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Fast Numerical Approximation of Invariant Manifolds in the Circular

Restricted Three-Body Problem

F. Topputo

Department of Aerospace Science and Technology, Politecnico di Milano,

Via La Masa 34, 20156 Milano, Italy

Abstract

In this paper a two-step approach to approximate the invariant manifolds in the circular

restricted three-body problem is presented. The method consists in a two-dimensional

interpolation, followed by a nonlinear correction. A two-dimensional cubic convolution

interpolation is implemented to reduce the computational effort. A nonlinear correction

is applied to enforce the energy level of the approximated state. The manifolds are pa-

rameterized by using two scalars. Results show efficiency and moderate accuracy. The

present method fits the needs of trajectory optimization algorithms, where a great number

of manifold insertion points has to be evaluated online.

Keywords: Circular restricted three-body problem, Invariant manifolds approximation,

Cubic convolution interpolation

1. Introduction

In astrodynamics, space trajectory design in n-body problems is gaining increasingly

importance [1, 2, 3, 4]. This is because n-body dynamics can be exploited to achieve

unique solutions where conic approximations fail. This is the case, for instance, of the

periodic orbits about the Lagrange equilibrium points of the restricted three-body problem

[5, 6, 7, 8, 9]. As these points are at rest with respect to a pair of primaries, these

regions represent a strategic outpost for the implementation of innovative space missions

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The focus is then on realizing solutions to transfer

the spacecraft from an Earth parking orbit to a Lagrange point orbit. In the case of

collinear points, this is done by placing the spacecraft on the stable manifold associated to

the final orbit [20, 21, 22]. With this approach the natural free transport is exploited, and

the final orbit is reached at zero cost. In this perspective it is of paramount importance

to handle a global representation of the invariant manifolds in the restricted three-body

problem.

Invariant manifolds can be represented with numerical or semi-analytical means. The

latter method is based on some sort of expansion and manipulation of the flow around the

equilibrium region [23, 24]. As semi-analytical methods entail only local representations of
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the manifolds, numerical methods are used to design transfer trajectories, albeit increasing

the computational burden. In fully numerical methods a point of the final orbit is per-

turbed in the local direction of the manifold and then integrated [25, 26]. To construct the

whole manifold, this process is repeated for all the points in which the orbit is discretized.

In trajectory optimization, the optimal manifold insertion point is searched for. This

constraint is enforced in the form of a boundary condition, and involves the online eval-

uation of many different points on the target manifold [27]. In the Earth–Moon system,

where the invariant manifolds do not approach the Earth, a low-thrust transfer is used to

target a point on the stable manifold [28, 29, 30, 31]. Due to the high number of func-

tions evaluations of typical trajectory optimization algorithms, it is desirable to handle

an efficient representation of the stable manifold. Numerical integration is therefore not

suitable for this purpose, and alternative methods to synthetically represent the manifolds

are needed [32]. For given optimization variables (two scalars in [28, 29, 30]), this method

has to allow evaluating the corresponding point on the stable manifold, without perform-

ing numerical integrations. This must be done with emphasis on computational efficiency,

at the expense of losing accuracy of the representation, which can be later recovered in

successive trajectory refinements, performed in more accurate models.

Inspired by the methodology in [33], this paper presents a method to approximate

the invariant manifolds obtained by numerical integration in the in the circular restricted

three-body problem. In this approach, each component of the states lying on the manifold

is seen as a two-dimensional surface. Once two variables are given, these components are

evaluated by performing a two-dimensional interpolation. A cubic convolution method

[34] is implemented to avoid computing the interpolation coefficients once a grid of sample

data is given. The interpolated state is then corrected by enforcing the manifold energy

level, which is known a priori. This is done by finding the zero of an algebraic nonlinear

function. The sequence “interpolation and correction” has been implemented successively,

and results are shown in terms of accuracy and efficiency.

The remained of the paper is organized as follows. In Section 2 the dynamics and the

main properties of the circular restricted three-body problem are recalled. In Section 3

the standard numerical method used to computed the invariant manifolds is described.

In Section 4 the developed approach is presented and results are shown in Section 5.

Concluding remarks are given in Section 6.

2. The Circular Restricted Three-Body Problem

In the circular restricted three-body problem (CRTBP) the motion of a massless par-

ticle, P , is studied in the gravitational field generated by two primaries, P1, P2 of masses

m1, m2, respectively. The primaries revolve with constant distance and angular velocity

(ℓ and n, respectively) in circular orbits about their common center of mass, due to their

mutual gravitational interaction. The equations that describe the motion of P are written

in a barycentric, rotating coordinate frame, where P1, P2 are at rest on the x-axis. Let

ρ1 = (−ℓm2/(m1 +m2), 0, 0) and ρ2 = (ℓm1/(m1 +m2), 0, 0) denote the position vectors
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of P1 and P2, respectively. The position vector of P , r, is subject to [35]

d2r

dt2
+ 2ω ×

dr

dt
+ ω × (ω × r) = −Gm1

r − ρ1

‖r − ρ1‖
− Gm2

r − ρ2

‖r − ρ2‖
, (1)

where G is the universal gravitational constant and ω = (0, 0, n). It is convenient to re-

write Eqs. (1) in scaled units where ℓ is the length unit, m1+m2 is the mass unit, and the

time unit is such that the orbital period of P1, P2 equals to 2π. In this way both G and

n become unities as well. The system can be described by one single parameter, the mass

ratio µ = m2/(m1 + m2). Thus, P1, of normalized mass 1 − µ, is located at (−µ, 0, 0),

whereas P2, of normalized mass µ, is located at (1 − µ, 0, 0). The distances of P from P1

and P2 are r1 = [(x+ µ)2 + y2 + z2]1/2 and r2 = [(x+ µ − 1)2 + y2 + z2]1/2, respectively.

In a first-order form, the equations of motion are

ẋ = vx, v̇x = −(1− µ)(x+ µ)/r31 − µ(x+ µ− 1)/r32 + x+ 2vy,

ẏ = vy, v̇y = −(1− µ)y/r31 − µy/r32 + y − 2vx,

ż = vz, v̇z = −(1− µ)z/r31 − µz/r32,

(2)

or simply ẋ = f(x, µ), where x = (x, y, z, vx, vy, vz) is the state and f is the six-

dimensional vector valued function given by the right-hand sides of (2).

The CRTBP has five equilibrium points, xk, where f(xk, µ) = 0, k = 1, . . . , 5. These

are known as the Lagrange points, and are labeled Lk. The collinear points (L1, L2, L3)

are located on the x-axis, whereas the triangular points (L4, L5) lie at the vertices of

two equilateral triangles with common base P1P2. All of the equilibria exist in the z = 0

plane. Linearly, the collinear points behave like the product saddle × center × center. The

two centers are associated to the in-plane and out-of-plane motions, and therefore there

exist families of planar and vertical periodic Lyapunov orbits [36, 37] as well as Lissajous

orbits [38]. When the in-plane and out-of-plane frequencies match, a special family of

three-dimensional periodic halo orbits arise [39]. Due to the presence of the saddle part,

there are two-dimensional stable and unstable manifolds that emanate from these periodic

orbits [40, 41, 20].

The CRTBP admits an integral of motion, the Jacobi integral,

J(x, µ) =
2(1− µ)

r1
+

2µ

r2
+ (x2 + y2)− (v2x + v2y + v2z) + µ(1− µ), (3)

which, for a given energy level C, defines a five-dimensional manifold

J (C,µ) = {x ∈ R
6|J(x, µ) = C}. (4)

Since J (C,µ) is tangent to f(x, µ), and therefore to the solutions of the CRTBP, the unit
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vector n(x) = Jx(x, µ)/‖Jx(x, µ)‖, with Jx being the gradient of J , i.e.,

∂J/∂x = −2(1− µ)(x+ µ)/r31 − 2µ(x+ µ− 1)/r32 + 2x, ∂J/∂vx = −2vx,

∂J/∂y = −2(1 − µ)y/r31 − 2µy/r32 + 2y, ∂J/∂vy = −2vy,

∂J/∂z = −2(1− µ)z/r31 − 2µz/r32 , ∂J/∂vz = −2vz,

(5)

satisfies f(x, µ) · n(x) = 0.

Let ϕ(xi, t) be the flow of (2); i.e.,

ϕ(xi, t) = xi +

∫ t

0
f(x(τ), µ) dτ. (6)

Note that the CRTBP is autonomous, and thus the initial time in (6) can be set to 0

without loss of generality; the sign of t determines then the direction of integration (forward

or backward). The State Transition Matrix (STM) of (2), that is Φ(x, t) = dϕ(x, t)/dx,

is subject to the variational equation

Φ̇(x, t) = Dxf(ϕ(x(t), t), µ)Φ(x, t), Φ(x, 0) = I6×6, (7)

where Dxf is the Jacobian of the CRTBP vector field (2), namely

Dxf =











03×3 I3×3

f4,x f4,y f4,z 0 2 0

f5,x f5,y f5,z −2 0 0

f6,x f6,y f6,z 0 0 0











, (8)

with

f4,x = 1− (1− µ)/r31 − µ/r32 + 3(1− µ)(x+ µ)2/r51 + 3µ(x+ µ− 1)2/r52,

f5,y = 1− (1− µ)/r31 − µ/r32 + 3(1− µ)y2/r51 + 3µy2/r52 ,

f6,z = −(1− µ)/r31 − µ/r32 + 3(1 − µ)z2/r51 + 3µz2/r52,

f4,y = f5,x = 3y(1− µ)(x+ µ)/r51 + 3yµ(x+ 1− µ)/r52 ,

f4,z = f6,x = 3z(1 − µ)(x+ µ)/r51 + 3zµ(x+ 1− µ)/r52 ,

f5,z = f6,y = 3yz(1 − µ)/r51 + 3yzµ/r52.

(9)

Eq. (7) is equivalent to 36 first-order differential equations for the elements of Φ(x, t); it

requires the terms in (9) to be evaluated along the solution ϕ(x(t), t), and therefore (2)

and (7) are integrated simultaneously, thus yielding a system of 42 first-order equations.

3. Computation of Invariant Manifolds

For our analysis, it is convenient to recall the methodology used to numerically compute

the invariant manifolds in the CRTBP. This approach relies on finding a linear approxi-

mation of the manifold in the neighborhood of an orbit [42, 43]. This is then globalized
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x(t1)
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γt1

vs(t1)

x(t1)± εvs(t1)

t2
xs(t1, t2)

Figure 1: Method used to compute the invariant manifolds.

through numerical integration. Let γ be a generic periodic orbit in the CRTBP,

γ = {ϕ(x0, t)|t ∈ R} , ϕ(x0, T1) = x0, (10)

where T1 is the period, x0 is a known initial state, and J(x0, µ) = C. With reference to

Figure 1, any point of γ can be computed as x(t1) = ϕ(x0, t1), t1 ∈ [0, T1]. Let alsoW
s(γ),

W u(γ) denote the two-dimensional stable, unstable manifolds of γ. Roughly speaking,

the idea is to compute the one-dimensional manifolds of x(t1), and to obtain W s(γ) and

W u(γ) by varying t1. At x(t1), the invariant manifolds are locally spanned by the stable

and unstable eigenvectors of M(t1), the monodromy matrix associated to x(t1). This is

none other than the STM evaluated over one period of the orbit; i.e., M(t1) = Φ(x(t1), T1).

When γ admits stable and unstable manifolds,M(t1) has four real eigenvalues (λs(t1) <

1, λu(t1) > 1, λ3,4 = 1) and two complex-conjugate eigenvalues (λ5 = λ̄6, |λ5| = 1). The

pair λs(t1), λu(t1) defines stable and an unstable eigenvalues vs(t1),vu(t1), respectively.

The initial conditions used to globalize the manifolds are x(t1) ± εvs(t1), for the stable,

and x(t1) ± εvu(t1), for the unstable manifold. The small displacement ε perturbs x(t1)

in the stable, unstable direction, whereas the ± discriminates which of the two branches

of the manifold has to be generated. As for ε, it should be small enough to preserve

the local validity of the linear approximation, but also large enough to prevent from long

integration times needed to globalize the manifold. The value ε = 10−6 has been used

in this work consistently with the arguments in [20]. Without any loss of generality, the

computation of the stable manifold is treated in the following. Applying the same concept

to the unstable manifolds is straightforward.

Let xs ∈ W s(γ) be a generic point on the stable manifold. This is computed through

xs(t1, t2) = ϕ(x(t1)± εvs(t1),−t2), (11)

where t2 is the integration time, t2 > 0, t2 ∈ [0, T2]; T2 is an upper bound depending to

what extent W s(γ) has to be globalized (see Figure 1). In summary, computing xs(t1, t2)

requires: 1) integrating (2) within [0, t1] to get x(t1); 2) integrating the coupled system

(2) and (7) from x(t1) for one orbit revolution to get M(t1); 3) computing the stable

eigenvector vs(t1); 4) performing the backward integration (11) to get xs(t1, t2). Varying

t1, t2 yields W s(γ).
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Figure 2: Stable manifold of a periodic halo orbit in the Earth-Moon model projected in the physical space.

To make this procedure more efficient, the monodromy matrix associated to x0, M0 =

Φ(x0, T1), is computed once. Its stable eigenvector, vs,0, is pushed forward to get vs(t1)

through

vs(t1) = Φ(x0, t1)vs,0, (12)

where Φ(x0, t1) is achieved through integration of (2) and (7). This avoids performing step

2) above, which is the one requiring the most effort, at the additional cost of integrating

the variational equation in step 1). Moreover, M0 can be computed through Φ(x0, T1/2)

by exploiting the symmetry of the RTBP [44]. This limits the accumulation of numerical

integration errors, as the variational equation is integrated for half of the orbital period.

Figure 2 shows an example of stable manifold computed with the method described above.

4. Approximation of Invariant Manifolds

Let xs in (11) be xs = (xs, ys, zs, vxs
, vys , vzs). By virtue of (11), the components of xs

depend on a parameter along the orbit, t1, and a parameter along the flow, t2 [20]. (Other

parameterizations can be used to express xs; e.g., ε in (11) can be let to vary, so replacing

t1.) It is convenient to think at each component of xs as of a two-dimensional surface over

the (t1, t2) plane. This can be viewed in Figure 3, which reports the components of the

stable manifold in Figure 2.

As the goal of this work is to implement an approximation that allows a fast evaluation

of xs(t1, t2), while still ensuring reasonable accuracy, a numerical interpolation can be used.

In particular, the algorithms developed for the two-dimensional interpolation of surfaces

can be applied [45]. This approach requires a grid of samples over which the interpolation is

constructed. The idea is therefore to discretize (t1, t2) and to use the algorithm in Section

3 to compute such grid. This is done once. Then, the two-dimensional interpolation

is carried out online, where a fast evaluation is needed. The algorithm applied for the
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two-dimensional interpolation is reported in Section 4.1. As this leads to low-accuracy

approximations, a nonlinear correction is needed. The scheme developed to perform such

correction is presented in Section 4.2.

4.1. Two-Dimensional Cubic Convolution Interpolation

Let N1, N2 be the number of points in which the intervals [0, T1], [0, T2] are discretized,

respectively. The two-dimensional time grid

t1,i = (i− 1)
T1

N1 − 1
, t2,j = (j − 1)

T2

N2 − 1
, i = 1, . . . , N1, j = 1, . . . , N2, (13)

is used to compute a database of sampled data through (11); i.e.,

xs,ij = ϕ(x(t1,i)± εvs(t1,i),−t2,j), i = 1, . . . , N1, j = 1, . . . , N2. (14)

Without any loss of generality, the approximation algorithm is developed for the compo-

nent xs(t1, t2) only; the whole state xs(t1, t2) can be interpolated by applying the same

algorithm to the other components. Given xs,ij from (14), the focus is to compute xs(t1, t2)

for any other pair t1, t2 without performing numerical integration. For every combina-

tion of t1, t2 in the rectangular subdivision [t1,i, t1,i+1] × [t2,j, t2,j+1], i = 1, . . . , N1 − 1,

j = 1, . . . , N2 − 1, a cubic convolution interpolation is implemented through

xipls (t1, t2) =
2

∑

ℓ=−1

2
∑

m=−1

ci+ℓ,j+m u

(

t1 − t1,i+ℓ

h1

)

u

(

t2 − t2,j+m

h2

)

, (15)

where ci+ℓ,j+m are the interpolation coefficients, h1 = T1/(N1−1) and h2 = T2/(N2−1) are

the sampling increments, and the function u is the interpolation kernel [34]; the superscript
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‘ipl’ is used to distinguish the interpolated (xipls ) from the integrated (xs) component.

The interpolation kernel in (15) converts discrete data into continuous function. This

is done by using piecewise cubic polynomials defined on the unit subintervals between −2

and +2. The kernel is symmetric, continuous, and has a continuous first derivative. These

conditions can be applied to yield (see [34] for the complete derivation)

u(s) =











3/2|s|3 − 5/2|s|2 + 1 0 < |s| < 1

−1/2|s|3 + 5/2|s|2 − 4|s|+ 2 1 < |s| < 2

0 2 < |s|.

(16)

The kernel (16) assumes the values u(0) = 1 and u(n) = 0 for any nonzero integer n.

Thus, for the interpolation (15) to be exact at the interpolation nodes, it is required that

cij = xs,ij. This condition has an important computational significance: as the interior

interpolation coefficients cij are simply the sampled data points xs,ij, they are not to

be computed. This is a great departure from two-dimensional cubic spline, where the

interpolation coefficients are computed by solving a block tridiagonal matrix problem.

Only the exterior coefficients are computed by imposing the boundary conditions. This

feature reduces the computational time required to perform the interpolation, which is

desirable when a fast approximation is needed. After some manipulations, the exterior

coefficients read [34]

c0,0 = 3c1,0 − 3c2,0 + c3,0, cN1+1,N2+1 = 3cN1,N2+1 − 3cN1−1,N2+1 + cN1−2,N2+1,

cN1+1,0 = 3cN1,0 − 3cN1−1,0 + cN1−2,0, c0,N2+1 = 3c1,N2+1 − 3c2,N2+1 + c3,N2+1
{

ci,0 = 3xs,i1 − 3xs,i2 + xs,i3

ci,N2+1 = 3xs,iN2
− 3xs,i(N2−1) + xs,i(N2−2)

i = 1, . . . , N1

{

c0,j = 3xs,1j − 3xs,2j + xs,3j

cN1+1,j = 3xs,N1j − 3xs,(N1−1)j + xs,(N1−2)j

j = 1, . . . , N2.

(17)

4.2. Nonlinear Correction

Once the third-order interpolation (15) is applied to all the components, the fully

interpolated state x
ipl
s (t1, t2) is achieved. The accuracy with which x

ipl
s (t1, t2) represents

xs(t1, t2) depends on the size of the two-dimensional time grid as well as on the shape of

the functions to approximate. As the latter feature cannot be controlled (it is an inherent

property of the problem), the idea is using the least number of grid points to shorten the

computation of xs,ij in (14). Since this leads to low-accurate interpolations, a correction

step is implemented.

Let C = J(xs(t1, t2), µ) be the manifold energy level, and let C ipl = J(xipl
s (t1, t2), µ)

be the interpolated state energy level; let also their difference be ∆C = C − C ipl. It is

likely that ∆C 6= 0. Thus, a new state approximation is defined x
app
s = x

ipl
s + ∆x such

that J(xapp
s , µ) = C. In principle, ∆x may affect all the components of xipl

s . To ease

this correction and speed up the computation, it is assumed that ∆x = δn(xipl), where

n(xipl) is the local normal to the flow (see Section 2) and δ is an unknown scalar. The
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problem consists then in finding δ ∈ R such that

J(xipl
s + δn(xipl), µ)− C = 0, (18)

which is a scalar equation in a scalar unknown. Equation (18) can be solved efficiently by

using a Newton method. At the k-th iteration, the solutions is

δ(k) = δ(k−1) −
J(xipl

s + δ(k−1) n(xipl), µ)− C

n(xipl) · n(xipl)
. (19)

Numerical experiments show that the convergence is attained in 4–5 iterations with δ(0) =

0 and termination tolerance |δ(k) − δ(k−1)| < 10−14.

5. Results

5.1. Assessment of the Method

The developed method is based on the successive implementation of cubic convolution

interpolation and nonlinear correction. A way to check the usefulness of this method is

to compare it in terms of accuracy and efficiency with the standard method requiring

numerical integration (Section 3). The accuracy is assessed by evaluating the error, the

efficiency by comparing the computational time.

In order to perform a systematic assessment, a new grid has to be defined. By def-

inition, the interpolation is exact on the approximation grid (t1,i, t2,j), i = 1, . . . , N1,

j = 1, . . . , N2, and therefore evaluating the method on this grid is not useful. The approx-

imation is instead tested on the evaluation grid (τ1,k1 , τ2,k2), with τ1,k1 = (t1,k1+1−t1,k1)/2,

τ2,k2 = (t2,k2+1 − t2,k2)/2, and k1 = 1, . . . , N1 − 1, k2 = 1, . . . , N2 − 1. In practice, each

point of the evaluation grid lies in the center of the rectangle [t1,i, t1,i+1] × [t2,j, t2,j+1],

where the interpolation error is expected to be the highest (see Figure 4).

As the aim of the work is to approximate the manifold achieved by numerical integra-

tion, the error of the approximation is defined on the evaluation grid as

ǫk1k2 = ‖xs(τ1,k1 , τ2,k2)− xapp
s (τ1,k1 , τ2,k2)‖ (20)

where xs is computed via numerical integration with the procedure in Section 3, whereas

x
app
s is computed with interpolation and correction as illustrated in Section 4. The ef-

ficiency is measured through the speed up; i.e., the ratio CPUt(xapp
s )/CPUt(xs), where

CPUt(xapp
s ) and CPUt(xs) are the CPU times needed to compute x

app
s and xs over the

evaluation grid, whose pseudocodes are given in Algorithm 1 and 2, respectively. In the

remainder, the CPU time is relative to a sequential implementation of the algorithms in

Matlab R2014b (64 bit) and simulations on an platform with 3.2 GHz Intel Core i5 CPU,

8 GB 1600 MHz DDR3 RAM, running Mac OS X 10.10.3. Integrations are performed

with a variable-order, multi-step Adams–Bashforth–Moulton scheme with absolute and

relative tolerances set to 10−14.
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Algorithm 1 Standard computation of invariant manifolds through numerical integration.

1: solve

{

ẋ = f(x, µ), x(0) = x0

Φ̇ = [∂f/∂x]Φ, Φ(0) = I
in [0, T1] ⊲ Integrate 42 eqs. once

2: initialize M0 = Φ(x0, T1)

3: compute vs,0 from M0

4: for k1 = 1 → N1 − 1 do

5: τ1,k1 = (t1,k1+1 − t1,k1)/2

6: for k2 = 1 → N2 − 1 do

7: τ2,k2 = (t2,k2+1 − t2,k2)/2

8: solve

{

ẋ = f(x, µ), x(0) = x0

Φ̇ = [∂f/∂x]Φ, Φ(0) = I
in [0, τ1,k1 ] ⊲ 42 eqs. × N1 − 1

9: compute vs(τ1,k1) = Φ(x0, τ1,k1)vs,0

10: compute xs(τ1,k1 , τ2,k2) = ϕ(x(τ1,k1)± εvs(τ1,k1),−τ2,k2) ⊲ 6 eqs. × N2 − 1

11: end for

12: end for

Algorithm 2 Algorithm for approximation of invariant manifolds.

1: solve

{

ẋ = f(x, µ), x(0) = x0

Φ̇ = [∂f/∂x]Φ, Φ(0) = I
in [0, T1] ⊲ Integrate 42 eqs. once

2: store xi = x(ti), Φi = Φ(x0, ti), i = 1, . . . , N1

3: initialize M0 = Φ(x0, T1)

4: compute vs,0 from M0

5: for i = 1 → N1 do

6: compute vs,i = Φivs,0

7: compute xs(t1,i, t2,j) = ϕ(xi ± εvs,i),−t2,j), j = 1, . . . , N2 ⊲ 6 eqs. × N1

8: store xs,ij = xs(t1,i, t2,j), j = 1, . . . , N2

9: end for

10: for k1 = 1 → N1 − 1 do

11: τ1,k1 = (t1,k1+1 − t1,k1)/2

12: for k2 = 1 → N2 − 1 do

13: τ2,k2 = (t2,k2+1 − t2,k2)/2

14: compute x
ipl
s (τk1 , τk2) from (15) ⊲ Perform interpolation

15: computre n(xipl
s (τk1 , τk2)) from (5)

16: compute δ from (19) ⊲ Solve nonlinear eq.

17: define x
app
s (τk1 , τk2) = x

ipl
s (τk1 , τk2) + δn(xipl

s (τk1 , τk2))

18: end for

19: end for
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Figure 4: Approximation and evaluation grids.

5.2. Test Cases

The developed algorithm is used to approximate the stable manifold in Figures 2. The

problem parameters are µ = 0.012150, C = 3.182454, T1 = 2.746083, T2 = 12.566370. A

first approximation grid is constructed with N1 = 100 and N2 = 200, which yield step

sizes of 2.77 × 10−2 and 6.31 × 10−2 (see Eq. (15)). A random point is sampled with

t1 = 1 and t2 = 5, and the corresponding states xs, x
ipl
s , and x

app
s are computed. In

Table 1 these states are reported along with their Jacobi energies, C, and errors, ε. It

can be seen that performing interpolation only produces ∆C = −3.10605315 × 10−5 and

ǫ = 2.51694055 × 10−5, while the sequence interpolation and nonlinear correction yields

∆C = −8.88178419×10−16 and ǫ = 2.38885372×10−5 . Although the difference in Jacobi

energy decreases dramatically when performing the nonlinear correction, the accuracy in

the estimation of the state improves moderately enough to deem valuable the sequential

procedure developed.

Table 1: Sample state of the stable manifold in Figure 2 with t1 = 1, t2 = 5.

xs x
ipl
s x

app
s

x 0.583606315548440 0.583599597171183 0.583606656441017
y -0.196069410503332 -0.196067727193217 -0.196070212242085
z 0.018609750034304 0.018609759931961 0.018610071098876
vx 0.483332979420175 0.483345360093013 0.483347315799745
vy 0.420658175717234 0.420637397923229 0.420639099901687
vz 0.027414285066469 0.027413556391291 0.027413667311724

C 3.182454737262995 3.182485797794570 3.182454737262996

ǫ — 2.51694055 × 10−5 2.38885372 × 10−5

With the same settings, three cases with different grid points (and therefore different

step sizes) have been systematically analyzed over their approximation grids: case a) with

N1 = 100, N2 = 200; case b) with N1 = 100, N2 = 300; case c) with N1 = 200, N2 = 300.

Table 2 reports the outcome of this assessment in terms of maximum, mean, and minimum

values of the error and speed up (SU); i.e., the ratio of the computational time needed

to execute Algorithm 2 over that needed to carry out Algorithm 1. The error pattern

11



Table 2: Summary of the test cases.

N1 N2 h1 h2 max ǫ mean ǫ min ǫ SU

a) 100 200 2.77 × 10−2 6.31 × 10−2 1.47 × 10−2 3.10× 10−4 9.13 × 10−8 52.9
b) 100 300 2.77 × 10−2 4.20 × 10−2 4.82 × 10−3 7.27× 10−5 5.53 × 10−8 61.6
c) 200 300 1.38 × 10−2 4.20 × 10−2 4.60 × 10−3 6.43× 10−5 8.69 × 10−9 61.3
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Figure 5: log10 ǫ over the evaluation grid for the three cases considered.

(log10 ǫ) for the three cases is shown in Figure 5 with greyscale code (see the bar on the

right of Figure 5(c)). The error profile over the evaluation grid for case b) is shown in

Figure 6.

From inspection of Figure 5, it can be seen that the error is generally acceptable, except

for three distinct regions (white wave-shaped strips in Figure 5) showing moderate errors.

These areas correspond to the regions where the stable manifold experiences close Earth

passage. This difference in approximation accuracy is inherent in a strategy implementing

uniform time grids, as the step size does not adapt to capture rapid state variations. How-

ever, the error decreases when the number of grid points increases, or equivalently when

the sampling increments shrink. On the other hand, the considerable speed up (see Table

2) demonstrates the numerical efficiency of the approximation. Overall, the developed

methodology well fits trajectory optimization frameworks, where a fast evaluation of the

invariant manifolds, with moderate accuracy, is desirable.

5.3. Runtime Analysis

By inspection of Algorithms 1 and 2, we can infer the rate of growth of the compu-

tational time for increasing N1, N2. It should be said that in practical applications only

some portions of Algorithms 1 and 2 are executed repeatedly (lines 8–10 of Algorithm 1

and lines 14–17 of Algorithm 2), while others are evaluated just once (the computation of

the monodromy matrix in lines 1–3 of both algorithms). The construction of the database

of points required by Algorithm 2 is accounted for in the analysis below. Thus, the runtime

analysis involves lines 4–12 of Algorithm 1 and lines 5–19 of Algorithm 2.
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In Algorithm 1, the most expensive tasks are those in lines 8 and 10. Integrating

the variational equation (line 8) N1 − 1 times with variable final time iT1/(N1 − 1), i =

1, . . . , N1 − 1, is equivalent to integrate it once with final time
∑N1−1

i=1 iT1/(N1 − 1) =

N1T1/2. Since this is repeated N2 − 1 times, the complexity is k1(N1N2 −N1) (all factors

ki from now on are constant). Analogously, integrating the dynamics in line 10 N2 − 1

times with variable final time jT2/(N2 − 1), j = 1, . . . , N2 − 1, and repeating it N1 − 1

times involves an effort of k2(N1N2−N1). The rate of growth of Algorithm 1 is O(N1N2).

In Algorithm 2, constructing the database of points (lines 5–9) requires integrating

the dynamics in line 7 N1 times for fixed final time T2 (the value of the state at t2,j is

retrieved by interpolation). Thus, this part has complexity k3N1. The interpolation and

nonlinear correction in lines 14–17 is performed (N1 − 1) × (N2 − 1) times, and thus its

effort is k4N1N2 − k4(N1 +N2). The rate of growth of Algorithm 2 is O(N1N2) as well.

Since both algorithms behave as O(N1N2), their performances depend on the coeffi-

cients ki, the speedup being

SU =
(k1 + k2)N1N2 − k1N1 − k2N2

k4N1N2 + (k3 − k4)N1 − k4N2
. (21)

An assessment of the CPU time has been performed by varying N1 and N2 one at a

time, while keeping the same settings of the previous section. The outcome is reported

in Figures 7, where both the CPU time and the speedup are reported for the two cases.

It can be seen that: 1) the CPU time increases linearly in both algorithms, so confirming

that they are O(N1N2); 2) although the effort of both algorithms grows at the same rate,

Algorithm 2 takes always less CPU time than Algorithm 1; 3) for fixed N1, SU in (21) is

(α1N2+β1)/(γ1N2 + δ1), and therefore it approaches α1/γ1 ≃ 90 for increasing N2; 4) for

fixed N2, the SU in (21) is (α2N1 + β2)/(γ2N1 + δ2) and tends to α2/γ2 ≃ 43.
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(a) Fixed N1 (N1 = 100)
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(b) Fixed N2 (N2 = 100)

Figure 7: Runtime analysis for fixed N1 and N2 (speedup reported on the right y-axis).

6. Conclusions

In this paper a method to approximate the invariant manifolds in the restricted three-

body problem has been developed. The method is based on a cubic convolution inter-

polation followed by a nonlinear correction, which can be implemented once a data base

of sample values is given. The method is particularly suitable in those frameworks in

which a fast evaluation of the manifold states is wanted for any combination of the de-

sign variables (two scalars in the present implementation). The method is suitable in

approximating well-behaved manifolds, for which reasonable accuracy and computational

efficiency have been proven.
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[6] G. Gómez, J. Masdemont, and J. Mondelo. Libration Point Orbits: A Survey from
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[43] C. Simó. Modern Methods in Celestial Mechanics, chapter On the Analytical and

Numerical Approximation of Invariant Manifolds, pages 285–329. Editions Frontiéres,

1990.

[44] S. DeSalvo, J. Essen, K.L. Ho, and G. Knight. A Method for Designing Impulsive

Low-Energy Transfers Between the Earth and the Moon Using Invariant Manifolds.

Technical report, Institute for Pure and Applied Mathematics, Research in Industrial

Projects for Students, 2006.
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