “ tk ´ b where γ becomes false, then θ in tk would not have a rising edge,
but a down-singularity.

 θ ô

d´1
ł

j“0

xjθ “ a^

ˆ

xjθ ą 0 S p
γè

^xjθ “ 0q

˙

^ 

d´1
ł

i“0

xiθ “ b^
´

xiθ ą 0 S p
γ
ë ^xiθ “ 0q

¯

(A.4)

Formula (A.5) is similar, but for the falling edge. More precisely, θ has a
falling edge in tk if, and only if, either tk is the origin, or there is a clock xjθ
whose value is b in k, the last time xjθ was reset γ became false – which entails,
by Formula (A.1), that γ is false throughout ptk ´ b, tk ´ aq – and there is no
tk1 “ tk´a where γ becomes true. Note that, if there were tk1 “ tk´a where γ
becomes true, then θ in tk would not have a falling edge, but a down-singularity.
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!θ ô

¨

˚

˚

˚

˚

˚

˚

˚

˝

O _

¨

˚

˚

˚

˚

˚

˚

˚

˝

d´1
ł

j“0

xjθ “ b^
´

xjθ ą 0 S p
γ
ë ^xjθ “ 0q

¯

^

 

d´1
ł

i“0

xiθ “ a^

ˆ

xiθ ą 0 S p
γè

^xiθ “ 0q

˙

˛

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‚

(A.5)

Formula (A.6) essentially combines the conditions of Formulae (A.4) and
(A.5), and states that θ in tk has a down-singularity if, and only if, γ becomes
false in tk ´ b, it becomes true in tk ´ a, and it stays false in ptk ´ b, tk ´ aq.

#θ ô

d´1
ł

j“0

xjθ “ a^

ˆ

xjθ ą 0 S p
γè

^xjθ “ 0q

˙

^

d´1
ł

i“0

xiθ “ b^
´

xiθ ą 0 S p
γ
ë ^xiθ “ 0q

¯

(A.6)

Constraint (A.7) is similar to Formulae (18) and (22), as it guarantees that,
if in tk the conditions are met for θ to become true (possibly with a down-
singularity) at tk ` a, then there is a corresponding k1 such that tk1 “ tk ` a
where one of the auxiliary clocks associated with θ has value a, and where the
right hand side of Formula (A.4) or the right hand side of Formula (A.6) hold,
thus forcing  θ or #θ to hold in k1.

γè

^

˜

1
ł

i“0

ziγ ě pb´ aq _ z
0
γ ą 0SpO^ γ

r
q

¸

ñ

d´1
ł

j“0

´

xjθ “ 0^X
´

xjθ ą 0Uxjθ “ a
¯¯

(A.7)

Formula (A.8) plays a similar role as Formula (A.7), but for the case where
in tk ` b θ becomes false, possibly with a down-singularity. Hence, it forces a
k1 such that tk1 “ tk ` b to exist in the CLTLoc interpretation, where the right
hand side of Formula (A.5) or the right hand side of Formula (A.6) hold, thus
forcing !θ or #θ to hold in k1.

γ
ë ^

1
ł

i“0

¨

˚

˝

ziγ “ 0^

 X

ˆ

ziγ ą 0U

ˆ

γè

^ziγ ă b´ a

˙˙

˛

‹

‚

ñ

d´1
ł

j“0

´

xjθ “ 0^X
´

xjθ ą 0Uxjθ “ b
¯¯

(A.8)

Then, mpθq is (14)^ (A.4)^ (A.5)^ (A.6)^ (A.7)^ (A.8).
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