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Multi-fidelity physics-based method for
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The paper presents a multi-fidelity robust optimization technique with

application to the design of rotor blade airfoils in hover. A genetic algorithm

is coupled with a non-intrusive uncertainty propagation technique based on

Polynomial Chaos expansion to determine the robust optimal airfoils that

maximize the mean value of the aerodynamic efficiency while minimizing

the variance, under uncertain operating conditions. Uncertainties on the

blade pitch angle and induced velocity are considered. To deal with the

variable operating conditions induced by the considered uncertainties and

to alleviate the computational cost of the optimization procedure, a multi-

fidelity strategy is developed which exploits two aerodynamic models of

different fidelity. The two models corresponds to different physical descrip-

tions of the flowfield around the airfoil; thus, the multi-fidelity method

employs the low-fidelity model in regions of the stochastic space where the

physics of the problem is well-captured by the model, and switches to high-

fidelity estimates only where needed. The proposed robust optimization

technique is compared with the robust optimization based on the high-

fidelity aerodynamic model and the deterministic optimization, to assess

the capability of finding a consistent Pareto set, and to evaluate the nu-

merical efficiency. The results obtained show how the robust multi-fidelity
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approach is effective in reducing the sensitivity of the designed airfoils with

respect to variation in the operating conditions.

Nomenclature

Ac
i , A

t
i = Bernstein polynomial coefficients for camber and thickness distribution

C = class function

CDW
= wave drag coefficient

Cf , Cp = friction and pressure coefficients

E = lift-to-drag ratio or efficiency

g = optimization constraints

L = aerodynamic model operator

M = Mach number

n = Bernstein polynomial order

N = number of terms of polynomial chaos expansion

no = polynomial order of polynomial chaos expansion

np = number of points on airfoil surface

ns = number of samples in stochastic space

nξ = number of uncertain variables

p = probability density function

pα = probability density function of angle of attack

pθ, pVi
= probability density function of blade pitch angle and induced velocity

pξ = probability density function of uncertain variables

q = flowfield unknown variables vector

r = percentage of blade radius

Re = Reynolds number

S = shape function

u, v = output stochastic variables

Vi = induced velocity [m/s]

x = space variables

y = design variables

α = angle of attack [deg]

αk = polynomial chaos coefficient

φi = univariate polynomial of polynomial chaos expansion
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μ = mean value

ψ = adimensional chordwise coordinate

Ψk = multivariate polynomial of polynomial chaos expansion

σ2 = variance

Σ = design space

τ = threshold of multi-fidelity method

θ = blade pitch angle [deg]

ξ = input stochastic variables

Ξ = stochastic space

ζ = adimensional airfoil coordinate

ζ̃ , ζCST = adimensional exact and obtained by parameterization airfoil coordinate

ζc, ζt = adimensional coordinate of camber and thickness distributions

ζuζl = adimensional coordinate of upper and lower surfaces

I. Introduction

A powerful tool for aerodynamic design is shape optimization, that is the process of find-

ing the shape that provides the best performance given a set of objectives and constraints.

Shape optimization has played a key role in aerodynamic design since its very beginning:

initially, the optimization was performed with analytical tools whenever possible and with

a “trial and error” approach based on the wind tunnel testing of preferred design solutions.

Modern shape optimization relies on the coupling of numerical optimization methods and

Computational Fluid Dynamics (CFD) solvers;1 this combination was first experimented in

the 70s with the work of Hicks and Henne2 and was widely developed in the 90s3,4 thanks to

the great potential provided by CFD tools. The application of optimization to wing aerody-

namic design has proved effective in indicating directions of improvement of a current design

with gradient-based methods,5 or exploring the design space by means of global optimizers,

such as evolutionary algorithms.6 Although airfoil optimization is well-established in the sci-

entific literature, a concerted effort is still needed to exhaustively tackle the case of helicopter

rotor blades. In fact, rotor blades feature complex aerodynamics with unsteady effects due

to the blade dynamics and the interaction with vortices and wakes trailed from preceding

blades. As a result, the complexity of the flowfield and the largely variable flow conditions

encountered by rotor blades have limited the development of comprehensive aerodynamic

optimization algorithms.7 Few interesting examples of rotor aerodynamic optimization can

be found in Refs.,8–12 where the optimization is more focused on blade twist and planform
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parameters.

A. Background on robust design

In the past decade, great attention has also been drawn to uncertainty-based optimization,

that is the process of finding the optimal design of a particular engineering system when

taking into account the uncertainty affecting the system itself in terms of model, parameters,

or design variables. As a matter of fact, engineers generally employ design and optimization

methods considering all relevant aspects of the system operating cycle, in which inherently

exist numerous sources of uncertainty. For instance, a theoretical model of the actual system

is based on assumptions and simplifications that introduce errors in the prediction of the

performance. In addition, a large portion of the data necessary to build the numerical

model is affected by numerous sources of uncertainty. Suffice it to say, system operating

conditions are affected by the status of the surrounding environment. In other words, some

model parameters used to represent the physical system are affected by a lack of knowledge

of the system itself. These uncertainties may alter the system’s expected performance,

jeopardize the safety, and even result in mission failure. In order to take uncertainties into

account from the beginning of the design, the research community focused on uncertainty-

based optimization techniques, such as robust optimization methods which seek an optimal

design that is capable of satisfactory performance when considering the variability of system

parameters.13,14

Robust design can be intrinsically more fit than classical deterministic approaches for

very preliminary design phases, since its objective can be interpreted as the search for op-

timal solutions that have a low sensitivity to variations of the parameters in the range of

uncertainty. In turn this may reduce the probability of redesign at later stage of the de-

sign process due to lack of adequate performance. Robust approaches have been studied in

the field of aerospace vehicles with application to conceptual, structural and aerodynamic

design.15

Uncertainty types. With regard to aerodynamic design, some works consider the so-

called aleatory uncertainties, namely irreducible uncertainties arising from the inherent vari-

ation associated with the system.16 For instance, uncertainties on the geometric parame-

ters17–19 and on the operating conditions20,21 fall into this category. Other research focused

more on epistemic uncertainties, which represent a lack of knowledge associated with the

modeling process that are reducible through the introduction of additional information.22

Some works, like the one presented in Ref.,23 combine aleatory uncertainty on the freestream

Mach number with an epistemic uncertain variable, i.e. the kinematic eddy viscosity of the

the Spalart-Allmaras model.24
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Robust optimization methods. Once the sources of uncertainty and the corresponding

uncertain variables are identified, a robust optimization procedure can be set up. The robust

optimization loop is typically based on the coupling of an optimization algorithm and an

uncertainty quantification method. The latter provides the statistical moments of a given

quantity of interest starting from the system model. When a “non-intrusive” quantification

method is employed,25 many samples of the quantity of interest are required and those are

obtained by means of a computational model of the system. In the case of an aerodynamic

system, the computational model can be provided by an accurate, high-fidelity CFD tool,

for example. However, in a robust optimization loop many CFD computations are required

for each geometry or design, and this inevitably aggravates the cost of the optimization

procedure.

To alleviate this cost, the numerical model of the aerodynamics provided by the accurate,

yet expensive, CFD solvers could be replaced with a lower-fidelity model. Examples of this

type of model are potential flow models, which have been employed in the past both in fixed

wing26 and rotor airfoil design,27,28 as well as surrogate models of the performance, such as

response surfaces.29 These models may require a small amount of CPU time, but their range

of applicability is limited and accuracy may be poor.

Multi-fidelity methods. An alternative approach is based on the combined use of mod-

els of different fidelity and level of approximation in order to try to balance computational

cost with the accuracy required. In the literature this solution is usually referred to as multi-

fidelity optimization and it has been already applied in deterministic optimization.30–32 In

the last years, some applications have considered the problem of uncertainty-based airfoil

optimization, as well. Among these, a multi-fidelity method is developed in Refs.33,34 based

on a hierarchical kriging approximation which exploits an estimate of the solution obtained

by the same CFD solver, applied to fine grids for obtaining high fidelity results, and to

coarser meshes for low fidelity ones. Another approach presented in Ref.35 is based on the

application of the uncertainty quantification technique to the system response obtained by

the low-fidelity model and to the correction function, i.e. the discrepancy between the high-

fidelity model and the low-fidelity model. In this work the multi-fidelity is built with respect

to the the different degree of accuracy of the physical models used to describe the flowfield.

A multi-fidelity robust stategy is here proposed for the optimization of airfoils to be

employed on helicopter rotor blades. The motivation is twofold. First, due to the complex

aerodynamics associated with helicopter rotors, even when considering a single flight con-

dition, blade airfoils are required to operate under variable flow conditions, due to many

factors, including interactions with fuselage and tail rotor, tip vortices, wakes trailed from

preceding blade (see Fig. 1). This could result in the necessity to consider a wider range of
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Tail and fuselage

interaction

Blade dynamics

and aeroelasticity

Wakes and blade

vortex interaction

Figure 1. Characteristics of the complex flowfield around a helicopter rotor in hover.

operating angle of attack, Mach number and Reynolds number with respect to fixed-wing

applications. Indeed, this complex aerodynamic flowfield requires an accurate prediction

which can be achieved by means of high fidelity CFD tools based on Reynolds Average

Navier Stokes (RANS) equations. Unfortunately, these CFD solvers can be very expensive

from a computational point of view, especially when employed in the design stage where a

large number of solutions is needed. This leads to the second motivation: when performing

an optimization under uncertainties, multi-fidelity strategies represent a viable solution to

the huge demand of computational resources required for rotorcraft applications.

B. Objectives of the paper

The present work focuses on the development of a multi-fidelity strategy for the optimal de-

sign of rotor airfoils under uncertain operating conditions. To avoid an unnecessary increase

of complexity of the presentation of the optimization strategy it has been chosen to limit the

application to one particular design condition: the hover. The basic elements of the robust

optimization method are the Non-dominated Sorting Genetic Algorithm for the optimization

loop, and the Polynomial Chaos (PC) expansion for the non-intrusive uncertainty propaga-

tion. The PC method reconstructs the objective functions starting from samples computed

by the chosen aerodynamic model. The multi-fidelity strategy is exploited to limit the

computational cost associated with the uncertainty propagation through the aerodynamic

models.

In particular, two aerodynamic models are considered in the multi-fidelity strategy: (i) a

compressible coupled Euler equations/integral boundary layer solver and (ii) an aerodynamic

solver coupling a panel method and integral boundary layer model. The former is more

expensive than the latter from a computational point of view. However, it is more accurate

in those operating conditions that exhibit important compressible effects. The proposed

multi-fidelity method switches from the low-fidelity model to the high-fidelity model only in

those operating conditions. Unlike most multi-fidelity methods in aerodynamic optimization,
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the switching logic here is based on physical considerations, so the multi-fidelity approach

can be labeled as physics-based. The low-fidelity physical model does not require training

and training data at each optimization loop, as surrogate models do. An example of a similar

approach in the literature for deterministic aerodynamic optimization is presented in Ref.36

The paper is organized as follows. In Section II the optimization problem is formulated for

this specific case. Section III describes the ingredients of the method employed to perform the

robust optimization: the uncertain operating conditions, the aerodynamic models, the shape

parameterization, the optimization algorithm and the uncertainty quantification technique.

In Section IV the proposed multi-fidelity strategy is presented, with some preliminary results

of the strategy obtained for a reference airfoil. Finally, Section V shows the results of the

robust optimization algorithm coupled with the low- and high-fidelity models, and those of

the proposed multi-fidelity strategy.

II. Robust optimization problem

The robust optimization technique proposed in this paper is applied to the optimal se-

lection of the airfoil for a helicopter rotor blade in hover. Ideally the hover condition is a

perfectly simmetric and steady flow condition when an isolated rotor is considered. However,

when a rotor is installed on the helicopter (see Fig. 1) the interference with the other parts

and the necessity to trim the entire aircraft requires the introduction of some cyclic pitch

commands that lead to variable flow conditions met by the blade section in different azimuth

position. As a consequence, instead of considering a deterministic, representative operating

condition for hover, it is assumed that the freestream condition of the airfoil section is af-

fected by some level of uncertainty. In this paper we deal with sources of uncertainty in the

physical modelling employed at the design stage. This uncertainty could arise from errors in

the model representation (e.g. the blade inflow model). Additionally, other physical sources

of uncertainty may be considered, such as those related to blade structural flexibility, that

may modify the local pitch angle. Because in the design stage the blade pitch angle θ and

the induced velocity Vi dictate the operating condition of the airfoil, uncertainties on these

two system parameters are considered in the present analysis. The induced velocity is also a

freestream boundary condition that permits consideration of the effect of the wake vorticity

of the blade on the airfoil in a simple yet effective way.37

The objective of the aerodynamic optimization is to maximize the lift-to-drag ratio E,

which is a measure of the aerodynamic efficiency of the airfoil. This measure is chosen be-

cause improving the lift-to-drag ratio in the airfoil selection benefits the rotor performance.38

The objective of this analysis is mainly to find a robust optimal airfoil shape. When consid-

ering variable operating conditions, the term “robustness” has various meanings depending
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on the desired objective.20 It could indicate (i) a design that is minimally sensitive to a vari-

ability either in the system or in the design itself, (ii) a design that uniformly improves the

performance of the system over a set of operating conditions, (iii) a design with an improved

worst-case performance, and (iv) a design that improves the overall performance over the

entire range of operating conditions and/or lifetime. In this paper, robustness means that

the design parameters y defining the shape of the airfoil allows simultaneous improvement

in the overall performance and minimization of the sensitivity with respect to changes in the

system operative conditions. In other words, the optimal design must maximize the mean

value μE and minimize the variance σ2
E of the objective function, computed by taking into

account the uncertainties of the operating conditions. Unlike single-objective optimization

where there is only one global optimum, in the case of multi-objective optimization, as the

one under consideration here, there is a set of optimal solutions (the so-called Pareto front)

corresponding to various trade-offs between the mean value and the variance.

The objective function E is a function of the output of the aerodynamic system, that is

the solution of the differential equation modelling the aerodynamics:

L (x,y, ξ;q(x,y, ξ)) = 0, (1)

where L is a nonlinear spatial differential operator describing the problem. The solution of

the stochastic equation (1) is the vector q(x,y, ξ), which contains the unknown variables,

e.g. density, momentum and total energy. The solution vector q is a function of the two-

dimensional space variable x ∈ R
2, the design variables y belonging to the design space Σ,

and the uncertain input parameters ξ belonging to the stochastic space Ξ.

The differential equation (1) represents a constraint for the optimization problem. Ad-

ditional constraints are related to manufacturing feasibility and costs. The geometry of the

airfoil is constrained in such a way that only airfoils having at most one inflection point of

the camber line are allowed, and the pitching moment coefficient computed at the quarter-

chord location is constrained to prevent excessive torque on the blade structure. The latter

constraint is applied when the moment coefficient about the quarter-chord location exceeds

0.03. Despite the importance of minimizing the pitching moment, such a value is chosen

to explore the design space with sufficient freedom. Additional objectives, such as the min-

imization of the moment coefficient, could be included in future works, to define an even

better optimal solution for helicopter rotor blades.
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Aerodynamic models L = 0

to compute the aerodynamic loads

Output uncertainty

Airfoil shape

to be designed

Freestream

operating

conditions

Sources of uncertainty

by means of
shape optimization

Figure 2. Representative scheme of the optimization problem of the airfoil shape under un-
certainty.

In mathematical terms, the resulting optimization problem can be stated as:

maximize: μE (q (x,y, ξ))

and minimize: σ2
E (q (x,y, ξ))

subject to: L (x,y, ξ;q(x,y, ξ)) = 0

g (x,y, ξ;q(x,y, ξ)) ≤ 0

by changing: y (2)

with uncertain input parameters ξ = {θ, Vi} and under the constraints previously described

and collected in vector g. The robust optimization problem requires several ingredients

(Fig: 2): (i) a model of the aerodynamic system which includes the aerodynamic model

(L = 0) which describes the flowfield around the airfoil, the freestream boundary conditions

and the airfoil shape, (ii) an uncertainty quantification method that propagates the uncer-

tainty affecting the freestream operating conditions to the uncertainty on the output, i.e. the

aerodynamic loads computed by means of the aerodynamic model , and (iii) a shape opti-

mization method that seeks to find the best design according to the objectives and contraints

set in Eq. (2).

III. Numerical ingredients of robust optimization method

In robust optimization two nested loops are implemented: the outer loop of the optimiza-

tion algorithm, and the inner loop of the uncertainty propagation technique (see Fig. 3). In

particular, at each k-th iteration of the outer optimization loop the stochastic analysis is

performed in order to evaluate the statistical moments μ, σ2 of the objective for the current

design yk. The uncertainty quantification method is thus employed as a black box by the op-
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Initial

design y0

Generate

new design

Optimization

loop

CFD

in sample ξ
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CFD
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in sample ξ
N

Reconstruct

statistics
...

...

UQ

Convergence?

Optimal

robust

design

yk μ, σ
2

Yes

No

Figure 3. Block diagram of the uncertainty-based optimization loop.

timization algorithm. In the following, the numerical ingredients used in the implementation

of the robust optimization problem are discussed.

A. Uncertain operating conditions

In this work, a reference, or nominal, condition is first chosen which represents a typical

condition for a section of a blade in hover. Then, an estimate of the uncertainty on each

variable is computed. For the nominal condition, data from Ref.39 are employed, considering

two blade sections respectively at 40% and 80% of the span (see Tab. 2). The blade pitch

angle and induced velocity are computed by means of the Blade Element Momentum Theory

(BEMT) starting from data of the Bo105 rotor and assuming a radial distribution of inflow

on the blades [40, p. 127]. Regarding the uncertain parameters, a variation of ±2 deg is

estimated for the blade pitch angle due to longitudinal cyclic and lateral cyclic pitch, and a

value of ±0.5 deg is added in order to model the effect of blade flexibility with an uncertainty

in the torsional stiffness. This level of uncertainty has also been found on the pitch measures

taken during the HART II experimental campaign.39 For the induced velocity, a variation

of ±10% of the nominal value is considered due to the modeling of physical parameters of

Table 2. Nominal operating conditions.

r [-] Vi [m/s] θ [deg] α [deg] M [-] Re [-]

0.4 10.52 10.11 6.0 0.258 1.6e6

0.8 13.82 9.71 5.2 0.513 3.2e6
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Table 3. Uncertainty on blade pitch angle θ and induced velocity Vi.

Variable Uncertainty PDF type

Vi ± 15% Uniform

θ ± 2.5 deg Uniform

the system; such a level of uncertainty has been assessed in Ref.41 as a result of uncertainty

on both aerodynamic and structural uncertainties such as blade chord, air density, and

rotor angular velocity. Furthermore, a ±5% is added based on empirical considerations to

approximate the effects of the losses due to the wakes trailed from the blades and other

three-dimensional effects of the rotor which are not yet known in the design stage of the

blade.

In addition, the uncertain variables ξ = {θ, Vi} are modelled in a probabilistic frame-

work, meaning a probability density function is assigned to each variable. In particular,

a uniform probability density function is adopted (see Fig. 4(a)) in order to consider the

worst-case scenario among the probabilistic descriptions. That is the one where each event

in the uncertainty range is just as probable as the nominal condition (see Tab. 3). Another

modelling assumption is that the uncertain variables are independent, which may not be true

to some extent due to the connection between the rotor induced flow and the blade control.

However, because the complete aero-servo-elastic system is not under examination but only

the aerodynamic subsystem, the two variables are considered as separate and independent.

The uncertainties of the induced velocity Vi and the blade pitch angle θ affect the con-

ditions of the flowfield around the airfoil. In particular, its influence on the airfoil angle of

attack is the most significant, while minor effects are noticed on the Mach and Reynolds num-

bers. The level of uncertainty considered for each variable is consistent with those typically

employed in the literature of uncertainty-based analysis in fluid dynamics (e.g. Refs.42–44).

Their combined effect results in a large variation of the angle of attack once it is propagated

through the BEMT equations. Such a variation is up to 60%, as shown in Fig. 4(b) for the

section at 80% of the radius. The angle of attack has a fundamental role on the onset of

boundary layer instability, the occurrence of large flow separation and the development of

complex compressibility effects. In this case, taking uncertainty into account yields large

variations of the flowfield characteristics, and the most significant effect is associated with

compressibility. To show the above in a straightforward manner, the critical Mach num-

ber is computed at different angles of attack for the NACA 0012 airfoil by combining the

isentropic one-dimensional flow equation for pressure with either the Prandtl-Glauert or the

Karman-Tsien correction rule for the pressure coefficient [45, p. 325]. The result is plotted

in Fig. 5(a), where the variablity range of the flowfield parameters, angle of attack and Mach
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Figure 5. Analysis of the effect of uncertain operating conditions on the critical Mach number
(a) and on the estimates of the airfoil efficiency (b) for the NACA 0012 airfoil.

number, is also presented for different blade sections. It appears that for sections located

at a distance from the root greater than 60% of the radius, the variability range crosses the

critical Mach curve, which represents the onset of significant compressibility effects.

B. Aerodynamic models

As presented in the preceding section, computations both in the subsonic and low transonic

range are required to reconstruct the mean and the variance of the performance. In tran-

sonic conditions, only aerodynamic solvers dealing with nonlinear compressible effects yield

meaningful estimates. However, the computational cost increases when using compressible

aerodynamic models. Under the critical Mach curve, instead, cheaper computations can be

performed with a subsonic, linear model. As a result, two aerodynamic models are consid-

ered, which corresponds to different level of fidelity: a low-fidelity model suited for flow past
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an airfoil in subsonic flow, and a high-fidelity model for (low) transonic conditions.

1. Low-fidelity model

The low-fidelity solver is XFOIL, an aerodynamic solver which couples panel and integral

boundary layer methods developed for the analysis of subsonic, isolated airfoils.26 The outer

flowfield is modelled with an inviscid linear vorticity panel-based method, which is coupled

to the viscous layers represented by the two-equation lagged dissipation integral method in

order to correct the potential flow with the viscous boundary layer. Here, the transition of

the boundary layer is predicted by applying the en criterion, while compressible effects for

low Mach numbers are taken into account by the Karman-Tsien correction. This model is

well suited for the simulation of flows around an airfoil at moderate values of the angle of

attack and Mach number, and it permits a rapid evaluation of the aerodynamic coefficients.

2. High-fidelity model

The high-fidelity solver is MSES,46 a coupled Euler/integral boundary layer code for the

analysis and design of multi-element or single-element airfoils. It couples the solution of the

Euler equations implemented with a streamline-based discretization for the outer field with

a two-equation integral boundary layer formulation for the thin region close to the airfoil.

The coupling is performed by means of the displacement thickness and the system equations

are solved simultaneously by a full Newton method. The prediction of the boundary layer

transition from laminar to turbulent flow is carried out either with the full en method47 or

with the simplified envelope method.48 Thus, the MSES solver is capable of representing the

nonlinear compressibility effects arising in the transonic flow regime.

3. Comparison of aerodynamic models

Although the two models share a similar modelling of the boundary layer, the high-fidelity

solver is capable of representing the nonlinear compressibility effects arising in the low tran-

sonic flow regime. In fact, once the critical Mach number is exceeded, the wave contribution

to the global drag coefficient is no longer negligible. As a result, the difference in the quan-

tity of interest, i.e. the aerodynamic efficiency, becomes important. This is presented in

Fig. 5(b), where the relative error between the estimates of the two solvers is plotted in the

range of Mach number and angle of attack dictated by the uncertainty on the induced ve-

locity and blade pitch angle. Finally, the computational cost associated with the low-fidelity

model is lower than the cost of the high-fidelity model: on average, the XFOIL solver is ten

times faster than MSES.
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C. Shape parameterization

The shape of the airfoil is the design output of the optimization problem. To define a finite,

sufficiently small set of design variables, a parameterization is required. In this work, the

Class/Shape function Transformation (CST)49 is employed to describe the airfoil shape.

1. Class/Shape function Transformation

The parameterization is well-defined by specifying two functions: a geometry class function

C and a shape function S that defines the particular shape of the geometry. The former is

defined as follows

C(ψ) = ψN1(1− ψ)N2 , (3)

where ψ is the non-dimensional chordwise coordinate (ψ = x/c) and N1 and N2 are appro-

priate coefficients that determine the class of the geometry; in the case of an airfoil with a

rounded nose and a sharp trailing edge: N1 = 0.5 and N2 = 1 (see Ref.49 for further details).

The shape function S(ψ) is given by a Bernstein polynomial of order n. The CST is applied

to the camber mean-line ζc and to the thickness distribution ζt of the airfoil (both obtained

by projection in the direction orthogonal to the x-axis) and it reads

ζc(ψ) = C(ψ) S(ψ) + ψ ζTEc = C(ψ) ·
n∑

i=0

Ac
iSn,i(ψ) + ψ ζTEc

ζt(ψ) = C(ψ) S(ψ) + ψ ζTEt = C(ψ) ·
n∑

i=0

At
iSn,i(ψ) (4)

where the coefficients Ac
i , A

t
i define the Bernstein polynomial coefficients of the camber line

and thickness distributions respectively, Sn,i is the i-th term of the Bernstein polynomial of

order n defined as:

Sn,i =
n!

i!(n− i)!
ψi · (1− ψ)n−i. (5)

The coordinate of the trailing edge of the mean camberline is ζTEc , whereas the coordinate

of the trailing edge of the thickness distribution ζTEt is set to zero in order to consider closed

trailing edge airfoils. Finally, from the meanline and camber distribution the upper surface

ζu and lower surface ζl are computed as follows

ζu(ψ) = ζc(ψ) +
1

2
ζt(ψ), ζl(ψ) = ζc(ψ)− 1

2
ζt(ψ). (6)
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Figure 6. Results of the application of the CST for the SC1094 R8 airfoil: each dash-dotted
line in (a), (b) and (c) corresponds to a given polynomial order.

2. Convergence analysis of the CST

The order of the polynomial is chosen based on a convergence analysis of the CST. To do

this, the parameterization has been applied with an increasing polynomial order to represent

a group of helicopter rotor airfoils (e.g. NACA23012, SC1095, SC1094, HH02). A least

squares fitting is employed to determine the coefficients of the CST which best represents

each airfoil. The mean squared error MSE is computed as follows

MSE =
1

np

np∑
i=1

(
ζ̃i − ζCST i

)2
,
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where np is the number of points on the airfoil surface, ζ̃i is the exact airfoil and ζCST i
is

the CST representation, both evaluated at the i-th point. The analysis proves that with

a polynomial of 7-th order the mean quadratic error of the CST reaches a value equal to

or lower than a desired threshold set to 10−7. A representative set of results is shown for

the airfoil SC1094 R8 in Fig. 6. Thus, the order of the polynomial is set to seven and the

resulting design variables are 17: y = {Ac
i , A

t
i, ζTEc} with i = 0, ..., 7 .

D. Optimization method

In the present work, the optimizer is based on the Nondominated Sorting Genetic Algorithm

(NSGA),50 that has been largely used by the authors in previous works (see for example

Ref.51 for more details). Main tuning parameters of the algorithm are the population size,

the number of generations, the crossover and mutation probabilities pc, pm and the so-called

sharing parameter r used to take into account the relative isolation of an individual along

a dominance front. Typical values for pc, pm are, respectively, 0.9 and 0.1; values of r

are defined following a formula given in Ref.50 that takes into account the population size

and the number of objectives. Finally, the constraint on the pitching moment is obtained

by means of a penalty function that is applied to the lift-to-drag ratio when the moment

coefficient exceeds the maximum value mentioned in Section II.

E. Uncertainty quantification

The goal of uncertainty quantification in this problem is to measure the statistics of the

performance E(y, ξ) which depends on the uncertain input data ξ through the solution of

Eq. (1). The propagation of the uncertainty from the uncertain input variables to the output

of interest is discussed in the following.

1. Probabilistic framework

A probabilistic framework is employed to deal with the uncertain input data. In this context

the stochastic input quantities ξ are treated as independent continous random variables.

The random vector ξ, whose dimension is equal to the number of uncertain variables nξ,

belongs to the probability space (Ω,F , P ), composed by the sample space Ω, the σ-algebra

F of the subsets of the events and a probability measure P . It essentially maps the samples

in Ω = [0, 1]nξ into the random outcomes ξ ∈ Ξ and it is characterized by the probability

density function pξ(ξ). The output of the system, i.e. the solution of Eq. (1), is therefore a

stochastic variable, and hence the performance E(y, ξ), which is a function of the solution, is

a stochastic variable as well. In the robust optimization procedure the goal is to reconstruct

the mean value and the variance of the quantity of interest; in the following, the stochastic
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output variable is referred to as u(y, ξ), while its deterministic realization is ũi(y, ξi). Let

us define the expected value of the stochastic variable u as follows

〈u〉 =
∫
Ξ

u(y, ξ) pξ(ξ) dξ,

with pξ(ξ) =
∏nξ

i pξi(ξi) the joint probability of the independent input variables, and the

inner product operator of two stochastic variable u and v with respect to the joint probability

〈u, v〉 =
∫
Ξ

u(y, ξ)v(y, ξ) pξ(ξ) dξ.

The mean and variance then read

μ(u) = 〈u〉
σ2(u) = 〈u, u〉 − 〈u〉2. (7)

To compute the quantities in Eq. (7) several methods are available which are mainly divided

into two categories: non-intrusive methods, which rely only on a set of samples of the

output of the system, and intrusive methods, which instead require a manipulation of the

equations of the system.25 The first category is chosen because these methods do not require

a modification of the numerical solver used to compute the solution q of Eq. (1) and thus

the output u, and they also enable an easy coupling with the NSGA. Among these methods,

the quasi Monte Carlo method and the polynomial Chaos expansion are discussed.

2. Quasi Monte Carlo method

The first method considered here is a sampling technique, the quasi-Monte Carlo (QMC)

method. In this case, repeated simulations of Eq. (1) are required for each sample in the

stochastic space to get the realizations ũi; the integrals in Eq. (7) are then replaced by an

appropriate numerical quadrature. QMC differs from the usual Monte Carlo simulation in

that it uses quasi-random sequences instead of pseudo random numbers. The quasi-random

sequences are the low discrepancy Sobol sequences, which are deterministic and fill the space

more uniformly than pseudo random sequences. This method has several advantages: it is

simple and it does not rely on the regularity of the output of Eq. (1) with respect to the

uncertain input [25, p. 8-9]. On the other hand, the rate of convergence scales with n
−1/2
s

with ns the number of samples, thus a significant number of realizations are required to

achieve a sufficiently good estimate of the statistical moments. This issue is of paramount

importance for fluid dynamics applications, because the computation of Eq. (1) is typically

very expensive.
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3. Polynomial Chaos expansion

The employment of the Polynomial Chaos (PC) expansion can reduce the computational cost

of the uncertainty propagation, especially when a small number of uncertain variables are

considered, although it relies on the regularity of the function u in the stochastic space. In

fact, under specific conditions, a stochastic process can be expressed as a spectral expansion

based on suitable orthogonal polynomials, with weights associated to a particular probability

density function. The first study in this field is the Wiener process that was later developed

in Ref.52 The basic idea is to project the variables of the problem onto a stochastic space

spanned by a complete set of orthogonal polynomials Ψ that are functions of the random

variables ξ. For example, variable u has the following spectral representation:

u (y, ξ) =
∞∑
k=0

αk (y)Ψk (ξ) . (8)

where Ψk are the PC orthogonal polynomials and αk the coefficients of the expansion. In

practice, the series in Eq. (8) has to be truncated to a finite number of terms N , which is

determined by

N + 1 =
(nξ + no)!

nξ! no!
,

where nξ is the dimension of the uncertainty vector ξ and no is the order of the univariate

polynomial expansion φi(ξi) from which the multivariate polynomials Ψk(ξ) are obtained via

tensorization, i.e.

Ψk (ξ) =

nξ∏
i

φi(ξi).

The polynomial basis φi(ξi) is chosen according to the Wiener-Askey scheme52 in order to

select orthogonal polynomials with respect to the probability density function pξ(ξ) of the

input. In this work, because a uniform distribution is considered, Legendre polynomials

are employed. The orthogonality property can be advantageously used to compute the

PC coefficients of the expansion αk in a non-intrusive PC framework; this procedure is

called Non-Intrusive Spectral Projection (NISP).51 In fact, from the orthogonality property

it directly follows that

αk =
〈u(y, ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉 ∀k. (9)

The computation of the PC coefficients requires the integration of the polynomials in Eq. (9).

This can be estimated with several approaches, among which Gaussian quadrature formula

is chosen in this study.51 As a result, the solution of the deterministic problem in Eq. (1)

is required for each quadrature point. Once the polynomial chaos and the associated αk

coefficients are computed, the mean value and the variance of the stochastic solution u (x, ξ)
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are obtained by leveraging the orthogonality of the polynomials Ψk with respect to the

probability function pξ:

μ(u)|PC =

〈
N∑
k=0

αk (y)Ψk (ξ)

〉
= α0 (y)

σ2(u)|PC =

〈(
N∑
k=0

αk (y)Ψk (ξ)

)2〉
− α2

0
(y)

=
N∑
k=1

α2

k (y)
〈
Ψ2

k

〉
.

4. Convergence study of PC order

Before running the robust optimization, a preliminary convergence study in the stochastic

space was performed to determine the number of deterministic computations required for

each design run. Thus, the QMC and PC methods are employed to reconstruct the mean

and variance of the lift-to-drag ratio for the NACA 0012. For this comparison, the MSES

code for the section at 40% of the blade radius is considered. Results are presented in Fig. 7,

where mean and variance are plotted against the order no of the polynomials employed

by the PC method. Note that the number of samples employed by the PC approach is

(no + 1)nξ , whereas the number of samples for the QMC method are indicated in brackets

in the legend of the figure. The comparison shows that the PC results tend to reach the

QMC result corresponding to the higher number of evaluations (1000) with an increasing
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Figure 7. Estimate of the mean value (left) and variance (right) of the lift-to-drag ratio E
obtained with QMC and PC methods.
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Table 4. Results of convergence study with QMC and PC methods (the percentage error is
computed with respect to the value obtained with QMC with 1000 samples.

Samples μE Error μE [%] σ2

E Error σ2

E [%]

QMC

50 63.6145 0.29 121.5720 3.38

100 63.5651 0.21 122.2711 2.82

500 63.4597 0.05 126.4798 0.52

1000 63.4296 - 125.8205 -

PC

9 63.4331 0.01 129.8617 3.21

16 63.3252 0.16 115.8137 7.95

25 63.4729 0.07 122.0178 3.02

36 63.3460 0.13 122.0256 3.02

49 63.4635 0.05 124.4259 1.11

64 63.3561 0.12 125.3327 0.39

81 63.3902 0.06 124.2543 1.25

100 63.3755 0.09 125.1795 0.51

121 63.4595 0.05 125.6586 0.13

PC order. Taking the QMC result with 1000 samples as a reference, the percentage errors

on the mean err(μE) and the variance err(σ2

E) are computed. The error on the mean value is

far below 1%, whereas for the variance, a PC order equal to or higher than four is required

to get an error lower than 4% (see Tab. 4). Given these results, the fourth-order PC, which

corresponds to 25 samples per design, is chosen for the optimization, as it represents a good

trade-off between accuracy and computational cost. This analysis proves the capability of

the PC approach to provide an accurate estimate of the statistics with a much lower number

of samples with respect to the Monte Carlo method for the problem of interest. It is also

worth noting that a higher number of samples are required to get a higher order statistical

moment (i.e. the variance), whereas the mean value is well-estimated with fewer terms.

IV. Multi-fidelity strategy based on physical models

From the scheme outlined in Fig. 3 it is evident that the coupling of the optimization

loop with the uncertainty quantification analysis results in a substantial increase of the

computational cost of the optimization procedure. This increase is due to the higher number

of evaluations of the solution of Eq. (1) required by the uncertainty propagation technique.

It is therefore proportional to the cost of solving the system equations. In the case of a

low-fidelity model, which is typically fast or moderately expensive, the global optimization

cost is still feasible, but it becomes less attractive when more accurate, yet expensive models
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are available. The employment of an inappropriate aerodynamic model inevitably affects the

estimate of the objective function: inaccurate estimates, such as those obtained with a low-

fidelity model, may drive the optimization procedure to false optima. To possibly circumvent

this problem while reducing the computational cost, a multi-fidelity optimization algorithm

is proposed which employes information coming from both the low-fidelity and high-fidelity

models.

A. Description of the multi-fidelity strategy

The starting point is the definition of two models of different fidelity, each of which balances

out the other’s cons. An initial characterization of the discrepancy between the estimates

of the models must be performed. To do this, the quantity of interest for a reference design

is computed with both models in each point of the sampling set Ωs in the stochastic space

defined by the UQ non-intrusive method. The reference design is either the initial design or a

design representative of the class of possible solutions defined by the chosen parameterization.

Then, a set Ωc of control points is defined which represents a subset of the samples set Ωs

in the stochastic space. This subset includes some representative samples of the difference

between the two models; for example, the sample corresponding to the nominal condition,

the samples with highest and lowest discrepancy in each dimension of the stochastic space

may fall into this subset. In the optimization loop, the control points for each design will

be evaluated with both models, to measure the difference between them. The neighbouring

sample points will be evaluated with either the low or high-fidelity model according to a

switching logic based on the discrepancy of the closest control point.

For the problem considered here, the switching logic relies on physical considerations

based on compressibility effects. In fact, the approach used to discriminate the quality of the

results is based on the hypothesis that the low-fidelity model provides an adequate estimate of

the performance unless significant compressibility effects are present. When compressibility

is not negligible, the method switches from the low-fidelity model to the high-fidelity model

to get a more accurate estimate of the objective function. As a result, the high-fidelity model

is used only for a small number of samples, namely the samples in which the freestream Mach

number exceeds the critical value as shown in Fig. 5(a). However, the operating conditions

for the onset of significant compressibility effects depend on the shape of the airfoil, and

thus they should be evaluated for each particular design in the optimization loop. For this

reason, it is necessary to decide, independently for every design configuration, which model

to use for each of the 25 samples in the domain Ωs required by the PC expansion. First, the

subset Ωc of control points is defined, which includes the limiting operating conditions in the

stochastic space. Because the physical problem considered here is dominated by the effect of

the angle of attack and the Mach number, the samples ξi are mapped into the (α,M)-plane.
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The subset of control points is chosen as the set of conditions including (i) the nominal

condition (αn,Mn), and the conditions corresponding to the bounds of the complete samples

set: (ii) minimum Mach number Mmin and angle of attack at the minimum Mach number

αMmin
, (iii) maximum angle of attack αmax and minimum Mach numberMmin, (iv) maximum

Mach number Mmax and minimum angle of attack αmin, (v) maximum Mach number Mmax

and angle of attack at maximum Mach number αMmax (see the crosses in Fig. 8). Once the

control points are defined, a measure of the compressibility effects is required as a control

function. The discrepancy between the low-fidelity model and the high-fidelity model is

chosen, because this difference is strictly connected to the increase of the wave drag, as

presented in Section III . B. For each individual in a generation, the following steps are

performed (summarized in Fig. 9):

1. compute the performance using the low-fidelity model Jl and using the high-fidelity

model Jh for the control points and evaluate the control function C for each control

point

Ci = |(Jh,i − Jl,i)/Jh,i| ∀i ∈ Ωc,

which represents the error of the low-fidelity estimate;

2. for each sample point j ∈ Ωs, the closest control point i ∈ Ωc is computed and if the

control function Ci for such control point exceeds an assigned threshold value τ , the

solution of Eq. (1) is evaluated with the high fidelity model, otherwise, the low-fidelity

estimate is employed;

3. the mean value and variance are computed by means of the uncertainty quantification

method using the samples in Ωs.

As a result, some samples in the stochastic space are evaluated with the low-fidelity model,

and others with the high-fidelity model (see Fig. 8).

The method is independent of the type of sampling in the stochastic space, and of the

input PDF as well. However, it is strongly influenced by the choice of control points. In this

case five control points have been chosen. Additional intermediate control points can be used

to improve the resolution of the control function. This may be a good strategy in the case of

control functions that have many local minima/maxima. It could reduce the number of HF

samples for a given design, but it would increase the number of HF computations required by

the switching logic. A trade-off number should be found, which may also take into account

the available resources. A physical knowledge of the problem under consideration and of the

models employed in the optimization would support the definition of the control points in

the multi-fidelity strategy.
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Figure 8. Points used in the multi-fidelity strategy in the (α,M)-plane; the quadrature points
are divided into: control points (cross), points evaluated by the low-fidelity model (filled
dots) and points with significant compressibility effects evaluated with the high-fidelity model
(empty squares). Summary of the control points on the right.
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Figure 9. Flowchart of the multi-fidelity selection strategy.

To some extent, this multi-fidelity method could be regarded as an extension of an Evo-

lution Control strategy53 in the case of uncertainty-based optimization. As a matter of fact,

Evolution Control is a multi-fidelity technique for evolutionary algorithms in which either a

certain number of individuals within a generation or a certain number of generations within

an evolution are evaluated with the high-fidelity fitness function. The “control” consists in

switching to the higher fidelity method for those selected individuals, thereby adding high-

fidelity information about the fitness function of the population. In the application to robust
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optimization, the proposed method performs a control of the evolution in the stochastic space

rather than in the design space. In other words, the switching logic acts on each individual

of every generation, but only for a subset of samples in the stochastic space.

B. Preliminary results

The multi-fidelity strategy is applied to the NACA 0012 as a reference configuration. The PC

meta-model which represents the system output E as a function of the uncertain variables

(i.e. induced velocity Vi and blade pitch angle θ), is obtained by means of the high-fidelity

(HF) model, the low-fidelity (LF) model and finally with the proposed multi-fidelity (MF)

strategy. The result is presented in Fig. 10, where the samples of the PC method are marked

(a) Efficiency meta-model obtained with LF sam-
ples

(b) Efficiency meta-model obtained with HF sam-
ples

(c) Efficiency meta-model obtained with MF sam-
ples

Figure 10. Aerodynamic efficiency evaluation on the PC sampling points using the multi-
fidelity approach (empty squares for HF samples, filled dots for LF samples) at r = 0.8.
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as squares when the HF estimate is employed and dots for the LF computations. As expected,

the LF model does not account for the loss in the aerodynamic efficiency encountered at

higher values of pitch angles and low values of induced velocity (which correspond to higher

angles of attack, since the induced velocity acts as a downwash on the airfoil flowfield).

Instead, the correction of the MF method, which is mainly applied in that area, yields the

quantitative behavior of the response obtained with the HF model. The statistics resulting

from the PC expansion are then collected in Table 5, which presents the mean value, variance

and probability of the efficiency E obtained with the HF method and the relative error

obtained with the LF model and MF strategy. The error on the MF estimates of the function

employed in the optimization loop are reduced with respect to the LF case. Figure 11

shows the Probability Density Function (PDF) of the lift-to-drag ratio obtained by means

of Monte Carlo sampling of the PC meta-model. It appears that the multi-fidelity strategy

well captures the tail of the distribution and it shares the same support with respect to the

high-fidelity PDF, although both the low-fidelity and the multi-fidelity models lack accuracy
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0.4
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E

p
E

50 100
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p
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E
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Figure 11. Comparison of uncertainty output prediction of the high fidelity (HF) method, low
fidelity (LF) method and multi-fidelity (MF) method at r = 0.8.

Table 5. Reconstruction of statistics with low-fidelity, high-fidelity and multi-fidelity models
at r = 0.8.

Method μ σ2 σ/μ p(E < 50) p(50 ≤ E ≤ 80) p(E > 80)

HF 74.89 128.99 0.15 0.03 0.54 0.43

err (μ) err (σ2) err (σ/μ) err (p(E < 50)) err (p(50 ≤ E ≤ 80)) err (p(E > 80))

LF 3.92 % 6.77 % 0.56 % 20.97 % 17.28 % 22.93 %

MF 3.02 % 0.68 % 3.46 % 4.12 % 13.08 % 16.64 %
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in predicting the PDF peak.

Furthermore, the estimates of the mean value and variance of the aerodynamic efficiency

obtained with the HF, LF and MF optimization strategies are compared for the set of 200

individuals belonging to the first generation of the genetic algorithm for the blade section at

80% of the radius. The estimates are non-dimensionalised and plotted in Fig. 12, where the

dispersion with respect to the solid line represents the error between the method reported

on the ordinate and the HF result on the abscissa. The MF strategy greatly reduces the

dispersion of the LF results, demonstrating the effectiveness of the switching logic.
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Figure 12. Comparison of objective estimates of the HF, LF and MF methods for the first
generation of the robust genetic optimization obtained at r = 0.8.

V. Optimization results

Two blade sections are considered: an inboard section at 40% of the blade radius and an

outboard section at 80% (the corresponding operating conditions are reported in Table 2).

The operating Mach number of the blade section in this case is mainly affected by the tan-

gential velocity due to the rotor rotation, which grows linearly going outboard. Thus, the

inboard section features subsonic flow, whereas the outboard section undergoes low tran-
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sonic flow. The results for the inboard section are presented to assess the effectiveness of the

robust optimization technique by comparing the results with other classical optimization ap-

proaches, such as the deterministic single-point and multi-point optimization problems. The

second set of results are aimed at presenting the performance of the multi-fidelity algorithm

developed in this work.

A. Inboard section

In this section, the results of the optimization of the inboard section airfoil obtained with

the low-fidelity model are presented in order to examine the effectiveness of the robust

optimization approach. In addition, because the operating conditions at 40% blade span

do not involve significant compressibility effects, the low-fidelity model in this condition

provides good estimates of the quantity of interest at a very low computational cost.

1. Convergence analysis of optimizer

To begin with, some properties of the optimization algorithms are discussed. The population

size and the number of generations for the convergence of the genetic algorithm should be

chosen according to the number of parameters and objectives of the particular optimization

problem. However, in practice the population size and number of generations are set by

also taking into account the constraints related to the global amount of CPU time devoted

to the computation. It must be recalled that taking too small a population may rapidly

lead to a local optimum from which the iteration process on the generation number will not

evolve. On the other hand, a large population would permit the computation of only a few

generations, resulting in a poorly converged solution. In the present work, after performing

an initial generation of 200 individuals to explore the design space, 40 individuals are then

retained and evolved. The evolution of the Pareto front is presented in Fig. 13(a), where the

objective functions of the individuals are presented at different generations. It appears that

by increasing the number of generations the front moves to higher values of the mean and

lower values of the variance, with a decaying rate.

To assess the convergence of the genetic optimization, several empirical measures are

available: the global number of dominated solutions per generation, the diversity or spread

of the individuals in the design space and the domination rate.54,55 The latter measure rep-

resents the percentage of non-dominated individuals that become dominated in the following

generation, and should then decrease as the population evolves. The aforementioned domi-

nation rate is plotted in Fig. 13(b). Despite the presence of oscillations due to the stochastic

nature of the genetic algorithm, the convergence trend is still clear.
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Figure 13. Convergence of the Pareto front (LF method).

2. Analysis of Pareto fronts

The final Pareto front is shown in Fig. 14(a), where the optimal mean airfoil and the optimal

variance airfoil are highlighted with different symbols. Estimates of the mean and variance

for selected reference airfoils are compared against the Pareto front in the same figure. The

NACA 23012 has been here analysed, since it is a reference airfoil for rotorcraft applications.

The airfoil labelled Single-Point is the optimal airfoil obtained with a single-objective deter-

ministic optimization in the nominal operating condition. Likewise, the Multi-Point airfoil

is the result of a multi-point single-objective optimization, where the cost function is the

average sum of the lift-to-drag ratio over three operating conditions (nominal, higher angle

of attack and lower angle of attack conditions). For these airfoils, the statistics have been

evaluated in a post-processing phase by computing the aerodynamic efficiency in the same

uncertain conditions employed for the robust approach. In the objective space, the reference

airfoils have either a high mean value (NACA 23012, Single-Point and Multi-Point) or a low

variance (NACA 0012). The non-dominated solutions represent a trade-off between the two

requirements: in fact, they have a high mean value comparable to those of the Single-Point

airfoil, but they also have a variance lower than the value of the NACA0012. In this sense,

they outperform the reference airfoils. This is especially true in terms of robustness (i.e.

reduction of the variance), even for the cases where the maximum mean values of the effi-

ciency are obtained. As a consequence, the robust approach appears to be a better design

method, even when compared with the multi-point optimization. This is because it results

in the enhancement of the performance indicators. The airfoils with higher mean and lower
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variance and a representative trade-off airfoil lying close to the midpoint of the Pareto front

are plotted in Fig. 14(b).

The results obtained with the high-fidelity and multi-fidelity methods are presented in

Figs. 15(a) and 15(b). In order to compare the three fronts, the airfoils belonging to the

LF and MF fronts have been post-processed with the HF model. Figure 16(a) shows the

comparison of the Pareto fronts. The results obtained by means of both the low-fidelity and
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Figure 14. Result of the optimization at r = 0.4 for the LF methods.
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Figure 15. Result of the optimization at r = 0.4 for the HF and MF methods.
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Figure 16. Comparison of LF, HF and MF results at r = 0.4.

multi-fidelity methods are in very good agreement with those of the high-fidelity model. In

particular, the optimal mean airfoil is the same in the three cases, and the optimal variance

airfoils are very similar (Fig. 16(b)). In fact, the basic physics that dominates the flow in

this condition is captured in a similar way by the two numerical models. Nevertheless, the

multi-fidelity result is closer to the low-fidelity one. Since the Mach number in this case does

not exceed 0.258, the control of the multi-fidelity strategy acts only on a relatively small

number of points, as defined in Section IV.

A quantitative measure of this difference is computed by taking the mean of the distance

of each point of the Pareto front to the closest point of the HF Pareto front, as suggested in

Ref.56 In mathematical terms, the distance dA−B of the Pareto set PA to the Pareto set PB

reads

dA−B =
1

|PA|
|PA|∑
i=0

min
f∈PB

||f(yi)− f(yPB
)|| (10)

where symbol | · | indicates the cardinality (i.e. number of elements) of the set, symbol || · ||
is the Euclidean distance, f and y are respectively the objective functions and the design

variables of the elements in the Pareto set. The distance dMF−HF of the MF set to the HF

set is equal to 44.1, while the distance dMF−LF of the MF set to the LF set is 4.4, proving

that the MF set is closer to the LF set rather than the HF set (see Tab. 6). With regard

to the computational cost, the number of function evaluations are computed to compare the
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Table 6. Distance of MF front to HF and LF fronts for r = 0.4.

dMF−HF dMF−LF
44.1 4.4

Table 7. Comparison of computational cost of different robust optimization strategies: cost
is computed considering 1 cost unit for each HF evaluation and 0.1 cost unit for each LF
evaluation.

LF HF MF

LF evaluations 32100 - 31625

HF evaluations - 32450 6325

Cost 3210 32450 9487

three strategies. In particular, the cost is computed by approximating the ratio of the cost

of a single LF run over the cost of a HF run to 0.1 and the results are presented in Table 7.

It is evident that the low-fidelity and the multi-fidelity strategy permit a great reduction

of the computational cost, although the optimization result is still consistent with the high

fidelity-based method.

3. Analysis of optimal airfoils

In the following, the optimal mean airfoil and the optimal variance airfoil obtained with

the high-fidelity model are analysed in more detail. First, the meta-models representing

the lift-to-drag ratio in the stochastic space are compared in Fig. 17(a). As expected from

the optimization objectives, the lift-to-drag ratio of the optimal variance airfoil is almost

constant over the domain at the expense of a poorer performance. The output PDF is then

obtained by Monte Carlo sampling of the meta-model and it is presented in Fig. 17(b). The

PDF of the optimal mean airfoil has a spread support which extends to higher values of the

lift-to-drag ratio, whereas the PDF of the optimal variance airfoil is narrower.

The preceding figures have shown that the optimal variance airfoil appears to achieve the

target of minimizing the variance, by reducing the peak of the aerodynamic efficiency with

respect to the angle of attack. In order to do so, the optimization process leads to an airfoil

shape that reduces the aerodynamic load, by unloading the region after the suction peak on

the upper surface and by increasing the local curvature on the lower surface with respect to

the optimal mean airfoil (see Fig. 18). The reduction of the upper surface thickness results

in a sharper leading edge. The fast transition to a turbulent boundary layer induced by the

highly loaded nose contributes to the reduction in the lift-to-drag ratio due to the increase

31 of 41

Page 31 of 41

Submitted to AIAA Journal. Confidential - Do not distribute.

AIAA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
10

12
14

16

8

10

12

14
50

100

150

θ [deg]

Optimal Mean Airfoil

Vi [m/s]

E
 [−

]

10
12

14
16

8

10

12

14
50

100

150

θ [deg]

Optimal Variance Airfoil

Vi [m/s]
E

 [−
]

(a) Efficiency meta-model in the stochastic space
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Figure 17. Efficiency of the optimal mean and variance airfoils (HF).
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Figure 18. Comparison of the flowfield of the optimal airfoils (HF): a thick black line is
employed for the nominal condition and thin grey lines for the remaining samples.

in friction drag. On the other hand, the optimal mean airfoil has higher camber with a

more loaded upper surface and a nearly flat region on the lower surface to reduce the flow

acceleration. In addition, the pressure peak at the leading edge is less severe and more

gradual with respect to the optimal variance airfoil, moving towards a laminar flow airfoil.

This results in a lower drag coefficient, at the cost of a higher sensitivity of the performance

with respect to changes in the operating conditions. As a final remark, the optimal mean

airfoil obtained in this optimization appears to be very similar to the result obtained in Ref.7

for the subsonic lift optimization of an airfoil with constrained drag. However, the leading

edge in that case is more drooped owing to the higher freestream angle of attack.
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B. Outboard section

In the case of the outboard section at 80% of the blade radius, the freestream condition is low

transonic and the compressibility effects are expected to result in non-negligible differences

among the three optimization strategies.
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Figure 19. Result of the optimization at r = 0.8.
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1. Analysis of Pareto fronts

The Pareto front obtained with the proposed multi-fidelity strategy is presented in Fig. 19(a).

The MF Pareto front is closer to the front obtained with the HF method (Fig. 19(b)), even

though the starting point of the method is the full LF method which results in a very different

front (Fig. 19(c)). To better appreciate the improvement of the MF method with respect

to the LF optimization, the LF and MF fronts are re-computed with the HF model, and

compared with the HF results in Fig. 19(d). The multi-fidelity result is closer to the HF

result with respect to the LF front: using the definition in Eq. (10), the distance dMF−HF of

the MF set to the HF set is equal to 9.5, while the distance dLF−HF of the LF set to the HF

set is 22.8 (see Tab. 8). Also, the MF method defines a Pareto front on the objective space,

whereas the LF results are more sparse and do not present a clear trend.

The airfoils obtained by the optimization are presented in Fig. 20. With respect to

the mean optimal airfoils, although the MF and the HF results have a different maximum

thickness position, they present similar curvature in the region close to the leading edge. Note

that the LF optimal mean airfoil shows a greater leading edge radius, and a distribution of

the lower side which resembles the airfoil obtained for the inboard section. As expected, the

Table 8. Distance of MF and LF fronts to HF front for r = 0.8.

dMF−HF dLF−HF

9.5 22.8
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Figure 20. Comparison of LF, HF and MF results.
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Figure 21. Comparison of the performance and of the optimal mean airfoils resulting from LF,
HF and MF methods: results of LF and MF optimizations are re-computed with HF model.

LF result does not take into account the change in the operating conditions. The difference

on the optimal variance airfoils is instead less pronounced.

The performance of the mean optimal airfoils are compared to appreciate the difference

in the results. The aerodynamic efficiency computed for all the three optimization strategies

with the HF model is presented in Fig. 21(a), which shows that the HF and MF results

present similar trend in terms of aerodynamic efficiency. Both results exhibit an overall

efficiency which is higher than the one obtained by the LF optimization; this is explained

in Fig. 21(b) by the behavior of the wave drag coefficient CDW
, which is computed as the

integral of the momentum defect over the streamtubes in the region outside the boundary

layer.57 The LF airfoil suffers from a larger drag penalty for higher values of the angle of

attack. In fact, the effect of compressibility is greater at higher angle of attack with respect

to the HF result. Addittionally, the increase in the drag coefficient due to compressibility

appears at a lower value of the angle of attack. The result of the HF optimization does not

suffer from a harsh drop off after the maximum of the aerodynamic efficiency is reached,

thereby postponing the drag rise due to compressibility effects. In this respect, the MF

result represents a trade-off solution between the two results.

With regard to computational cost, the number of evaluations of the solvers is presented

in Table 9. The comparison proves that the computational effort of the HF method is

reduced by 60% with the MF strategy. Also, the MF strategy employs one third of the

HF evaluations required by the full HF optimization. This proves the main benefit of the
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Table 9. Comparison of computational cost of different robust optimization strategies at
r = 0.8: cost is computed considering 1 cost unit for each HF evaluation and 0.1 cost unit for
each LF evaluation.

LF HF MF

LF evaluations 32600 - 29166

HF evaluations - 33475 10324

Cost 3260 33475 13241

proposed MF strategy, which generates solutions very close to the HF ones, but with a strong

reduction of the computational cost. The MF strategy is thus capable of indicating regions

of improvement in the design space, whereas a detailed analysis of the optimal solutions is

left to higher fidelity methods and/or wind tunnel testing.

2. Analysis of optimal airfoils

To understand the validity of the robust approach in the outboard case as well, the HF

results are discussed in more detail. With regard to the Pareto front airfoils presented in

Fig. 20, it appears that the relationship between the optimal mean airfoils and the optimal

variance airfoils found in the inboard section case, still holds. The optimal mean airfoils

tend to be those with a mild curvature at the leading edge and more rear loaded. The
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Figure 22. Comparison of the pressure coefficient of the optimal airfoils (HF) at r = 0.8: a
thick black line is employed for the nominal condition and thin grey lines for the remaining
samples.
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optimal variance airfoils present a higher curvature at the leading edge. Indeed, the analysis

of the pressure coefficient of the two airfoils, presented in Fig. 22, shows that the optimizer

generates an optimal mean airfoil with an almost flat region of pressure coefficient behind

the leading edge and reduces the number of operating conditions in the considered range for

which a weak shock wave occurs. The optimal variance instead counteracts the growth of

the lift coefficient resulting from the increase in the angle of attack, by producing a shock

wave behind the peak close to the leading edge in a larger range of operating conditions.

This balance results in a lower variance, at the expense of lower aerodynamic efficiency.

VI. Conclusions

The robust optimization technique based on Polynomial Chaos expansion and a genetic

algorithm is capable of dealing with the range of operating conditions encountered when

tackling the uncertainty-based design case presented. When considering uncertainties in

the operating conditions, different flow regimes could be encountered in the domain defined

by the stochastic variables, which require specific physical models and numerical solvers.

The multi-fidelity strategy proposed in the work deals with two different models of the

aerodynamics which have different accuracy and computational cost. In particular, a rapid

estimation is obtained by means of a panel/integral boundary layer method for the stochastic

sample associated with subsonic flow conditions, while a coupled Euler equations/integral

boundary layer solver is employed for those operating conditions in the stochastic variables

domain that exhibit important compressible effects. A switching logic is used for each design

to determine which samples should be computed by the rapid low-fidelity or by the high-

fidelity codes. The method proved effective in finding airfoils that improve the aerodynamic

efficiency, by postponing the boundary layer transition to turbulence in the subsonic case, and

by reducing the drag due to compressibility effects in the low transonic case, in the range of

considered operating conditions. The multi-fidelity strategy reduces the computational cost

by 60% with respect to the high-fidelity strategy, and results in Pareto airfoils consistent

to the high-fidelity results. Thus, the proposed method is well-suited to indicate regions

of improvement in the design space, which can be later analysed in detail by means of a

high-fidelity model. In addition, the multi-fidelity strategy could be easily applied to other

models at one’s disposal, and it could be extended to other flowfield characteristics and

physical models. Furthermore, the robust optimization proved to be a reliable and effective

design tool when compared with two deterministic approaches.

The employment of robust optimization is thus expected to be of great interest in the

application of helicopter rotor airfoils, owing to the fact that even the airfoils with higher

mean values achieve lower values of the variance of the aerodynamic efficiency with respect
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to variations of the angle of attack. The reduction of the variance could lead for instance to

a reduction of the required rotor shaft torque in variable operating conditions. A complete

optimization of the airfoil for its application on a helicopter rotor will require to include

the analysis of the forward flight conditions together with the hover. The extension of the

presented approach to forward flight will affect only the characterization of the uncertainty

intervals of the variables and the choices associated with them, i.e. the selection of the

control points and of the most appropriate physical models for each flow condition. However,

the proposed multi-fidelity physics-based strategy will be still applicable as is also to this

case. Finally, the paper provides a first set of results in the uncertainty-based aerodynamic

optimization of rotor blade airfoils in hover.
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