
A

Textual and Content-Based Search in Repositories of Web
Application Models

BOJANA BISLIMOVSKA,
Politecnico di Milano, Dipartimento di Elettronica, Infor mazione e Bioingegneria (DEIB)
ALESSANDRO BOZZON,
Delft University Of Technology, Software And Computer Tech nology Department
MARCO BRAMBILLA,
Politecnico di Milano, Dipartimento di Elettronica, Infor mazione e Bioingegneria (DEIB)
PIERO FRATERNALI,
Politecnico di Milano, Dipartimento di Elettronica, Infor mazione e Bioingegneria (DEIB)

Model-Driven Engineering relies on collections of models, which are the primary artefacts for software de-
velopment. To enable knowledge sharing and reuse, models ne ed to be managed within repositories, where
they can be retrieved upon users queries. This paper examine s two different techniques for indexing and
searching model repositories, with a focus on Web developme nt projects encoded in a Domain Speci�c Lan-
guage. Keyword-based and content-based search (also known as query-by-example) are contrasted, with
respect to the architecture of the system, the processing of models and queries, and the way in which meta-
model knowledge can be exploited to improve search. A thorou gh experimental evaluation is conducted to
examine what parameter con�gurations lead to better accura cy and to offer an insight in what queries are
addressed best by each system.

Categories and Subject Descriptors: D.2.13 [Reusable Software]: Reuse models; H.3.3 [Information
Search and Retrieval]: Search process

General Terms: Algorithms, Experimentation, Design, Perf ormance

Additional Key Words and Phrases: Information Retrieval, W eb Application, Search, Domain Speci�c Lan-
guage

ACM Reference Format:
Bislimovska, B., Bozzon, A., Brambilla, M., Fraternali P. 2 013.Textual and Content-Based Search in Repos-
itories of Web Application Models. ACM Trans. Web V, N, Artic le A (January YYYY), 49 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0 000000.0000000

1. INTRODUCTION

The increased complexity and pervasiveness of software req uires raising the level of
abstraction, and automating labor–intensive and error-pr one tasks to increase ef�-
ciency and effectiveness in software development [Mohaghe ghi and Dehlen 2008].

An approach that advocates software abstraction through th e use of models is Model-
Driven Engineering (MDE), widely used in academia and indus trial organizations

This work is partially supported by the FP7 Cubrik Integrati ng Project (http://www.cubrikproject.eu/)
and by the Capacities Research for SMEs project BPM4People o f the Research Executive Agency of the
European Commission (http://www.bpm4people.org/)
Author's addresses: B. Bislimovska, M. Brambilla and P. Fra ternali, Dipartimento di Elettronica, Infor-
mazionee Bioingegneria (DEIB), Politecnico di Milano. P.z za Leonardo Da Vinci 32, 20133, Milano, Italy; A.
Bozzon, Web Information Systems, Delft University of Techn ology, Mekelweg 4, 2628 Delft, The Netherlands
Permission to make digital or hard copies of part or all of thi s work for personal or classroom use is granted
without fee provided that copies are not made or distributed for pro�t or commercial advantage and that
copies show this notice on the �rst page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be ho nored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior speci�c permissio n and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax + 1 (212)
869-0481, or permissions@acm.org.
c
 YYYY ACM 1559-1131/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.114 5/0000000.0000000

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://www.cubrikproject.eu/
http://www.bpm4people.org/

A:2 B. Bislimovska et al.

across different domains. MDE promotes the use of models in a ny engineering activity
as abstractions that provide a simpli�ed or partial represe ntation of reality, useful to
accomplish a task or to reach an agreement on a topic. Model-D riven Software En-
gineering speci�cally considers software models, i.e., ab stractions of the static or dy-
namic properties of a software system. Studies demonstrate that the bene�ts of MDE
in industry are perceived in terms of quickly responding to c hange of requirements,
of streamlining communication among stakeholders [Mohagh eghi and Dehlen 2008]
thanks to more accessible organizational knowledge [Hutch inson et al. 2011], and of
improving the quality of code design and test case developme nt [Anda et al. 2006].

The adoption of MDE in academic and business organizations r esulted in an increas-
ing number of models collections, stored in model repositories [France et al. 2006]. To
name but a few: the MIT Process Handbook [MIT 2012] contains o ver 5000 business
process model entries; the AtlanMod Metamodel Zoos [AtlanM od Group 2012] pro-
vides a collection of more than three hundred metamodels; th e ReMODD repository
[ReMoDD Team 2012; France et al. 2012] is collecting case stu dies, models and meta-
models in different modeling languages. In the industry, se veral MDE tool vendors pro-
vide repositories that contain application and component m odels authored with their
tools: examples include the WebRatio Store [WebRatio s.r.l . 2012]; the Mendix App
Store [Mendix 2012], the CodeCharge Studio marketplace [Ye sSoftware, Inc. 2012],
the Genexus marketplace [Artech Consultores S.R.L. 2012], and the Outsystems
AgileNetwork component repository [Outsystems Inc. 2012] .

Reuse and sharing of software requires the ability of effect ively retrieving artifacts
that meet the user's need, which is the goal of software search systems. Besides the
software repositories inside organizations, several on-l ine tools exemplify the state-of-
the-art in sharing and retrieving code, e.g., Google code, Snipplr , Koders, and Codase1.
In the simplest case, the user submits keywords, which are ma tched to the code, and
receives as a response the programs that contain the search t erms. Advanced sys-
tems offer more powerful functionality: 1) expressive quer y languages, e.g., regular
expressions (in Google Codesearch) or wildcards (in Codase); search over syntactical
categories, like class names, method invocations, and vari ables (e.g., in Jexamples and
Codase); result restriction based on metadata (e.g., progr amming language, license
type, �le and package names). In the simplest systems the res ult set is a plain list of
unranked hits, but more sophisticated interfaces offer cla ssical IR-style ranking based
on term importance and frequency or even composite scores co mpounding number of
matches in the source code, recency of the project, number of downloads, activity rates,
and so on; for example, in SourceForge users can receive resu lts ranked by any combi-
nation of relevance of match, activity, date of registratio n, and recency of last update.

Model repositories are not yet as well developed and widespr ead as source code
repositories. The latter enable code-level reuse and thus a reduction of development
time and costs, and may improve software quality, as novice p rogrammers can learn
from the code produced by more experienced ones. The same adv antages could be
achieved in MDE, if repositories allowed for the ef�cient re trieval of models relevant
to the user's needs. Most industrial repositories offer rat her elementary interfaces,
where users can only search by matching keywords against the model's description
or explore the available content via taxonomical navigatio n and facets. More power-
ful approaches may foster early stage model reuse and promot e the dissemination of
modeling best practices across projects and development te ams: for example, a devel-
oper wishing to implement a given application requirement m ay �nd in the company's
repository models that solve similar tasks and reuse them en tirely or some design

1Sites: http://code.google.com , http://www.snipplr.com , http://www.koders.com , http://www.codase.
com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://code.google.com
http://www.snipplr.com
http://www.koders.com
http://www.codase.com
http://www.codase.com

Textual and Content-Based Search in Repositories of Web Application Models A:3

pattern embedded therein. Model search approaches should e xploit in more depth the
main difference between source code and models, that is, the high level, structural, and
often visual nature of a model representation . Ideally, an MDE developer should be able
not only to search models via keywords, but also to sketch the idea he has in mind in
his favorite Domain Speci�c Language and retrieve all model s that contain a similar
design, properly ranked according to their relevance to the query. Therefore, similarity
search techniques are essential to allow developers' needs be formulated in the same
language in which solutions are expressed.

Model search is most useful during the initial phases of appl ication development:
the translation of software requirements into design artif acts and the transformation
of coarse design models into detailed models. In the former c ase, requirements can be
expressed concisely as keywords and used to �nd relevant mod els; in the latter case,
coarse design models can be used for retrieving more detaile d ones.

With the notable exception of Business Process Models repos itories, where re-
search has investigated similarity measures for the speci� c syntax and seman-
tics of process models [Mendling et al. 2007; Niemann et al. 2 012; Qiao et al. 2011;
Dijkman et al. 2009], content-based search and multimodal s earch (e.g., keyword plus
content based search) are still not the state-of-the-pract ice for model repositories,
which sets the background for the research reported in this p aper.

1.1. Motivating Example

To better motivate the need for search in model repositories , let us consider the sce-
nario depicted in Figure 1: Alice is a developer in a company adopting MDE for the de-
sign and implementation of Web-based information systems. Alice is currently working
on the development of a novel customer management system and she has to address
the requirement of allowing authentication of users throug h the OAuth 2 protocol. Let's
assume her company already had several experiences in the de velopment of system ex-
ploiting open authentication techniques; therefore, the m odel repository contains some
project where this speci�c functionality has been designed already. Alice might be or
not be aware of such previous work, but the reuse of existing m odels or the adherence
to modeling patterns used in previous successful projects w ill facilitate her job and
improve uniformity of modeling style across the company. Th e goal of a model search
system is to assist Alice in the retrieval of existing, similar solutions, and thus al low
reuse and knowledge sharing.

Alice can express her information need with the textual query “aut henticate user
oauth”. The search system looks up the repository and return s a list of results at the
appropriate granularity, as shown in Figure 1. The result se t comprises concise pre-
views of the retrieved model fragments; for a better underst anding, results are ordered
according to their relevance to the query and the parts of the model that match the
query are highlighted. Alice might want to zoom in and visualize one of the results to
better inspect the matching parts, or open the fragment in it s original context. If she
�nds something useful for her current task, she might import the matching parts or
the entire model in her workspace.

1.2. Goals and Contributions

The goal of this paper is to study the implications of buildin g search systems for soft-
ware models expressed according to Domain Speci�c Language s, so to increase the
reuse of modeling artifacts and promote the discovery of exi sting design patterns and
the application of modeling best practices from previous pr ojects. We study two dif-
ferent scenarios of model search: keyword-based search, which proceeds in continuity

2http://www.oauth.net

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://www.oauth.net

A:4 B. Bislimovska et al.

Alice

Models Repository

Search

authenticate user oauth

Model Repository Search UI

Retrieved: 10 Models

1. submit
query

4. select
results

M
odel S

earch S
ystem

1
Visualize

DSL

Project 1

Project 2

Project 3

Project 1- Fragment 1 (Preview)

DSL

Project 2- Fragment 1 (Preview)

DSL

Project 1- Fragment 2 (Preview)

DSL DSL
DSL

DSL

DSL
DSL

DSL

DSL
DSL

Import

Open

2
Visualize

Import

Open

3
Visualize

Import

Open

2. query
 repository

3. return
results

Fig. 1: Example of interaction between a developer and a sear ch system for model
repositories: the user submits her query (1), which is appli ed upon the repository (2);
in turn, the repository returns the matching project fragme nts (3), among which the
user can select the one that �ts better the new requirements (4).

with classical Information Retrieval approaches and sourc e code search techniques;
and content-based search, which introduces the query-by-example paradigm into mode l
search. The illustrated research aims at addressing the fol lowing questions:

Q.1 How can we search model repositories in order to unlock their hidden value and
allow ef�cient reuse of models?

Q.2 How can we adapt text- and content-based search techniques t o model reposito-
ries, so to exploit metamodel knowledge and improve the qual ity of results?

Q.3 How do text- and content-based search compare in terms of ret rieval performance
under different technical con�gurations of their characte ristic parameters?

Q.4 How do users perceive the quality of results retrieved with t ext- and content-based
search?

To address the above questions, the paper overviews the requ irements of model
search and investigates keyword-based and content-based t echniques for search of
model repositories. Keyword-based and content-based sear ch techniques are extended
with the injection of metamodel knowledge in the search proc ess, to test its effect on re-
trieval performance. Two approaches (text- and content-ba sed) are implemented, con-
�gured and technically evaluated on a real world collection of 341 industrial models,
with a panel of 10 queries. Models in the experimental reposi tory are encoded in the
Web Modeling Language (WebML) [Ceri et al. 2003], a DSL for We b applications.

Performance of text- and content-based search are evaluate d with two distinct ex-
periments: a technical evaluation based on a gold standard d e�ned by experts, which
evaluates the quality of the matches, response time, and spa ce occupation; and two
user studies, which engaged 25 MDE practitioners in the subj ective evaluation of util-
ity and quality of search results. Different variants of the technical con�gurations of
the two systems have been evaluated and compared. The user st udies examine the
relationship between the performance of the systems and the user-perceived utility of
retrieved results.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:5

The contributions of the paper can be summarized as follows:

C.1 We extend state-of-the-art methods for keyword-based sear ch in order to incorpo-
rate metamodel-speci�c information. We show that augmenti ng the IR index with
metamodel knowledge leads to a performance improvement wit h respect to conven-
tional, metamodel-agnostic text-based IR techniques.

C.2 We implement content-based search by means of graph matchin g; to do so, we
extend standard techniques for sub-graph isomorphism (the A-star algorithm) by
considering a formulation of the matching score function th at takes into account
metamodel-speci�c information. We also investigate how th e locality of the match
between the query and the project graph affects performance .

C.3 We compare keyword-based and content-based search systems with respect to re-
trieval accuracy (precision and recall), ranking accuracy , and stability of the results
across different queries, using a gold dataset created by ex perts.

C.4 We report the results of a user study that assesses how model- driven practitioners
appreciate keyword-based and content-based search.

1.3. Outline

The rest of the paper is organized as follows: Section 2 prese nts the fundamentals of
search over model repositories and thus responds to questio n [Q.1]; Section 3 focuses
on the case study of search over Web application model reposi tories, thus address-
ing question [Q.2]; in particular, Section 3.1 introduces WebML, the DSL used as a
case study; Section 3.2 discusses the architecture and con� guration of the keyword-
based search system; Section 3.3 focuses on the content-bas ed search system; Section
4 presents the results of the experimental evaluation condu cted on the keyword-based
and on the content-based search systems, thus addressing qu estions [Q.3] and [Q.4];
Section 5 discusses the related work; �nally, Section 6 high lights the conclusions and
discusses the future work.

2. FUNDAMENTALS OF SEARCH FOR MODEL REPOSITORIES

In MDE, models are used to formalize requirements, structure, and behavio r of the
addressed system; they comply with the syntax of a modeling language , which can be
formalized as a metamodel [Kleppe et al. 2003]. Each model element has a type (i.e., a
higher order concept) de�ned in the metamodel, and is relate d to other elements by
means of typed relationships , also de�ned in the metamodel. One or more concrete
syntaxes can be associated to a metamodel. The syntax can be e ither textual or graph-
ical and de�nes the way in which the models are represented co ncretely. Elements
and relationships in models are typically enriched with tex tual labels, provided by
the model developer to describe some relevant domain proper ties or functions of the
concept. During the development process, models are typica lly organized into projects,
i.e., logical containers that aggregate models and artifac ts of the same system or ap-
plication domain; likewise, projects developed by the same organization are collected
in repositories.

Model repositories are accessed primarily through search, i.e., the retrieval of rele-
vant artifacts upon the expression of a user's need.

2.1. Information Retrieval Techniques for Model Search

The search process can be schematically represented as the c hain of four main steps,
as shown in Figure 2.

Starting from a repository of projects, the Content Processing transforms each model
into a format suitable for ef�cient indexing and effective s earch. The Indexing step

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:6 B. Bislimovska et al.

Query
Processing

Search Indexing

Results

User Project
Repository

Content
Processing

Query

Fig. 2: Main steps of a model-driven search process.

stores the processed models into persistent data structure s that contain information
amenable to search, typically encoded as index terms or as index data structures .

Users express their information needs as queries de�ned in a given format. Among
the available query paradigms, we focus on two speci�c forms : (i) Keyword-based
queries (also called text-based queries) are expressed as bag of words; users trans-
late their information need from their abstract representa tion (e.g., “�nd all the
projects that model the shopping cart operations of a book e- commerce applica-
tion”) into keywords or simpli�ed phrases (e.g., “book shop ping cart e-commerce”).
(ii) Content-based queries are expressed as model fragments; users ask the syst em
to “�nd a model like this” and thus formulate their queries in the same language in
which the targeted models are expressed. This way of searchi ng is also called query-
by-example .

Queries are subjected to a Query Processing step, in which they undergo a transfor-
mation toward an internal format , which maps them to the same representation space
as the index. For instance, a keyword query could be transfor med into a set of stemmed
words, or a model fragment could be mapped into a labeled grap h.

The Search step inspects the index in order to (i) retrieve the models th at match with
the user query, (ii) rank the matching models according to th eir relevance with respect
to the query, and (iii) return them to the user as a result set w here more relevant hits
are displayed in more prominent positions.

Figure 3 expands the view of the activities contained in each of the steps summarized
in Figure 2. Activities can be metamodel-dependent, when they exploit knowledge de-
�ned in the metamodel (in Figure 3 they have an input data �ow f rom the metamodel
artifact), or metamodel-independent .

2.2. Content and Query Processing

The model search process, shown in Figure 3, requires both th e repository projects
and the queries to be properly analyzed to extract informati on relevant for indexing
and searching. The Query Processing work�ow comprises query analysis techniques
that are the same as those for projects; therefore we can limi t the explanation to the
Content Processing tasks.

The Project Analysis task starts the analysis work�ow by extracting general meta -
data, such as the project identi�er in the collection, its na me, authors, etc, useful for
result presentation. The Project Segmentation activity splits each project into smaller
units more suitable for analysis; the segmentation strateg y is de�ned by the system
designer, and can occur: (i) manually, by identifying proje ct by project the most mean-
ingful segmentation units; (ii) automatically based on met amodel-driven or collection-
speci�c rules, which may take into account model types, conc epts or relationship types,
and element frequencies in the collection. For instance, UM L class diagrams could be
partitioned considering as segments the bottom elements of the package hierarchy.

Each segment is processed by a Segment Analysis task, which extracts relevant
features for each model element contained in the segment, su ch as name, type, re-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:7

Project Analysis

Content Processing

Project
Repository

Index

Indexing

DSL
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query

Linguistic AnalysisLinguistic Analysis

Fig. 3: Architecture of a model-driven information retriev al system.

lationships with other elements, or any other property de�n ed in the metamodel and
relevant for search purposes. The extracted textual featur es might be normalized by
applying metamodel-independent Linguistic Analysis transformations (e.g., language
translation, tokenization, stemming, stop-word removal, etc.).

2.2.1. Indexing. The normalized features extracted from each element are the inputs
to the Indexing step, as index documents [Manning et al. 2008]. The index stores the
project metadata, the segment-to-project mapping, and a re presentation of the ex-
tracted model element features, optimized for storage and s earch purposes. The index
can be organized according to one of the following options:

— Flat index : the index is structured as a single �eld which stores all the extracted
features of an index document. A �at index does not allow the r epresentation of
model relationships, as the model structure cannot be enfor ced.

— Multi-�eld index : the index is divided into multiple �elds, each storing a dif fer-
ent subset of the indexable information. Each �eld can be sea rched separately, i.e.,
query matching can be restricted to the selected �elds. A mul ti-�eld index may be
used to encode metamodel information, by associating each � eld to features (e.g.,
normalized words) appearing in a distinct model concept or r elation. In this way, a
query could be restricted only to selected model concepts. F urthermore, each index
�eld can be assigned a weight that quanti�es its importance according to some a
priori knowledge (e.g., the signi�cance of the metamodel co ncept associated with
the �eld).

— Structured index : the index is organized as a (semi) structured document (e.g .,
mapping each segment to a graph or to an XML document) so as to p reserve the
relationships among model elements. Structural elements c an be assigned a weight
that quanti�es their importance.

Orthogonally to the adopted index structure, terms can be as signed a term weight
that re�ects their signi�cance. Increasing the index compl exity, from �at to multi-�eld,
to structured indexes, gives more precise representations of projects and queries, to the
price of more complex storage structures, query language, a nd match algorithms.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:8 B. Bislimovska et al.

2.2.2. Search. The search work�ow consists of two tasks. The Matching task �nds the
documents in the index that match the internal representati on of the user's query. The
matching technique applied depends on the index structure. For �at and multi-�eld
indexes, matching occurs by verifying the presence of query terms in the index; in
structured indexes, matching veri�es if the query internal representation is at least
partially contained in an indexed segment.

The Ranking task sorts the found matches with respect to their relevance to the
query, calculated as a numerical matching score . The ranking techniques also differ
according to the index structure. For �at and multi-�eld ind exes, the score can be
calculated using text-based similarity measures such as co sine similarity or TF/IDF
[Manning et al. 2008]. For structured indexes, ranking is ba sed on ad hoc structural
similarity metrics. More details about the latter case are p rovided in Section 3.3.

3. SEARCHING REPOSITORIES OF WEB APPLICATION MODELS

To make the architecture of Figure 3 concrete, it is necessar y to instantiate it on a
speci�c set of modeling languages and query paradigms. In th is paper we focus on both
text-based and content-based queries over repositories of models describing a speci�c
class of applications – Web applications – and on a single mod eling language, i.e., the
Web Modeling Language (WebML) [Ceri et al. 2003].

3.1. The Web Modeling Language

WebML is a visual Domain Speci�c Language that supports the h igh-level spec-
i�cation of Web applications, from the perspectives of the c omposition and nav-
igation of the Web front-end, and of the data accessed by it [C eri et al. 2000];
the language has a well-established industrial implementa tion and customer base
[Acerbis et al. 2007] and has inspired the standard IFML (Int eraction Flow Model-
ing Language) [Brambilla et al. 2013], 3 adopted in March 2013 by the OMG (Object
Management Group). 4.

The choice of WebML as the target language for experimentati on is motivated by
several reasons:

— the availability as the base for experimentation of a real- world industrial project
repository created by professional developers.

— The generality and interest of the modeling domain (i.e., i nteractive application
front-ends), in which WebML is just a representative of a fam ily of DSLs that
comprises several other languages with a similar purpose an d structure, both
in the academia (e.g., OOH [G ómez and Cachero 2003], UWE [Kraus et al. 2007],
OOHDM [Rossi and Schwabe 2008], WADE [G ómez et al. 2007]) and in the indus-
try (e.g., Rational Web Application Extension [Conallen 20 00], Mendix, CodeCharge
and Outsystems); the interaction front-end modeling domai n is also the subject of
an ongoing call for standardization proposals by the OMG [OM G 2011].

— The visual nature of the language, which makes it well suite d to the “query by
example” paradigm of content-based search.

— The nature of the WebML metamodel, which comprises differe nt families of con-
tainers and modeling elements, with a rich set of relationsh ips.

The main WebML constructs are pages, units and links , organized into areas and site
views. A site view is a coherent hypertext, incorporating a well-de�ned set of require-
ments for a speci�c category of users. Site views can contain Areas, logical containers
that group pages with a homogeneous purpose and can be nested recursively. Pages are

3 Interaction Flow Modeling Language (IFML): http://www.ifml.org
4Object Management Group (OMG): http://www.omg.org

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://www.ifml.org
http://www.omg.org

Textual and Content-Based Search in Repositories of Web Application Models A:9

Search Products

Search Products

Search Product List

Product List

(a)

<Area id="area1" name="Search Products" landmark="true"
linkVisibilityPolicy="inactive" defaultPage="page1"
landmarks="page1">

<Page id="page1" name="Search Products" landmark="true">
<ContentUnits>

<IndexUnit id="inu1" name="Products List"
sortable="true" checkable="false" />

<EntryUnit id="enu1" name="Search Product List"
linkOrder="ln1" >

<Link id="ln1" name="Search" to="inu1" type= "normal"
validate="true" automaticCoupling="true" Ê/>

</EntryUnit>
</ContentUnits>

</Page>
</Area>

(b)

>

al"

WebMLÊUnit

Name:String

ContentÊUnit

SingleÊInstanceÊ
Unit

MultiÊInstanceÊ
Unit

DataÊUnit IndexÊUnit

EntryÊUnit

Content UnitContentÊUnit

(c)

Fig. 4: Example of WebML model, (a) its XML representation (b) and an extract of the
WebML metamodel (c).

contained in areas and site views, and represent the interfa ce elements that are actu-
ally shown to the users. Site views, areas, and pages form the coarse structure of the
front-end, which is then detailed by adding content and busi ness logic components,
called Units . There are two main types of units: content units and operation units .
Content units are elements that express the content of a Web p age, while operation
units denote operations on data or arbitrary business actio ns; they can be activated
as a result of navigation. Figure 4c contains an excerpt of th e WebML metamodel tax-
onomy for content units: Data Unit s retrieve and present information about a single
object; Index Unit s model the presentation of ordered sets of objects; Entry Unit s model
Web input for data submission. Units are connected through links forming a hypertext
structure. Links allow navigating hypertext front-ends, a s well as passing parameters
between units.

WebML models can be represented with a graphic notation or, e quivalently, with an
XML syntax. Figure 4a depicts an excerpt of a WebML model from an e-commerce ap-
plication: the Search Products area contains a Search Products page where the user
can enter data to search for a product; the search form is deno ted by the Search Prod-
uct List entry unit, while the returned product list is denoted by the Products List
index unit; the link between the Search Product List unit and the Products List unit
represents the navigation action of the user upon form submi ssion, and it also speci�es
that the parameter required to execute the product search is passed to the index unit.
Figure 4b contains the XML representation of the model fragm ent in Figure 4a, which
comprises also the non displayed metadata of the model eleme nts, e.g., their internal
ID.

WebML models are designed by means of the WebRatio tool [Acer bis et al. 2007],
or by any UML editor, using the WebML MOF metamodel; WebRatio has a basic in-
memory project search facility, whereby the developer can e xecute keyword search
within a single project. A repository of WebML models has bee n recently opened
[WebRatio s.r.l. 2012], which can be browsed with an interfa ce that organizes projects
taxonomically and with tag clouds; basic keyword search is s upported, with keywords
matched in the textual description of projects.

In the rest of the paper, we explore both keyword-based searc h and content-based
search over WebML repositories and illustrate the techniqu es adopted in the indexing,
analysis, and querying processes.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:10 B. Bislimovska et al.

Table I: Example of keyword-based query and top-3 results (w ith respective score val-
ues).

Query Manage Search Product List

Res. ID Model Score

Result 1

Manage Products

Home Manage Products

Product Details

Search Product

Product List

Product Details

Modify Product

New Product

Discount ListDelete Product

__

Product Data Categories

[?]

Create

+

Modify

+__

Product Data

Categories

[?]

Product

[?]

3.9799

Result 2

Products Area

Home Products Product Details

Product Data

Category Products
Current Offers

Product News

[?]

Categories

Category

Product List

2.2482

Result 3

Manage Offers
Offer Details

Offer Details

Modify Offer

New Offer

News

Delete Offer

__

Offer Data
Create

+

Modify

+__ Offer Data

Offer

[?]

Products

[?]

Home Offers

Categories

Product Data

Producs

[?]

2.2896

3.2. Keyword-Based Model Search

In keyword-based search, the input query consists of a bag of keywords. Each project
from the repository is transformed into a set of terms, used t o form the index. Keywords
are matched against the index, and a TF/IDF based measure is u sed to compute the
rank of the matching elements in the result set. In the follow ing we introduce an
illustrative example of keyword-based search, and then des cribe each of the system
operations in details.

3.2.1. Illustrative example. Table I presents an example of textual query on a WebML
model repository. Suppose the user is looking for a model tha t supports search and
management of product lists in a Web-based system. He could f ormulate his informa-
tion need as a keyword query like Manage Search Product List . Table I shows the top-3
results returned by our system in response to such query. Eac h of them consists of a
model fragment (a WebML area), with decreasing matching sco re. The �rst result is a
very relevant match, as the model fragment actually describ es all the typical content
management operations (creation, deletion, and modi�cati on) and contains a form for
searching products. The subsequent matches are less precis e: the second one misses
some features, such as product search and updates; the third one only occasionally
mentions products. The result set highlights the model elem ents that contain at least
one of the search keywords and the match score is computed bas ed on the number of
matching and non-matching model elements.

3.2.2. Content Processing. The Project Analysis activity extracts only the project iden-
ti�er, used to reference (at retrieval time) segments produ ced by the same project,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:11

Manage Products

Modify Product

Product Data

Modify Data

+__

Show Product Details

Product List

(a)

manage products

modify product
product data
modify data
show product details
product list

Area Name Field

Area Content Field

(b)

ils

ld

ield

manage|1.5 products|1.5

modify|1.2 product|1.2
product|1.0 data|1.0
modify|1.0 data|1.0
show|1.2 product|1.2 details|1.2
product|1.0 list|1.0

Area Name Field

Area Content Field

(c)

Fig. 5: Example of WebML model(a) and different text indexin g techniques:
Metamodel-independent indexing (b) and metamodel-depend ent indexing (c).

and the project name, used for result presentation. Segmentation is performed by us-
ing a metamodel-driven rule that considers Areas as segmentation units. Recall that
WebML areas are logical containers of pages with similar pur pose, thus guaranteeing
a good degree of functional cohesion. For each resulting seg ment, the Segment Analy-
sis task extracts the name attribute for each area, page, unit, and link; this attribut e
has a special role, because it represents an external label d e�ned by the developer and
used by the code generator to produce the rendition of the fro nt-end (e.g., a menu item,
a link anchor or button text, the heading of a page fragment, o r a page name) and thus
carries a high relationship to the semantics of the model ele ment it denotes, and to the
application domain where the element is applied. A referenc e between the extracted
term and the originating model element type is also kept, to b e used later in the in-
dexing step. Finally, the Linguistic Analysis task tokenizes the text, removes highly
frequent words that bear little information, and stems the r emaining words, creating
the terms to be stored in the index.

3.2.3. Indexing. To explore how the injection of metamodel information in the index
impacts the retrieval performance of keyword-based search , two types of indexing
strategies for WebML projects have been exploited, both bas ed on a multi-�eld index:

— Metamodel-independent strategy: for each project, the index comprises two �elds:
one �eld (Area Name) is reserved for the area name, and the second �eld (Area Con-
tent) contains the index terms extracted by the Content Processing step. An addi-
tional auxiliary �eld, used only for result presentation, c ontains the identi�er of the
project to which the indexed area belongs. Figure 5a shows an example of WebML
area, and Figure 5b the corresponding indexed representati on in the metamodel-
independent strategy.

— Metamodel-dependent strategy: the index �eld structure is the same as in the pre-
vious case, but a weight is added to each term based on the meta model concept it
comes from. Weights are con�gured manually of�ine. We exper imented with several
weight con�gurations, explained in Section 4. Figure 5c sho ws the model fragment
of Figure 5a indexed according to the metamodel-dependent s trategy, where the
numerical values appended to textual terms are the applied w eights.

3.2.4. Query Processing. The query is a bag of keywords, subjected to the same linguis-
tic analysis pipeline performed on the projects.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:12 B. Bislimovska et al.

3.2.5. Search. As for indexing, a metamodel-independent and a metamodel-d ependent
indexing and ranking approaches are employed.

The metamodel-independent approach uses the classic TF/IDF measure of IR
[Manning et al. 2008], which combines the frequency of a quer y term in a document
and its inverse frequency in the document corpus, so to penal ize terms that occur fre-
quently in a document and boost terms that occur rarely in the entire collection. The
total TF/IDF score for a query and a document is computed as a s um of the scores of
each query term. The total score is used to produce the rankin g of the documents with
respect to a given query, with higher score documents rankin g higher in the result list.

In this work we propose a metamodel-dependent extension of TF/IDF that incorpo-
rates metamodel knowledge into a new parametric weighting t erm mtw , as reported
in Equation 1:

score(q; d) =
X

t 2 q

p
tf (t; d) � idf (t)2 � mtw (m; t) (1)

where:

— q is a query, d is the indexed document (a WebML Area, in our experimental setting),
and t is a term from the query q;

— tf (t; d) is the term frequency , i.e., the number of times the query term t appears in
the document d;

— idf (t) is the inverse document frequency of t, i.e., a value calculated as 1 +
log jD j

f req (t;d)+1 , which measures the informative potential of the term in the entire
document collection by calculating the ratio between the nu mber of documents and
the frequency of the term in the considered document; as a res ult, rare terms in the
collection are considered more relevant than frequent ones ;

— mtw (m; t) is the Model Term Weight of a term t, i.e., a metamodel-speci�c boosting
value that depends on the concept m containing the term t. For instance, in the
example of Figure 5c, the weight for a term t associated with a Pageelement is set to
be higher than the weight given to terms coming from other ele ments: mtw (page; t)
is set to 1:2, whereas mtw for all the others WebML concepts is set to 1:0.

3.3. Content-Based Model Search

In content-based model search, queries are expressed as mod el fragments, and projects
(or fragments thereof) are saved in semi-structured indexe s to preserve relationships
among model elements. Models, including WebML models, can b e represented conve-
niently as graphs [Grigori et al. 2010; Qiao et al. 2011], which offer an abstra ct repre-
sentation of the model elements and of their relationships. In the following we �rst
introduce an illustrative example and then show how project and query models are
indexed and queried.

3.3.1. Illustrative example. Table II shows a sample content-based query speci�ed as
a coarse WebML model; the query expresses a draft model consi sting of a page and
some operation units for searching a project by title and cre ating it (if not existing)
or otherwise updating it. The top-3 results are shown; each r esult consists of a model
fragment (a WebML area): the �rst one is a very precise match, where both structure
and textual information �t with the query; the subsequent ma tches have lower scores
because of the decreasing number of matching elements, eith er due to the imperfect
structural overlap of the query and project models or to mism atches in the labels of the
model elements. Note a difference with respect to the matche s obtained for keyword-
based search, exempli�ed in Table I: in the text-based case, some matches appear only
because a label in the model element matches a keyword in the u ser's query; in the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:13

Table II: Example of content-based query and top-3 results (with respective score val-
ues).

Query

Project Details

Project DetailsTitle

[?]
Modify

+__

Create

+
Exist

Res. ID Model Score

R1

P� � ject Dictiona� j

P� � ject Dictiona� j P� � ject Details

F� �� � �

�
�

� ject List

� � � ject Details

Exist

Title

[?]

�
�

� ject

Create

+

Modify

+__

0:906

R2

Project Dictionary

Project Dictionary Project Title Details

Filter

Project List

Title Details

Exist

Title

Create

+

Modify

+__

Client

[?]

0:847

R3

Project Dictionary

Project Dictionary Level Details

ConÞdentiality
Levels

Level Details

Exist

Level

Create

+

Modify

+__

0:828

content-based case, matches must adhere both to the textual content and to the struc-
ture of the query: for example, in the top result listed in Tab le II the Project Dictionary
area is not part of the match, even if it contains the word project that is part of the
query, because it does not correspond to any element appeari ng in the user's query.

3.3.2. Content and Query Processing. The WebML models from the repository are �rst
split into areas, as in the case of keyword-based search desc ribed in Section 3.2. Sub-
sequently, they are translated into directed labeled graph s, according to a mapping
proposed in this work. The resulting graphs are used to build the index. Since content-
based queries are also WebML models, they can be transformed in the same way as
projects.

A WebML graph is a triple g = (N; E; L), where N is a set of nodes, E is a set of
edges, and L is a set of labels representing metadata about the nodes. Eac h WebML

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:14 B. Bislimovska et al.

page1

enu1 inu1

Search Products
Page

Products List
Index Unit

area1
Search Products

Area

Search Product List
Entry Unit

(a)

<graphml>
 <graph edgedefault="directed">
 <node id="area1">
 <name>Search Products</name>
 <type>Area</type>
 <occurence>1</occurence>
 </node>
 <node id="page1">
 <name>Search Products</name>
 <type>Page</type>
 <occurence>3</occurence>
 </node>
 ...

 <edge id="edge inu1">
 <source>page1</source>
 <target>inu1</target>
 </edge>
 <edge id="edge link ln1">
 <source>enu1</source>
 <target>inu1</target>
 </edge>
 </graph>
</graphml>

(b)

Fig. 6: Pictorial (a) and XML (b) representations of the grap h corresponding to the
WebML example of Figure 4.

element maps to a graph node, identi�ed with the same XML ID an d annotated with
its name and metamodel type. Therefore, each graph node is associated with a pair of
labels lN ; lT , that represent the name and the type label of the corresponding WebML
construct. Two types of relationships between the WebML ele ments are mapped into
graph edges: (i) containment relationships, which connect container elements (e.g., si te
views, areas and pages) with the elements they comprise; for example, a containment
relationship exists among an area and all the pages containe d in it. And (ii) naviga-
tional Link s, which model the navigation between pages and the function al depen-
dency (i.e., parameters) between units. For each link, an ed ge that connects the nodes
mapping its source and destination unit is added to the graph .

Figure 6a shows the graph representation of the WebML fragme nt in Figure 4a: the
Search Product area (id = area1), the Search Products page (id = page1), the Search
Product List entry unit (id = enu1) and the Products list index unit (id = inu1) are
mapped to nodes labeled with the name attribute and the type, and identi�ed with
the same ID of the corresponding WebML elements. The edges co nnecting area1 and
page1, page1and enu1, and page1and inu1 represent containment relationships in the
original model; the edge that connects enu1 with inu1 represents the link connecting
the two units. Figure 6b shows the equivalent XML representa tion of the graph in
Figure 6a.

Differently from the case of keyword-based search, no lingu istic analysis is per-
formed on the text extracted from the WebML model. This is jus ti�ed by the mech-
anism used for query-to-project matching, described in det ails in Section 3.3.3, which
exploits a string similarity measure to compare graph nodes .

3.3.3. Search. As both projects and queries are represented as graphs, search is per-
formed by verifying whether the query graph is contained in a project graph. In a
query-by-example scenario, the query graph will be normall y smaller than the project
graph. Therefore the goal is to �nd whether the query graph is a part of the project
graph; this graph matching problem can be tackled by computi ng subgraph isomor-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:15

page1 eu1

Search Products
Page

Search Product Info
Entry Unit

Fig. 7: An example of a query graph.

phism [Bunke 2000], i.e., an injective mapping that identi�es a su bgraph in the project
graph that has corresponding nodes and edges in the query gra ph, preserving the
graph structure and label equality constraints.

Subgraph isomorphism is known to be NP-complete [Cook 1971] ; however, query
processing does not require �nding an exactmatch between the query graph and a sub-
graph in the project, a case that would be very rare due to diff erences in model concept
naming and linking. A suf�cient objective is to �nd a subgrap h in the project graph
that is equivalent , or similar , to the query graph. Therefore, it is necessary to consider
a heuristic algorithm that matches graphs by means of an appr oximate measure of
similarity [Bunke 2000]. A classical solution to this problem exploits the A-star algo-
rithm and the graph edit distance similarity measure [Sanfe liu and King-Sun 1983;
Gregory and Kittler 2002; Dijkman et al. 2009], explained in the rest of this Section.

Graph edit distance. A metric that computes the similarity of two graphs is the
graph edit distance , de�ned as the minimum number of edit operations that trans-
form one graph into the other [Dijkman et al. 2009]. Indeed, t he less transformations
are applied, the more similar two graphs are. Given a compari son graph G1 (i.e., the
query) and a compared graph G2 (i.e., the project), the graph edit distance considers
the following types of edit operations, namely:

— Node substitution : it substitutes (maps) nodes from G2 that are similar to nodes
from G1, under an externally provided notion of node similarity.

— Node insertion : it inserts non-similar nodes from G1 into G2.
— Node deletion: it deletes from G2 all non-similar nodes. A deletion from one of the

two graphs can be treated equivalently as an insertion in the other graph.
— Edge insertion/deletion : it inserts into G2 all edges that do not connect two similar

(substituted) nodes of G1; or, equivalently, it deletes from G1 all edges that do not
connect two similar nodes of G2.

To exemplify the operations of the graph edit distance, we co mpare the query graph
in Figure 7 with the project graph in Figure 6a. In this exampl e, we consider that a
node from the query graph is similar to a node from the project graph iff they have
the same metamodel type and exactly the same name. A more �exi ble node similarity
function will be introduced in a following paragraph. The no de “Search Products” of
type “Page” in the query graph is similar to the node having the same name a nd type
in the project graph. The other query node “Search Product Info” of type “Entry Unit”
has no similar nodes in the project; therefore, it is inserte d into the project graph. All
the other nodes of the project graph are non-similar and thus deleted. Since only one
node from the query graph is similar to a corresponding node i n the project graph,
the edge outgoing from it in the query graph is inserted in the project graph, and all
the four edges from the project graph are deleted. In summary , the query graph is
obtained from the project graph as a result of 1 node substitu tion, 1 node insertion, 3
node deletions, 1 edge insertion and 4 edge deletions.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:16 B. Bislimovska et al.

The graph edit similarity , de�ned in Formula 2, quanti�es, in the [0; 1] range, graph
similarity by normalizing the operations considered in the graph edit distance:

GSim (G1; G2) = 1 �
wnI � f nI (G1; G2) + weI � f eI (G1; G2) + wnS � f nS (G1; G2)

wnI + weI + wnS
: (2)

where f nI , f eI are the fractions of inserted nodes and of inserted edges, ca lculated
as the ratio of inserted nodes N i (edges E i) in both graphs with respect to the total
number of nodes (edges) in both graphs .

f nI (G1; G2) =
j N i j

j N1 + N2 j
f eI (G1; G2) =

j E i j
j E1 + E2 j

: (3)

The values of f nI ,and f eI increase as the number of non similar nodes or edges grows.
The average distance of substituted nodes f nS is de�ned as:

f nS (G1; G2) =
2 �

P
(n 1 ;n 2) (1 � sim(n1; n2))

j Ns j
: (4)

that is the sum of one minus the node similarities of all subst ituted nodes, normal-
ized with respect to the total number of substituted nodes in both graphs. The average
distance increases if the node pairs are less similar, and is 0 iff only identical nodes
are substituted.

Formula 2 assigns to each edit operation a cost (weight), whi ch gives the corre-
sponding operation more or less in�uence on the result of the graph edit similarity
computation. The constant values wnI , wnS , and weI range in the [0,1] interval and
respectively represent the weights for node insertion, nod e substitution, and edge in-
sertion. A higher value for an operation increases its contr ibution in the calculation
of the distance between two graphs, i.e., the penalty incurr ed when one instance of
that operation is applied to align the query and the target gr aphs. Weighting more
insertion components of the graph edit distance emphasizes the dissimilarity due to
graph topology; increasing the weight of the node substitut ion augments the penalty
for considering equivalent nodes that do not match exactly.

As an example, the comparison of the query graph in Figure 7 wi th the project graph
in Figure 6a results in f nI = 4 =6 = 0:67, because the total number of nodes in both
graphs is 6 and the total number of node operations (deletions and in sertions) is 4,
while f eI = 5 =5 = 1, because the total number of edges in both graphs is 5 and the total
number of edge operations (deletions and insertions) is als o 5. The average distance
of substituted nodes is f nS = 2�(1 � 1)

2 = 0 , because the pair of substituted nodes has
similarity 1 (they are identical). If the weights for this ex ample are chosen to be, for
example, wnI = 0 :3, wnS = 0 :8, and weI = 0 :5, then the �nal graph edit similarity
between the two graphs is GSim = 1 � 0:3�0:67+0 :5�1+0 :8�0

0:3+0 :5+0 :8 = 0 :562.

Node similarity . A central aspect in the evaluation of the similarity of two g raphs
is the calculation of the similitude of two nodes in order to d etermine whether they
match, i.e., they can be considered similar, and thus be subs tituted (since they are
interchangeable), instead of inserted. The node similarit y can be computed by evalu-
ating a distance function that considers the properties of t he evaluated nodes. In our
approach, differently from previous work, we adopt a distan ce function that considers
both the metamodel type of the model element associated with the graph node and its
textual label, as shown in Equation 5:

Dist (n1; n2) = � � stringDist (namen 1 ; namen 2) + (1 � �) � typeDist (n1; n2) (5)

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:17

Dist (n1; n2) is calculated as the weighted linear combination of two dist ances, where:

— stringDist is a string distance metric, normalized in the [0,1] range, q uantify-
ing the similarity between the nodes' labels; our experimen ts, detailed in Section
4, compared the performance of two state-of-the-art string distance metrics, re-
spectively the Levenshtein distance [Levenhstein 1966], a nd the n-gram distance
[Hylton 1996].

— typeDist is the distance between two concepts in the metamodel, consi dered as a
graph, normalized with respect to the maximum node distance in the metamodel
graph.

— The parameter � 2 [0; 1] determines the relative importance of the name and type
distance. � = 0 takes into account only type contribution, while � = 1 takes into
account only the name similarity.

To exemplify the computation of the node distance, let us con sider the Search
product List and the Products List units of Figure 6a. According to the WebML
metamodel excerpt of Figure 4c, the type distance between an Entry Unit and
an Index Unit is 0:75 (because the distance between the two classes is 3
and the maximum node distance in the graph is 4), while the str ing distance
stringDist (\ SearchP roductList " ; \ P roductsList ") , calculated using the Levenshtein
distance, is 0:58. Therefore, with � = 0 :5 the distance between the two nodes is 0:66.

Variations of the � parameter value allow for different similarity evaluation sce-
narios. A high value of � describes the situation in which a user considers two model
elements similar only by looking at their names. For instanc e, the data unit “Product”
would be considered “similar” to an index unit “Products”, e ven if the former displays
one object, whereas, the latter presents a list of objects. C onversely, a low value of �
would emphasize the semantic similarity, at a metamodel lev el, of model elements. In
this case, an index unit “Product list” would be considered e quivalent to an index unit
named, e.g., “Offer List”.

A-star algorithm. The A-star algorithm is a method to compute sub-
graph isomorphism through graph similarity [Shapiro and Ha ralick 1981;
Sanfeliu and King-Sun 1983]. Different variations exist; t he version used in this
work follows the template described in [Messmer 1996], and t hen modi�ed and
applied for searching repositories of business process mod els in [Dijkman et al. 2009].
Our approach is inspired to the latter work, but signi�cantl y extends it with
metamodel-aware weights, distances, and parameters, whic h were not considered in
the original algorithms.

The algorithm �nds the optimal mapping between two graphs, u sing a best-�rst
search of the solution space (the space of all mappings betwe en the query graph and
the project graph); it proceeds iteratively by searching th e least-cost extension of a
given initial partial graph mapping until a complete graph m apping is found; cost
is computed with the graph edit similarity function, which d rives the extension of
the current partial mapping into the next expanded mapping t hat yields the maximal
graph edit similarity between the query graph and the projec t graph.

The pseudo-code of ALGORITHM 1 illustrates the A-star procedure. It uses:

— the sets of nodes of the query graph (N1) and of the project graph (N2).
— A variable open, which is initialized with the set of all allowed mappings for an

initial arbitrarily selected node n1 of the query graph; the set of allowed candidate
mappings is used to expand the current partial solution; a ma pping is allowed if it
contains node pairs with similarity above a given threshold , or node pairs where the
query graph node is mapped to the conventional node deletion symbol � .

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:18 B. Bislimovska et al.

ALGORITHM 1: A-star algorithm

Require: open (n1 ; n2) j n2 2 N2 [f � g; sim (n1 ; n2) > threshold _ n2 = � , for some n1 2 N1

while open 6= ; do
select map 2 open, such that s(map) is max
open open� map
if dom(map) = N1 then

return s(map)
else

select n1 2 N1 , such that n1 =2 dom(map)
for all n2 2 N2 [f � g, such that (n2 =2 cod(map) and sim (n1 ; n2) > threshold) xor (n2 = �)
do

map0 map [f (n1 ; n2)g
open open[map0

end for
end if

end while

— A variable map, which contains the current partial mapping solution havin g the
maximal graph edit similarity s(map); s(map) is evaluated as in Equation 2 by con-
sidering all node pairs contained in map as substituted, the remaining query nodes
as inserted, the unmapped project nodes as deleted, and coun ting inserted/deleted
edges accordingly.

A-star starts from an initially empty current mapping and a n ode n1
q in the query

graph, and creates all the possible partial mappings (n1
q; n1i

p) from this node to every
node in the project graph. Additionally, an extra mapping wi th a dummy node � is
created, (n1

q; �), denoting the case where n1
q is deleted. The partial mapping (n1

q; n1i �
p)

or (n1
q; �) with the maximal graph edit similarity is selected, and adde d to the current

candidate solution mapping. Then, the algorithm proceeds w ith the next node from the
query graph, and creates partial mappings with every other n on-mapped node from
the project graph. At each round, the current candidate solu tion mapping is expanded
with the mapping of the nodes that produces the maximal graph edit similarity. The
algorithm �nishes when the current candidate solution mapp ing contains all the nodes
from the query graph. The returned value is the maximal graph edit similarity for the
query and the project graphs.

The best case complexity of the algorithm occurs when the nod es of the project and
of the query graph have the same labels, and the query graph is an exact copy of the
project graph. Therefore, for a query graph with m nodes and a project graph with
n nodes, the best case complexity is O(n2m). The worst case occurs when the query
graph is very different from the project graph, both in terms of labels and structure; in
such a case, many edit operations are necessary to transform one graph into the other,
resulting in exponential complexity. For a query graph with m nodes and a project
graph with n nodes, the worst case complexity is O(nmn). To reduce the search space,
and limit space and memory requirements, a pruning rule is us ed: only nodes with
similarity greater than the threshold parameter are allowed as candidate mapping
pairs.

Let us consider the comparison of the query graph in Figure 7 a nd the project graph
in Figure 4, assuming a threshold for node similarity of 0:7, and the parameter � = 0 :5,
which gives equal importance to name and type similarity. In the �rst step, if we start
with the query node page1, this node can form two possible partial mappings:

< ("Search Products:Page","Search Products:Page") >
< ("Search Products:Page"," � ") >

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:19

The �rst pair is the mapping with the maximal graph edit simil arity and thus is
selected and expanded into new partial mappings that includ e the second query node
enu1. The following ones are the possible mappings of cardinalit y 2:

< ("Search Products:Page","Search Products:Page"),
("Search Product Info:Entry Unit","Search Product List:En try Unit") >

< ("Search Products:Page","Search Products:Page"),
("Search Product Info:Entry Unit"," � ") >

At the second round, the algorithm selects the former comple te mapping, which
has the maximal graph edit similarity, and terminates, beca use all query nodes are
mapped. The computed mapping speci�es that in order to trans form the query graph
into the project graph, both query nodes are substituted, an d the project graph nodes
(“Manage Products: Area”,“Products List Index Unit ”) are deleted (or equivalently
inserted into the query graph). The edge in the query graph is substituted with the
edge between the corresponding nodes in the project graph an d the remaining edges
from the project graph are deleted (or equivalently inserte d into the query graph).

A-star algorithm with local search. The original A-star algorithm can map query
nodes to graph nodes arbitrarily positioned throughout the project. The cost of includ-
ing in the match nodes that are far apart in the project graph i s proportional to the
number of edges that must be inserted to connect such nodes; t he relative contribution
of edge insertion in large graphs with many edges may be limit ed, and so A-star tends
to accept matches where query nodes are associated with proj ects nodes far apart in
the project graph. The locality of matches may impact the ret rieval performance, which
raises the issue whether highly connected matches are prefe rable to more distributed
ones. To investigate the effects of locality constraints, w e evaluate a variant of A-star,
which attempts at boosting more cohesive matches by imposin g an additional con-
straint for adding a node to the current partial mapping: onl y those nodes that are
at the shortest distance with respect to already mapped node s are used to extend the
current mapping.

The pseudocode of the local search variant is listed in Algor ithm 2. At the beginning,
the set of partial mappings for the initial query node (n1) contains all the nodes (n2)
from the project graph with similarity to n1 greater than the threshold, plus the map-
ping with the node deletion symbol (�). For every node n2 in the project graph, denoted
as graph2, the shortest path to every other node in the graph is compute d using the
Dijkstra algorithm [Dijkstra 1959] and saved in the variabl e path set. In the next step,
the algorithm proceeds as the A-star algorithm, by selectin g the partial mapping with
the maximum graph-edit similarity. Then, the partial mappi ng is extended: the next
query node is mapped to viable candidate project nodes; thes e are the project nodes
with similarity above threshold and positioned at the shortest distance , de�ned as the
minimum distance between an unmapped project node with simi larity above threshold
and an already mapped project node. When multiple paths exis t with minimal length,
all of them are considered and their source nodes treated as c andidates. After identi-
fying all nodes above threshold and within minimum distance , the algorithm expands
the current mapping so to maximize the graph edit similarity and proceeds like the
normal A-star algorithm.

Notice that, since the local search constrains the candidat e matches, it happens that:
(1) the number of matches computed by local A-star is smaller or equal than that of
the original A-star; and (2) A-star and local A-star differ o nly when there are multiple
matched node pairs between a query graph and the project grap h.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:20 B. Bislimovska et al.

ALGORITHM 2: A-star algorithm with local search

Require: open (n1 ; n2) j n2 2 N2 [f � g; sim (n1 ; n2) > threshold _ n2 = � , for some n1 2 N1

for all n2 2 N2 do
path set Dijkstra Shortest P ath(graph2; n2)

end for
while open 6= ; do

select map 2 open, such that s(map) is max
open open� map
if dom(map) = N1 then

return s(map)
else

select n1 2 N1 , such that n1 =2 dom(map)
min path set ;
min length 1
for all path 2 path set do

if source(path) =2 cod(map) then
if sim (n1 ; source(path)) > threshold then

if target (path) 2 cod(map) then
if length (path) == min length then

min path set min path set [path
else

if length (path) < min length then
min path set ;
min path set min path set [path
min length = length (path)

end if
end if

end if
end if

end if
end for
source nodes extract source nodes(min path set)
for all n0 2 source nodes[� do

map map [f (n1 ; n0)g
open open[map

end for
end if

end while

4. EXPERIMENTAL EVALUATION

In this Section we present the experiments on different mode l search scenarios con-
structed according to the techniques described in Section 3 . We structured our ex-
periments in two parts: (1) a technical evaluation of the key word- and content-based
systems, to analyze performance under different system con �gurations using quality
indicators based on a gold standard created by a panel of expe rts; (2) a user study,
where WebML practitioners were asked to assess how much the p roposed methods
could help them reusing existing modeling artifacts. The tw o experiments complement
each other and provide a comprehensive assessment of the sys tems behavior.

4.1. Experimental setting and dataset

4.1.1. Test bed. The experiments were performed on a project repository prov ided by
WebRatio 5; the company that develops the homonymous MDD tool for WebML and

5http://www.webratio.com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://www.webratio.com

Textual and Content-Based Search in Repositories of Web Application Models A:21

IFML modeling and automatic generation of Web applications . The repository con-
tains 12 real-world WebML projects from different applicat ion domains (e.g., trouble
ticketing, human resource management, Web portals, etc.). The projects are encoded
as XML �les conforming to the WebML DTD, and their domains and size are presented
in Table III. We segmented projects at the area level, which r esulted in 341 areas.

The choice of exploiting a proprietary project repository i s motivated from the fol-
lowing considerations: �rst, having access to a collection of projects built by profes-
sional modelers in real-world projects (which we publish as model graphs for further
experiments by the community); second, existing publicly a ccessible model repositories
proved unsuitable for realistic model search experiments b ecause they either contain
very elementary models or do not provide full access to their content (see the Related
Work Section for further details).

Table III: Testbed repository. Project ID, domain, and numb er of contained areas.

Project ID Domain Number of areas

1 Administration 23
2 Human resource management 53
3 Call center web portal 56
4 Calendar management 3
5 Bank account management 58
6 E-commerce 15
7 Rent-a-car 2
8 Adminstration 30
9 Company intranet 58
10 Web portal 5
11 Candidate evaluation 24
12 Trouble ticketing 12

An evaluation set of 10 queries was built as follows: �rst, to ensure a good cov-
erage of all the system features that we wanted to test in the e xperiments and the
coherence between the evaluation set and the repository con tent, we de�ned several
exemplary models, satisfying the following properties: (i) they implemented theoretical
[Ceri et al. 2003] and real-world WebML modeling patterns; (ii) they used a broad mix
of the WebML metamodel concepts; and (iii) they were based on a vocabulary (of labels)
consistently used in the experimental project repository. Out of this initial set, a group
of three experienced WebML developers were consulted to sel ect the 10 exemplary
models which, in their opinion, better represented the typi cal user need of MDD de-
velopers in their everyday activities. Finally, the exempl ary models were transformed
into keyword-queries, by selecting as keywords all the sign i�cative labels; and into
content-based queries, by mapping each WebML model into a gr aph as explained in
Section 3.3.

4.1.2. Gold Standard Creation. The gold standard for the comparison of the retrieval
methods was constructed by manually assessing the extent to which each area in the
repository contained a model similar to those in the evaluat ion set; the three experts
assigned a relevance score expressed in a tertiary scale whe re, (i) 0 relevance means
no similarity, (ii) 1 means that some textual xor structural similarity exists, and (iii) 3
corresponds to a judgment of strong similarity (textual and structural). The �nal rel-
evance was calculated as the average of the three judgments, rounded to the nearest
integer. To reduce fatigue and learning bias, the evaluatio n task was spread over mul-
tiple days.

Figure 8 exempli�es the kind of judgements about query-area matches expressed
by evaluators. The query (Figure 8(a)) looks for an area that implements a cre-
ation/modi�cation pattern for new/existing products; the area shown in 8(b) contains

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:22 B. Bislimovska et al.

a pattern that performs the same action, but using slightly d ifferent labels. Given that
the query's structural pattern is present in the project, an d there is also a partial tex-
tual similarity (the terms product and title are present both in the query and in the
matching area), a relevance value of 3 quali�es this match. Figures 8(c) and (d) show
examples of areas where the relevance with respect to the que ry is 1 and 0, respec-
tively. As it can be noticed, the area with similarity 1 contains a pattern that veri�es
the existence of a store in order to be created or modi�ed. This area has only struc-
tural pattern similar to the query, and no textual similarit y. Finally, the project with
similarity 0 has nothing in common with the query.

The gold standard dataset ranks for each query the areas, acc ording to the average
relevance score of the match, breaking ties with a determini stic rule.

	
� dd�
 � �
����

� �� d� �� ��� � �� �

M
�

�

! "

+
_ _

C
� � �� �

+

E #
�
sts

� �� $ � �� %�� � �

(a)

& '(d)* + ,- +. /0

& '(d)* + ,- +. /0

& '(d)* + ,-+. / 1 /+2-. 0

345 678

Title

Title Details

9 :4 sts

Title

;8 7<67= >?
4

@A

BB

(b)

S DGHIJ

S DGHIJ

S DGHI K I DLN O J

QR T UV W

X UY WV

X UY WV ZV U[R T\

] ^R sts

X UY WV

` WV [UVaY bR ce

ff

(c)

News Management

Home News

(d)

Fig. 8: Example of a WebML query (a), area with similarity 3 (b), area with similarity
1 (c) and area with similarity 0 (d).

The full set of queries, areas, and evaluation scores can be d ownloaded from the
following URL: http://webml.org/webml/modelsearch/modelsearch.html .

4.1.3. Experimental scenario. As a baseline for comparing the retrieval accuracy of both
the text-based and content-based approaches, we use random ly generated result sets.
A random result set is a sequence of areas randomly extracted from the projects in the
repository, ordered randomly. The value of each performanc e indicator in the baseline

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://webml.org/webml/modelsearch/modelsearch.html

Textual and Content-Based Search in Repositories of Web Application Models A:23

Keyword-based
search scenarios

Metamodel-
independent
experiment

Metamodel-
dependent
experiment

Structural weight
configuration

Navigational
weight

configuration

(a)

Site View

Area

Page

Unit

Link

S
tr

uc
tu

re
N

av
ig

at
io

n

(b)

Fig. 9: (a) Con�gurations for the keyword-based search scen ario; (b) Classi�cation of
WebML metamodel concepts.

case is calculated by averaging, for each query, the results of 10 random area extraction
and ranking steps.

We could not compare the performance of our implementation d irectly with existing
works in model search for various reasons: some works are not metamodel-aware at all,
and therefore cannot be ported to other modeling languages; some others assess their
quality upon non public data sets; and �nally, others do not p rovide publicly available
systems to compare with.

Keyword-based search . Figure 9a summarizes the evaluation scenarios for key-
word based search. Experiments were conducted under a (i) metamodel-independent ,
and a (ii) metamodel-dependent con�guration. The index of the metamodel-
independent experiment contains equally weighted terms, r egardless of the metamodel
type of the element of origin. Conversely, the indexes of the metamodel-dependent ex-
periments weight terms according to the category of the meta model type of the element
where the term appears.

We categorize the �ve WebML model primitives relevant for ma tching the query
to the projects into structural and navigational . Figure 9b shows such classi�cation:
site views, areas, and pages represent mainly modularizati on constructs used to group
more detailed elements; units and links embody the composit ion and navigation as-
pects of the user interface and denote the functions trigger ed by the user's naviga-
tion. The top-down order of elements in Figure 9b follows the element containment
relations: siteviews contain areas, which in turn contain p ages, which in turn contain
units, connected through links.

Assuming 1:0 as the minimum term weight, we assigned weights in the [1,2] r ange6.
We tested two different weight con�gurations as illustrate d in Figure 9a. The �rst one,
named Structural , gives more importance to structural metamodel concepts, a ssign-
ing higher weights to terms associated with site views, area s and pages. The second
con�guration (named Navigational) reverts the weight distribution and assigns more
weight to links and units. Table IV shows the two weight assig nments used in our
experiments.

6Higher weight values would introduce too much bias in the eva luation of Equation 1, causing the relative
weight (with respect to the overall score) of the term to domi nate other factors.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:24 B. Bislimovska et al.

Table IV: Keyword-based search: weight con�gurations for t he metamodel-dependent
experiment.

Metamodel concept Structural Con�guration Navigational Con�guration
site view 2.0 1.0
area 1.8 1.2
page 1.5 1.5
unit 1.2 1.8
link 1.0 2.0

Content-based search . The content-based scenario tested four con�guration di-
mensions: (i) the wnI (node insertion), wnS (node substitution), and weI (edge insertion)
weights of the graph edit distance operations, (ii) the para meter � , which determines
the importance of the string distance and type distance in th e node similarity function;
(iii) the string similarity function used to calculate the n ode similarity; and (iv) the
adoption of locality constraints in the subgraph isomorphi sm algorithm. In all the re-
ported experiments, after an initial set-up phase with the A -star algorithm, we �xed
to 0:6 the node similarity threshold for the pruning rule that disc ards non-allowed
matches, as the value proved best in all the considered setti ngs.

The �rst set of experiments aimed at understanding the impac t of the weights as-
signed to the graph edit distance operations, and we conside red three con�gurations
(summarized in Table V):

— Maximal Substitution boosts the contribution of the node substitution.
— Maximal Substitution and Insertion emphasizes both insertion of nodes/edges and

their substitution.
— Maximal Insertion stresses only the insertion of nodes/edges.

Table V: Content-based search: different weight con�gurat ions.

weights Maximal substitution Maximal substitution and insertion Maximal insertion

weI 0.1 1.0 1.0
wnI 0.1 1.0 1.0
wnS 1.0 1.0 0.1

The second set of experiments examined the in�uence of the � parameter in the
node similarity function. We varied the values of � from � = 0 to � = 1 , with step 0.25.
The � values and corresponding experiment names are reported in T able VI: recall
that higher values of � give more importance to name similarity w.r.t. metamodel ty pe
similarity.

Table VI: Content-based search: different � values.

Only type contribution � = 0
High type contribution � = 0 :25
Intermediate type contribution � = 0 :5
Low type contribution � = 0 :75
No type contribution � = 1 :0

The third set of experiments analyzed the impact of the adopt ed string distance
metrics. String distance metrics are similarity functions that do not consider prior
knowledge and thus exhibit performance that is strongly rel ated to the speci�c appli-
cation domain [Bilenko et al. 2003]. We compared two frequen tly used functions: the
Levenshtein distance [Levenhstein 1966], and the n-gram distance [Hylton 1996].

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:25

The Levenshtein distance is a string-edit distance that, given two strings, �nds the
minimal number of string edit operations that transform one string into the other, nor-
malized with the length of the longer string. For two identic al strings, the Levenshtein
distance is 0, and the corresponding similarity value is 1.

The N-gram distance is a string token distance which �nds the common num ber of n-
grams (substrings of the original string with �xed length n) for two strings, normalized
with the total number of n-grams. The N-gram distance has values in the [0,1] interval,
where 0 means no similarity, and 1 is an exact match.

Finally, the fourth set of experiments assessed the effect o f applying locality con-
straints in the selection of candidate mappings in A-star. I n particular, we evaluated
the original version (Algorithm 1) and the local version (Al gorithm 2) of A-star.

4.2. Evaluation Metrics

Performance is evaluated using three standard information retrieval measures: (i) 11-
point interpolated average precision; (ii) Mean Average Pr ecision (MAP); and (iii) Dis-
counted Cumulative Gain (DCG).

Precision and recall are the two most used IR evaluation meas ures. Precision con-
siders the fraction of retrieved documents that are relevan t, regardless of the ranking,
while recall measures the fraction of relevant documents th at are retrieved.

The 11-point interpolated average precision combines precision and recall by mea-
suring the best precision that can be obtained at 11 standard levels of recall (0.0,
0.1,...1.0) [Manning et al. 2008]. At each each recall level r i , the interpolated precision
is obtained as an average over the sample queries and represe nts the highest precision
that can be obtained for recall values r j � r i . The 11-point precision value decreases
for increasing recall, as for a growing number of retrieved r esults, the likelihood of
irrelevant matches typically increase.

Mean Average Precision (MAP) [Manning et al. 2008] is a single �gure quanti�cation
of the average precision across recall levels and queries: f or each query, the average
precision is computed as the average of the precision value o btained in the set of top-k
documents that are retrieved to get to the j-th relevant docu ment. More precisely, if the
set of relevant documents for a query qj 2 Q is f d1; : : : dm j g, where mj is the number of
relevant documents, and Rjk is the ordered set of the �rst k ranked results, then:

MAP (Q) =
1

jQj

jQ jX

j =1

1
mj

m jX

k=1

Precision (Rjk) (6)

When the �rst k positions of the result set contain no relevant documents, t he precision
value in Equation 6 is 0. In our case, MAP is calculated up to the top 10 matching
projects.

Finally, the Discounted Cumulative Gain (DCG) [J ärvelin and Kek äl äinen 2002] is a
graded relevance measure that evaluates the ability of an IR system to retrieve highly
relevant documents at high positions in the result set. DCG c onsiders the fact that the
lower a document is ranked in a result set, the less likely it i s for such a document to
be examined by a user. DCG is computed as:

DCGp =
pX

i =1

2rel i � 1
log2(1 + i)

(7)

where rel i is the relevance of the document at the i -th rank position obtained from
the gold standard dataset evaluation.

4.3. Quantitative Evaluation

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:26 B. Bislimovska et al.

4.3.1. Keyword-based search. Table VII shows the values of MAP for different index-
ing structures. All index structures achieve good performa nce (with peak MAP value
of 81%), signi�cantly better than the random baseline. Addi ng metamodel-dependent
weights to the index slightly increases the performance for the tested queries (4% MAP
increase in the best case).

Figure 10a and Figure 10b show the results of DCG and 11-point precision. Also
these measures support the conclusion that the different co n�gurations of the index
for the textual search exhibit a comparable average behavior. Boosting the weight of
more speci�c elements (units and links) over high-level one s (site views, areas) pro-
vides slightly improved performance: the average performa nce of the navigational con-
�guration increases by 2% for DCG and 5% for 11-point precisi on with respect to the
structural con�guration, and 7% for DCG and 3% for the 11-poi nt precision with re-
spect to the metamodel-independent con�guration.

Table VII: Keyword-based search: values of MAP

Experiment MAP

Random 0.19
Metamodel-independent 0.77
Metamodel-dependent Structural Con�guration 0.78
Metamodel-dependent Navigational Con�guration 0.81

Metamodel Independent
Navigational
Structural
Random

P
re

ci
si

on

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Metamodel Independent
Navigational
Structural
Random

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results
1 2 3 4 5 6 7 8 9 10

(b)

Fig. 10: Keyword-based search: 11-point precision (a) and D CG (b).

Figure 11a and 11b explode Figure 10 to examine the average an d median values
over the sample queries, and the upper and lower quartiles (g ray area). The growth
of the DCG values slows down at higher rank positions. Since D CG depends not only
on the precision and recall but also on the rank order of the re trieved documents, the
slow down at higher ranks shows that even if relevant documen ts are retrieved they
are not ranked optimally, w.r.t the gold standard, when one l ooks at larger result sets.

The comparison of the metamodel-dependent and the metamode l-independent index
structures in Figure 11b shows that the latter exhibit an ave rage DCG value consis-
tently higher than the median, thus indicating the presence of several outliers and,
therefore, a less uniform ranking behavior across sample qu eries. The distribution of
differences in the 11-point average precision graph, i.e., the gray area between the
lower and upper quartile in Figure 11a, at lower levels of rec all shows that the struc-
tural setting has more performance �uctuation in �nding the top matches than the
navigational one.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:27

ghi k

ghl mi k

Metamodel Independent
ghi k

ghl mi k

Navigational
ghi k

ghl mi k

Structural

P
re

ci
si

on
 a

t R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

nopq

no rs pq

Metamodel Independent
nopq

no rs pq

Navigational
nopq

no rs pq

Structural

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 11: Keyword-based search: average, median, lower and u pper quartile of: 11-point
precision (a) and DCG (b), for Metamodel-independent, Stru ctural, and Navigational
index con�gurations.

4.3.2. Content-based search. The evaluation of the content-based search �rst examined
the in�uence of the � parameter with respect to each weight con�guration in the gr aph
edit distance, adopting the Levenshtein string distance metric.

Table VIII summarizes the MAP values for different � values and graph edit dis-
tance weight con�gurations. Figure 12a and Figure 12b respe ctively show the 11-point
interpolated average precision and DCG results for the vari ous weight con�gurations;
each curve in one diagram corresponds to a speci�c value of � .

Table VIII: Content-based search: values of MAP for differe nt values of � and weight
con�gurations in the graph edit distance.

Experiment Maximal substitution Maximal subst. & insertion Maximal insertion

Random 0.19
Only type contribution (� =0) 0.34 0.32 0.29
High type contribution (� =0.25) 0.56 0.34 0.24
Intermediate type contribution (� =0.5) 0.74 0.55 0.38
Low type contribution (� =0.75) 0.72 0.83 0.86
No type contribution (� =1) 0.74 0.7 0.73

From Table VIII and Figure 12a and 12b, it emerges that neithe r the metamodel type
alone nor the element label alone are the best options for nod e matching. When the
Only type contribution con�guration is used, the 11-point precision graphs show th at,
regardless of the adopted weights con�gurations, very few r elevant documents are
retrieved (curves show low precision values), which is con� rmed by the DCG graphs
and MAP values. Adding a “touch” of metamodel type knowledge to the node similarity
function leads to better performance: the Low Type Contribution con�guration (� =0.75)
emerges in most cases as the most viable trade-off between la bel and metamodel type

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:28 B. Bislimovska et al.

! = 0
! = 0.25
! = 0.50
! = 0.75
! = 1
Random

Maximal Sub.
! = 0
! = 0.25
! = 0.50
! = 0.75
! = 1
Random

Maximal Sub. and Ins.
! = 0
! = 0.25
! = 0.50
! = 0.75
! = 1
Random

Maximal Ins.

P
re

ci
si

on
 a

t R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

! = 0
! = 0.25
! = 0.50
! = 0.75
! = 1
Random

Maximal Sub.
! = 0
! = 0.25
! = 0.50
! = 0.75
! = 1
Random

Maximal Sub. and Ins.
! = 0
! = 0.25
! = 0.50
! = 0.75
! = 1
Random

Maximal Ins.

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 12: Content-based search: 11-point interpolated aver age precision (a) and DCG
(b) for different � values and weight con�gurations (maximal substitution, ma ximal
substitution and insertion, and maximal insertion).

information (up to 13% better than No type contribution and up to 57% better than
Only type contribution in the MAP table).

The greater relative importance of element names over types in the best performing
case is explained by the occurrence of false positive matche s: overemphasizing meta-
model types quickly leads to cases in which some project grap h nodes representing a
modeling concept present in the query (e.g., a given type of o peration on data) are con-
sidered similar and thus matched to project nodes that opera te on content unrelated
to the query.

The DCG graphs (Figure 12b) suggest a correlation between th e value of � and the
graph edit distance weight con�guration policy. The spread among the curves at differ-
ent values of � is very limited for the Maximal Node Substitution con�guration, and
more sensible for the other two con�gurations. This shows th at Maximal Node Sub-
stitution , which gives importance only to node substitution operatio ns (i.e., similarity
depends on �nding as many “right” model elements as possible , and not, or less, on
how the model elements are arranged or on missing model eleme nts), makes the rank
order of results less sensitive to the name-type tradeoff in the node similarity metrics,
but for the case of � =0 which remains dominated in all weight con�guration polic ies.
Symmetrically, the policies that emphasize node/edge inse rtions (Maximal substitu-
tion and insertion and Maximal insertion) achieve better MAP �gures, but the rank-
ings they produce are more sensitive to the tuning of � . A possible interpretation of
this phenomenon is that the Maximal substitution and insertion and the Maximal in-
sertion policies, which penalize node and edge insertions in graph s imilarity, require
the “right” node similarity function, to compensate the fac t that even slight topological
differences (e.g., differences in containment and linking , or missing model elements)
in the query and the project model can push a relevant match do wn in the result list

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:29

t uvw

t u xy vw

Maximal Sub.

First Quartile

Last Quartile

Mean
Median

Maximal Sub. Ins.

Last Quartile

First Quartile

Mean
Median

Maximal Ins.

First Quartile

Last Quartile

P
re

ci
si

on
 a

t R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Last z{|}~•€ •

‚• } ƒ~ z{|}~•€ •

„ • |…

„ •
†

• |…

Maximal Sub.

Last z{|}~•€ •

‚ • } ƒ~ z{|}~•€ •

„• |…

„•
†

• |…

Maximal Sub. Ins.

Last z{|}~•€ •

‚• } ƒ~ z{|}~•€ •

„ • |…

„ •
†

• |…

Maximal Ins.

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 13: Content-based search: average, median, and lower a nd upper quartile of 11-
point precision (a) and DCG (b), with � = 0 :75

Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

Levenshtein Dist.
Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

2-gram Dist.
Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

3-gram Dist.

P
re

ci
si

on
 a

t R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

Levenshtein Dist.
Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

2-gram Dist.
Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

3-gram Dist.

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 14: Content-based search: 11-point interpolated aver age precision (a) and DCG (b)
for of Levensthein, 2-gram , and 3-gram string distances (� = 0 :75)

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:30 B. Bislimovska et al.

(and hence, the DCG curves for “wrong” � values are more separated from the curve at
the “right” value � =0.75).

Figure 13 shows the average, median, and lower and upper quar tile for 11-point
precision and DCG curves. It con�rms the performance improv ement obtained when
considering insertion operations, because in both the 11-p oint precision and DCG the
distribution of differences shows less variations with res pect to the Maximal Node Sub-
stitution con�guration. However, Figure 13 also shows that the distri bution of results
is wider than the one shown in Figure 10 for keyword-based sea rch; this means that
the performance of the content-based scenario varies more a cross the sample queries.

Table IX: Content-based search: values of MAP for different string distance metrics.

Experiment Maximal substitution Maximal substitution and insertion Maximal insertion

Levenshtein distance 0.72 0.83 0.86
2-gram distance 0.72 0.75 0.78
3-gram distance 0.60 0.63 0.59

String similarity function comparison. Figure 14 shows the third experiment with
content-based search, which evaluates the adoption of diff erent string similarity func-
tions. We set � to 0.75 (Low type contribution) and evaluated the Levenshtein distance
and the N-gram distance under the three graph edit distance con�gurations . The best
results are obtained when using the Levenshtein distance. N-gram distance was tested
for 2-grams and 3-grams. With respect to the Levenshtein distance, 2-grams respec-
tively decrease the 11-point precision and DCG, for an avera ge of 22% and 13%, while
3-grams decrease, on average, the 11-point precision by 43% and the DCG by 32%.
Noteworthy, the three graph edit con�gurations perform con sistently with both the
Levenshtein and the n-gram distances, as the Maximal Insertion con�guration outper-
forms the others. The performance behavior of each string di stance metric is further
con�rmed by the MAP results reported in Table IX.

In summary, the best performance in both precision and ranki ng is obtained for a
moderate metamodel type contribution in node similarity ev aluation (Low type con-
tribution a.k.a � =0.75), Levenshtein distance for name similarity, and weight assign-
ment con�gurations that appraise both node similarity and model topology. Therefore,
textual similarity remains fundamental to achieve good res ults also in content-based
search, but metamodel-dependent information and the topology of the query must be
exploited to retrieve more relevant results and sort them in a more proper order.

4.3.3. Content-based search with locality constraints. As a last experiment, we compared
content-based search with and without locality constraint s for candidate mapping
nodes. For both the original A-star and A-star with locality constraints we set � to 0.75
(Low type contribution) and used Levenshtein distance in the node similarity function.
Table X reports the MAP values for A-star and A-star with loca lity constraints. Figures
15 and 16 chart the 11-point precision and DCG curves. As can b e noted in the above
mentioned results, the application of locality constraint s slightly worsens on average
the performance of content-based search. Inspection of res ults reveals the following
behavior:

— Locality constraints prevent the selection of disconnect ed matching nodes. This pro-
motes in the result set matches with patterns that conform to the majority of the
elements in the query and penalizes matches with projects th at, although topically
relevant, contain only partial reusable patterns scattere d in different places of the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:31

Max. Sub.
Max. Sub. Ins.
Max. Ins.
Random

Local Search

P
re

ci
si

on
 a

t R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Results
1 2 3 4 5 6 7 8 9 10

(b)

Fig. 15: Content-based search: 11-point interpolated aver age precision (a) and DCG (b)
with locality constraints (� = 0 :75, Levensthein distance)

‡ ˆ‰Š

‡ ˆ‹Œ‰Š

Maximal Sub.

First Quartile

Last Quartile

Mean
Median

Maximal Sub. Ins.

Last Quartile

First Quartile

Mean
Median

Maximal Ins.

First Quartile

Last Quartile

P
re

ci
si

on
 a

t R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

Last •Ž••‘’ “”

• ”•–

• ”
—

’ •–

Maximal Sub.

Last •Ž••‘’ “”

˜
’ •

™
‘ •Ž••‘’ “”

• ”•–

• ”
—

’ •–

Maximal Sub. Ins.

Last •Ž••‘’ “”

˜
’ •

™
‘ •Ž••‘’ “”

• ”•–

• ”
—

’ •–

Maximal Ins.

˜
’ •

™
‘ •Ž••‘’ “”

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 16: Content-based search: average, median, and lower a nd upper quartile of 11-
point precision (a) and DCG (b), with � = 0 :75, Levenshtein distance, and locality con-
straints.

model. This effect, in our experimental query panel and proj ect repository, tends to
favor local A-star.

— Some queries that perform well with A-star worsen their per formance when locality
of matching is applied, because the relevant results end up h aving less matching
nodes, which lowers their rank score and thus diminishes the ir separation from not
so relevant results; then it may happen that a less relevant r esult overcomes a more
relevant one in the result list. This behavior tends to favor the original A-star.

— The two abovementioned effects compensate each other, wit h a slight predominance
of the cases where locality worsens the performance.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:32 B. Bislimovska et al.

Table X: Content-based search: MAP values of for A-star algo rithm with local search.

Experiment Maximal substitution Maximal substitution and insertion Maximal insertion
A-star 0.72 0.83 0.86
A-star + locality constraint 0.70 0.72 0.77

Content-Based
Keyword-basedQ

ue
ry

 T
im

e
(m

s)

10

100

1000

10000

Index Size (% of documents in the index)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 17: Comparison of response time at varying number of ind exed projects for
keyword-based search and content-based search.

4.3.4. Query Execution Time. The last quantitative experiment compares the perfor-
mance of the keyword-based and content-based search approaches with respect to re-
sponse time required for query execution. All the experiments have been conducted on
a machine equipped with Intel dual Core Processor 2.4GHz, 6G B RAM, and Windows
7 (64-bit) operating system; the reported values are averag ed over 10 executions.

Figure 17 shows the query execution time for all the 10 querie s considered in
the experiments with respect to the index size. As expected, content-based search
is considerably slower than keyword-based search, which ex ecutes in quasi-constant
time. Despite the exponential complexity of graph matching , the content-based ap-
proach shows a quasi-linear correlation with respect to the index size for the con-
sidered repository, a result that con�rms one of the �ndings of our previous works
[Bislimovska et al. 2011b]. Notice that no query execution o ptimization (including op-
timized indexing of the repository) has been adopted during experiments and therefore
we expect a wide range of possibilities for improving the per formance of the content-
based system.

4.4. User Study

The evaluation reported in Section 4.3 compared the results of the keyword- and
content-based search systems with a gold data set construct ed manually by experts
and aimed at assessing the ability of each system to extract m odels similar to the user
need, under the notion of structural and topical similarity provided by the experts.
To evaluate the user-perceived utility of both systems duri ng a development task, we
conducted a controlled study organized in two distinct sess ions, with the help of 25
industrial software developers (7 females and 18 males). Pa rticipants were volunteers
with at least one project developed using WebML, engaged as f ollows:

— First, users had to �ll-in a pre-experiment questionnaire , to provide demographic
information and self-assess their experience with WebML on a 3-point Likert scale,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:33

ranging from 1 (novice) to 3 (expert). Of the 25 participants , 9 evaluated themselves
as expert, 9 as practitioner , and 7 as novice.

— Before the start of the study, participants watched a video tutorial showing how to
perform two different evaluations, described next.

— Next, users accessed an ad hoc Web application and performe d the actual evalua-
tion 7.

— Finally, users �lled-in a post-experiment questionnaire , where they could provide
feedback in free text format.

A pool of 10 tasks, de�ned in collaboration with the WebML exp erts and inspired to
the development of the exemplary models used for the gold sta ndard creation, was
exploited in the user study. The following is an example of su ch tasks:

Assume you have to design a new Web application for the manage ment of
an e-commerce system. One of the requirements is the management of the
sales operation; speci�cally, the site should contain a Web page devoted to the
search of products in the catalogue; upon submission of the s earch conditions,
the same page should show the list of products matching the us er query. You
want to identify existing projects (or fragments thereof) t hat can be reused to
ful�ll this requirement.

Given a task description, the queries representing it in tex tual and WebML format
were de�ned and respectively submitted to the keyword-base d and to the content-
based system, set-up in their best con�guration (the Metamodel-dependent Naviga-
tional con�guration for keyword search and the Maximal Insertion with � = 0 :75 and
Levenshtein string similarity for content-based search, a s discussed in Section 4.3).
Results of query processing were collected and used for buil ding the user evaluations
described in the following sections.

4.4.1. User Study 1: single system evaluation. The �rst session elicited the users's judge-
ment on the utility for reuse of each result computed by one of the two systems. Given
a task such as the one exempli�ed above, users were presented the top-5 results, with-
out disclosing which system they originated from. Users had to assess each result
using a tertiary scale, where: (i) 0 meant not useful for reus e, (ii) 1 meant partially
useful, and (iii) 3 meant very useful. Figure 18 shows the int erface created for per-
forming the User Study 1; it contains the task description an d one result at a time,
with commands for zooming the model, evaluating it, and scro lling to the other re-
sults of the top-5 result set. Each user evaluated the result sets of 10 tasks, assigned
by mixing an equal number of responses to keyword- and conten t-based queries. To
reduce learning bias and fatigue, the experiment was design ed using a graeco-latin
square scheme [Street and Street 1987; Joho 2011], with system type (keyword-based
and content-based) and task as dependent variables. To mini mize the impact of prior
experience in WebML projects, tasks were assigned to partic ipants randomly. To re-
duce bias due to the rank position, the order of presentation of results in the interface
was random.

For each system, task, and result position, votes were avera ged to calculate a global
DCG curve for the keyword- and content-based systems, repor ted in Figure 19. Figure
20 shows the DCG curves, broken down task-by-task. Note that the DCG curves deter-
mined with the User Study 1 compare the result sets produced b y the search systems
with the best ordering of results emerging from the user's vo tes based on the perceived
reusability of the project fragments with respect to the tas k description; conversely,

7The evaluation system is available for reviewers' consider ation at http://webml.org/webml/modelsearch/
modelsearch-evaluation.jsp .

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

http://webml.org/webml/modelsearch/modelsearch-evaluation.jsp
http://webml.org/webml/modelsearch/modelsearch-evaluation.jsp

A:34 B. Bislimovska et al.

Fig. 18: User Study 1: Interface of the evaluation system.

the DCG curves previously shown in Section 4.3 compare the re sults calculated by the
system under multiple con�gurations with the gold standard created by the experts,
who evaluated the technical quality of matches based on the d egree of textual and/or
structural relevance of the WebML area.

Content-Based
Keyword-based

D
C

G

0

1

2

3

4

5

Retrieved Results
1 2 3 4 5

Fig. 19: User Study 1: DCG curves averaging the user evaluati ons (top-5 results).

4.4.2. User Study 2: system to system comparison. The second user study focused on the
direct comparison of the top-5 result sets produced by the ke yword- and content-based
search systems. The experiment complements the �rst user st udy by including in the
evaluation also the ranking performance of the two systems. To this end, we designed
a pairwise comparison task, with the intent of reducing the c ognitive effort that oth-
erwise would be required for the separate evaluation of two r anked sets of models; the
face-to-face appraisal of whole result sets supports not on ly the judgement about the
relevance of the retrieved models, but also the direct compa rison of the order in which
these are presented. Given a task, users reviewed two result sets and indicated the
one that in their opinion was globally more useful in terms of reuse, considering both
the utility of the returned results, and their ranking posit ions. Figure 21 shows the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:35

Content-Based
Keyword-Based

D
C

G

2

4

6

8

Task 1
1 2 3 4 5

Task 2
1 2 3 4 5

Task 3
1 2 3 4 5

Task 4
1 2 3 4 5

Task 5
1 2 3 4 5

Content-Based
Keyword-Based

D
C

š

2

4

6

8

Task ›

1 2 3 4 5
Task œ

1 2 3 4 5
Task •

1 2 3 4 5
Task 9

1 2 3 4 5
Task 10

1 2 3 4 5

Fig. 20: User study 1: Task-by-task DCG curves (top-5 result s).

evaluation interface developed for the second experiment: the description of the task
is shown in the middle of the page, with the two result sets to b e compared placed at
its left and right. Figure 22 reports the direct comparison o f the preferences for one
system or the other, task by task.

Fig. 21: User Study 2: Interface of the evaluation system.

4.4.3. Analysis of Results. Coherently with the gold standard evaluation, both user
studies show that the content-based search system provides , on average, better re-
sults than the keyword-based system, which suggests a corre lation between the per-
formance of a retrieval system and the user-perceived utili ty for reuse.

The DCG curves of Figure 19 show values similar to the ones des cribed in Section
4.3, but with higher values for the content-based system; th e histogram of Figure 22
show that the result lists produced by the content-based sys tem have been preferred
60% of the times. Further analysis can be done by considering the task-by-task perfor-
mance in Figure 20 and 22. The former shows how well the orderi ng of the result set
of a single system adheres to the preferences expressed by the users; the latte r shows,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:36 B. Bislimovska et al.

Content-Based
Keyword-Based

%
 o

f p
re

fe
re

nc
es

0

0.2

0.4

0.6

0.8

User Tasks
1 2 3 4 5 6 7 8 9 10

Fig. 22: User Study 2: Task-by-task preferences for the two s ystems.

task-by-task, which system the users preferred, when confr onted simultaneously with
the result sets produced by both ones. Four situations emerg e:

— Content-based search is better for Task 1, Task 2, Task 6 and Task 9. Note that
in Task 1 keyword- and content-based search get an equal shar e of preference in
the direct comparison of result sets, but the DCG curve shows that the ordering of
results is closer to the user's judgement for content-based search. Figure 23a reports
an example of content-based query in this class: it expresse s an object management
pattern (distinct pages for the creation, modi�cation, and deletion of instances) over
the documententity. The better performance of content search is due to th e nature of
the query, which exploits a very characteristic design patt ern and thus bene�ts from
the match computed using graph similarity. Conversely, the corresponding keyword-
based query contains rather frequent words (“document” occ urs 81 times in the
repository, “create” occurs 112 times, “modify” occurs 127 times, and “delete” occurs
118 times), which do not produce selective matches in the tex t retrieval system.

— Keyword search is better for Task 3 (depicted in Figure 23b) and Task 4. In this
case the selectivity of textual terms dominates the charact eristics of the structural
pattern. For instance, for Task 3 the total number of occurrences of the term “de-
fault” in the repository is 5, while the term “subject” occur s 9 times. The speci�city
of these terms, which are rare in the repository, makes the ke yword-based search
more selective than the content-based counterpart, even if the content-based query
exhibits a fairly articulated model. The greater number of p references obtained by
Task 4 in the second user study is justi�ed by visual bias in the comp arison of result
sets (see point (2) below), which diminishes the perceived u tility of the retrieved set
of results.

— Comparable results for Task 7, Task 8 and Task 10. In this case both systems ex-
hibit a comparable performance, with no clear winner or disc ordance between the
direct comparison of results sets and the appreciation of ea ch result in isolation. As
an example, Figure 23c shows Task 10, which features a fairly complex structural
model and good keyword selectivity (terms such as “dictiona ry”, 44 occurrences, and
“contract”, 5 occurrences).

— No satisfactory results are retrieved for Task 5 (shown in Figure 23d), which ex-
presses a need formulated either as a model fragment with rat her general structure
and labels or as a bag of keywords having low selectivity. In s uch a case, both A-star
graph matching and TF-IDF text matching do not perform well, as no distinctive
feature of the query allows for high-con�dence retrieval.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:37

Document Management

New Document

Keyword Query

Delete Document

Modify Document Document Details

Document ListDocument Data

Modify

+__

Content Based Query

Manage Modify Delete New Document Data Details List

(a) Task 9: good content-based search

Modify User

Modify User

User List

User List

Modify User Data

Modify

+__
Subject

Default Group

Keyword Query

Content Based Query

Modify User Data List Default Group Subject

(b) Task 3: good keyword search

Dictionary

Contracts

Contract Type Delete Dictionary

__

Contract Type

Keyword Query

Content Based Query

Delete Dictionary Contract Type

(c) Task 10: equivalent keyword and
content search

Client Management

Make calls Manage Clients

Keyword Query

Content Based Query

Make Call Manage Client

(d) Task 5: no satisfactory re-
sults

Fig. 23: Example of task with a) good performance in content- based search, b) good per-
formance in keyword-based search, c) equivalent performan ce, and d) unsatisfactory
overall performance.

Further analysis of the results of the two user studies, also con�rmed by the feed-
back provided by the users, show that:

(1) In some cases (e.g.,Task 1, Task 2, Task 6, and Task 8) the main contribution to
the utility of the result set is due only to a very relevant top -1 result, as shown by
the DCG curve starting at the highest value for x=1 (i.e., 3) a nd then �attening out.
In this case, the system retrieves a very good match to either the keyword-based or
the content-based query, but then the other results are judg ed much less useful.

(2) Some other tasks (Task 4 and Task 9) instead retrieve results that are perceived
as good all over the result set, as shown by a steadily increas ing DCG curve both
in keyword-based and content-based search. In the direct co mparison of the result
sets, users tend to assign higher preference to content-bas ed results though, even
when the precision and order of the result set is judged bette r for keyword-based
search (this is the case of Task 4). Post-experiment comment s from the users sug-
gest that the favorable perception for content-based searc h is in�uenced not by the
relevance per se of the result, but by a visual bias induced fr om the highlight of
the matching elements. Content-based search results match mostly elements that
appear visually also in the content-based query and in its ne ighborhood, whereas

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:38 B. Bislimovska et al.

keyword-based search matches all elements that contain at l east one keyword. In
the abovementioned tasks, it was easier for the users to appr eciate the reusability
of the content-based result than of the keyword-based one, w hich had many high-
lighted elements and resulted confusing.

(3) Another factor that blurs the perceived differentiatio n between keyword- and
content-based search is the size of the returned model eleme nt. Tasks like Task 7,
Task 8, and Task 10happen to match well with rather large WebML areas, making
it more dif�cult for the users to perceive the utility for reu se.

4.5. Discussion

4.5.1. Relevance of Metamodel information. Overall, the results of the experimental eval-
uation show that the inclusion of metamodel-dependent info rmation in the model-
search process is bene�cial for performance; this is demons trated both in the keyword-
based search system, where the evaluated Metamodel-dependent strategies outper-
form the Metamodel-independent one, and in the content-based search system, where
the injection of metamodel information in the node similari ty function provided a con-
siderable performance boost. However, in keyword-based se arch the very simple ap-
proach of extracting the text content from projects and inde xing it with off-the-shelf
IR tools still yields acceptable results (MAP = 0.77). This r esponds to the research
question [Q.2] presented in Section 1.2.

4.5.2. Keyword- Vs. Content-Based Search. We compare keyword-based search and
content-based search in their most performing settings, re spectively the metamodel-
dependent navigational con�guration and the Low type contribution, maximal inser-
tion con�guration that uses Levenshtein distance.

The MAP values suggest that content-based search (MAP = 0 :86) is overall more
precise than keyword-based search (MAP = 0 :81); however, results from 11-point in-
terpolated average precision show that the best keyword-ba sed experiment at recall =
0 slightly outperforms content-based search, as the former f eatures a precision of 1.
Content-based search provides better precision for (0:1; 0:2; 0:3) recall levels (up to 30%
of relevant projects); for greater recall levels the keywor d-based search consistently
outperforms content-based search. A similar performance p ro�le resulted from the
�rst experiment of the user study, where the DCG curves resul ting from the evalu-
ation of the top-5 results show that, on average, the content -based system is perceived
as performing slightly better for reuse purposes.

Therefore, we might conclude that, in the evaluated setting , content-based search
is suitable for applications where precision matters the mo st. On the other hand,
keyword-based search can prove suitable in applications wh ere recall is important
(e.g., recommendation systems). Obviously, these conside rations must be taken with
care, because comparing information retrieval results acr oss diverse systems and
query paradigms can only give a coarse indication of the resp ective capabilities.
The quantitative experiment over gold data and the user stud y respectively respond
to the research questions [Q.3] and [Q.4] presented in Section 1.2.

4.5.3. Search system design guidelines. The user study revealed possible sources of cog-
nitive bias that may alter the perception of the utility of th e retrieved results, even
if they are relevant from a technical standpoint (i.e., they do contain the queried key-
words or model fragment). These results suggest two recomme ndations for the design-
ers of model search systems:

— Project segmentation : project segments (WebML areas in the case of our experi-
ments) should be semantically meaningful as potential unit s of reuse and have
comparable size.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:39

— Matching results highlight : keyword-based search may be an interesting tool to
recall more potentially relevant matches than content-bas ed search, but it suffers
from the visual overhead induced by the matches of many model elements of dif-
ferent types. As a possible countermeasure, the interface s hould support commands
for toggling the highlight of selected metamodel types. In t his way, the user could
selectively turn on the highlight for the type of model eleme nt he is looking for (e.g.,
only for pages, or units of a given kind), exploiting metamod el information also for
the visualization of results.

4.5.4. Project design guidelines. As a �nal remark, the �ndings about the performance
of model-based search systems can be read also as recommendations for project de-
velopers and DSL designers. In general, using selective and precise textual labels for
model elements is the �rst best practice to consider; given t he importance of the text
match component in both keyword- and content-based search, using scarcely descrip-
tive labels and omitting comments to model elements obvious ly degrades search. Most
of the reviewed projects contained no comments associated w ith model areas, pages,
and meaningful patterns, even if this feature is supported b y WebML and WebRatio.
Another best practice is the adherence to standardized desi gn patterns: many func-
tions (e.g., the interfaces for performing CRUD operations on data, composition and
sending of messages, and so on) can be modeled in standard way s, but the projects
exhibited a lot of semantically equivalent but slightly dif ferent variants for doing the
same thing. This (not so necessary) variability impacts the calculation of the graph
edit distance, which is sensitive to link and containment to pology. Last, DSLs that are
designed to be extensible and incorporate third-party comp onents, like WebML, should
care for preserving the precision of the metamodel: a good cl assi�cation taxonomy of
custom components can help the metamodel type part of the nod e matching function
of content-based search.

4.6. Threats to Validity

The paper provides two main contributions: an approach for a pplying metamodel-
based search to model repositories; and a concrete experime nt over a repository of
models conforming to a speci�c DSL, namely WebML. While the f ormer contribution is
general, the latter, especially the quantitative results f rom the experiments, is relevant
for the WebML case and cannot be directly generalized to othe r languages. However,
the discussed method for studying the con�gurations of the s earch systems and for
tuning their parameters can be reused. Also, as discussed in Section 3.1, WebML is
a representative of a family of languages for interactive ap plication modeling, which
is also being proposed for standardization by the OMG. This m akes the experiments
described in the paper, although not directly portable to ot her DSLs, potentially useful
for supporting the evaluation of search system in other lang uages for model-driven
interactive application development.

While it would have been good to evaluate the system on multip le or larger reposito-
ries, �nding realistic and suf�ciently rich datasets has be en challenging. Indeed, mod-
els are the core asset of MDE companies, which are therefore r eticent to share them.
Anyway, the repository we have been able to collect contains a considerable amount of
model artifacts (a total of 19,246 searchable elements have been counted) and covers
a wide spectrum of application domains. Based on the user fee dback and on our em-
pirical assessment of the repository, we think that the obta ined results are accurately
describing the system behavior for the WebML modeling langu age.

Another potential threat comes from the quality of the testb ed and of the gold stan-
dard. We applied all the known techniques for reducing the bi as of evaluators and we
were not included in the set of experts evaluating the data. T he same care has been

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:40 B. Bislimovska et al.

applied to the de�nition and execution of the user study. Whi le the projects in the
repository could not be chosen (they were provided by WebRat io), the selection of the
queries for the experiments was performed based on various l anguage and dataset ob-
jective characteristics, to minimize the introduction of b ias from our side. The selected
number of tasks (10) has been deemed a reasonable compromise between the effort
required for constructing the gold standard and the coverag e of several aspects of the
DSL and of typical design patterns that we observed in the pro vided repository.

The result of the user study could have been in�uenced by the n umber and exper-
tise of the involved participants. However we believe that n umber of involved users
(25) suf�ces for a meaningful evaluation, while the levels o f expertise were fairly dis-
tributed.

Finally, a last factor that could have in�uenced the user stu dy is the user interface
we built for the purpose. This interface may have introduced exogenous complexity to
the evaluated variables, e.g., due to factors such as the lim itations of a browser-based
interface, the system response time, the cognitive load ass ociated with a new inter-
face, time pressure, and the kind of interaction commands al lowed. To minimize the
impact of such factors, we provided equal training to all the participants, and did not
pose a time limit for the execution of the evaluations. Howev er, as we have commented
in Section 4.4, model-driven search surely poses challenge s in the system interface de-
sign, related to model complexity and size and highlight of m atches, which we consider
interesting future research directions to explore.

5. RELATED WORK

The problem of searching relevant artifacts in software rep ositories has been exten-
sively studied in many academic works and widely adopted by t he community of devel-
opers. This Section provides analysis of the state-of-the- art, classifying it by the type
of retrieved software artifacts, i.e., components, source code and models. Furthermore,
it associates our contribution with our previous works on mo del search.

Component Search. Searching software components from software libraries in a n
effective way for their reuse is an important research probl em [Goguen et al. 1996].
One of the earlier proposed approaches is Agora [Seacord et a l. 1998],a component
search engine, which automatically generates and indexes a worldwide database of
software products, classi�ed by component model, allowing users to search for com-
ponents by specifying the properties of its interface. Merobase 8 is an online tool
for �nding software components through simple text-based s earch, lookup capabil-
ity and API search. The work in [Ben Khalifa et al. 2008] prese nts a structural and
behavioral based technique for retrieval of software compo nents, considering their
heterogeneity, such as the domain, abstraction level and th e underlying technology.
[Platzer and Dustdar 2005] investigates the discovery and a nalysis of Web services
using a vector space search engine to index descriptions of e xisting services.

Source Code Search. The need for searching source code for improving the process
of software development and supporting software reuse resu lted in emergence of sev-
eral on-line tools and research works that implement and exp lore this problem. Some
examples of existing on-line tools for sharing and retrievi ng source code are Google
code, Snipplr , Koders, and Codase9. As explained in [Bozzon et al. 2010],the most ba-
sic solution is the case where queries in form of keyword(s) a re simply matched to
the code and the results are the exact locations where the key word(s) appear in the
matched code snippets. However, online tools allow advance d search by using reg-

8http://www.merobase.com
9Sites: http://code.google.com , http://www.snipplr.com , http://www.koders.com , http://www.codase.
com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:41

ular expressions (Google Codesearch), wildcards (Codase) ; supporting search of spe-
ci�c syntactical categories, like class names, method invo cations, variable declarations
(Jexamples and Codase); making the search more speci�c by in dicating �xed set of
metadata (e.g., programming language, license type, �le an d package names). Source
code online tools also have to consider a way to compute a rele vance score between
the query and the matched source code, and present the corres ponding results to the
user [Bozzon et al. 2010]. Regarding this aspect, some appro aches retrieve a list of
matches without providing ranking, while others implement IR-style ranking using
the standard TF/IDF measure, or ranking which besides the ma tches with the source
code takes into account the project properties such as recen cy of the project, number
of downloads, activity rates etc.

Research works for source code search are based on IR techniq ues
[Frakes and Nejmeh 1987; McMillan et al. 2012] and technique s which em-
ploy the source code structure in the search [Bajracharya et al. 2009;
Holmes and Murphy 2005]. Sourcerer [Bajracharya et al. 2009] is an infrastruc-
ture which provides foundation for building source code sea rch engines and tools by
sustaining large-scale indexing and analysis of open sourc e code by exploiting the code
structural information. [Holmes and Murphy 2005] describe s a method for locating
relevant code in an example repository by heuristically mat ching the structure of the
code under development to the example code. Exemplar [McMil lan et al. 2012] is an
approach for �nding highly relevant software projects from large archives of applica-
tions by using information retrieval and program analysis t echniques. Sniff (Snippet
for Free-From queries) [Chatterjee et al. 2009] is a Java cod e search technique which
allows free-form queries in natural language for obtaining a set of relevant code
snippets by combining API documentation with publicly avai lable Java code. The
work in [McMillan et al. 2011] describes Portfolio, a source code search system that
provides retrieval and visualization of functions, and sup ports the analysis of chains
of dependencies of the retrieved functions with the help of n avigation and association
models.

Model search. Model search approaches are not so abundant as those based on
code retrieval, but a few systems have been described recent ly. Moogle is a model
search engine that uses UML or Domain Speci�c Language (DSL) metamodels to
create indexes for evaluation of complex queries [Lucr édio et al. 2010]. The work in
[Gomes et al. 2004] stores UML artifacts in a central knowled ge base, classi�es them
with WordNet terms and extracts relevant items exploiting W ordNet classi�cation
and Case-Based Reasoning. The query represents a partial UM L model and it may
contain UML packages, classes or interfaces. Unlike our app roach, Moogle supports
only text queries which are re�ned by specifying the type of t he desired model ele-
ment to be returned, while [Gomes et al. 2004], is limited to U ML model queries where
the name of every model element is classi�ed into a speci�c co ntext synset (WordNet
cognitive synonym)category. The techniques proposed in [A kehurst and Bordbar 2001]
and [Cal �� et al. 2012] do not use IR or graph matching techniques but re ly on query
languages for UML models. [Akehurst and Bordbar 2001] uses t he detailed semantics
of UML and OCL with additional extensions for querying UML mo dels. Cal �� et al.
[Cal �� et al. 2012] study the problem of answering queries over UML class diagrams
by relating it to the problem of query answering under guarde d Datalog � , a power-
ful Datalog-based language for ontological modeling, in or der to verify whether an
instance of a system modeled by the UML class diagram satis�e s a speci�c prop-
erty. WISE [Shao et al. 2009] is a search engine that allows querying wor k�ow hierar-
chies using keywords. CORE [Fern ández et al. 2006], a tool for Collaborative Ontology
Reuse and Evaluation, determines which ontologies from an o ntology repository most
appropriately describe a set of terms, by applying similari ty measures.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:42 B. Bislimovska et al.

The work [Mendling et al. 2007] analyzes similarity between process model behav-
iors, de�ned in terms of causal footprint. This raises the le vel of abstraction of the
models and thus allows comparison of models speci�ed in diff erent languages (but still
within the domain of business processes). Similarity is cal culated with a vector model
that considers nodes, look back links, and look ahead links o f the causal footprints as
features. Our work instead compares retrieval techniques b ased on purely textual rep-
resentations and on graph representations upon which graph similarity is computed.

Other approaches de�ne extensions of OCL (Object Constrain t Language) for allow-
ing queries over complex model repositories: for instance, [Kling et al. 2011] propose
MoScript, a textual language for model querying and managem ent. With MoScript,
users can write scripts containing queries and manipulatio n instructions (e.g., trans-
formations on sets of models) upon models and store them back in the repository. While
the approach is metamodel-independent, the user is left in c harge of writing complex
OCL-like queries that only retrieve exact, non-ranked mode ls. Our approach departs
quite radically from the mentioned ones, as none of these sys tems considers query-by-
example scenarios, and most of them require the usage of a que ry language for the
speci�cation of the query that is not suitable for end users.

Graph-based model search. Several approaches perform content-based search re-
lying on graph matching. The work in [Grigori et al. 2010] int roduces a BPEL ranking
platform for service discovery employing graph matching, w hich �nds a set of service
candidates satisfying user requirements and ranks them usi ng a behavioral similarity
measure. Another behavioral similarity measure for artifa ct-oriented business pro-
cesses, using the Petri Net notation, is proposed in [Liu et a l. 2012] and is based on
artifacts and their lifecycles, which re�ect the behavior o f a business process. Zhuge
et al. [Zhuge 2002] implement an approximate matching approach ba sed on SQL-like
queries on ontology repositories. The focus is on reuse, bas ed on a multi-valued pro-
cess specialization relationship. Three similarity metri cs for querying business process
models are presented in [Dijkman et al. 2011]: label matchin g similarity, structural
similarity, which considers the topology of models, and beh avioral similarity, which
focuses on the causal relations in models. The same authors p ropose a structural sim-
ilarity approach in [Dijkman et al. 2009], which computes si milarity of business pro-
cess models, encoded as graphs, by using four different grap h matching algorithms:
a greedy algorithm, an exhaustive algorithm with pruning, a process heuristic algo-
rithm, and the A-star algorithm. Although the graph-based p art of our work is inspired
by the abovementioned approaches, the existing works are re stricted to queries over
BPM models, which have a simpler syntax and semantics than a D SL for interactive
application front-ends modeling. [Niemann et al. 2012] dis cusses a technique for pro-
cess models retrieval based on clustering of related pairs, which combines semantic,
string-based, and an hybrid metric for comparing process mo dels. The related cluster
pairs are then used to compute the overall process similarit y. The main differences
with respect to our work is the focus on business processes an d the use of comparison
mainly based on node labels rather than on structural inform ation.

The works in [Kunze and Weske 2010; Qiao et al. 2011; Jin et al. 2011] present two-
step approaches for graph-based search of Business Process Models repositories by
applying �lters to narrow the search space, and then perform ing graph matching on
the �ltered candidates only. [Kunze and Weske 2010] discuss es an indexing approach
for business process models based on metric trees (M-Trees) , and a similarity metric
based on the graph edit distance. The work in [Jin et al. 2011] introduces a structural
technique for ef�cient retrieval of BPM models represented as Petri nets, with the
help of an edge-based index which �lters promising candidat es, followed by a similar-
ity computation of Maximum Common Edge Subgraph for the cand idates that passed
the �lter. A two-level business process clustering and retr ieval method that combines

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:43

language modeling and structure matching is proposed in [Qi ao et al. 2011]. The �rst
level clustering is based on topic similarity, while the sec ond-level clustering consid-
ers the detailed structure of processes within a cluster, an d groups them according
to their structural similarities using a graph-partition a pproach. In comparison to the
graph-based part of our work, these approaches are limited t o business process models,
and they introduce �ltering as another step in the processin g to achieve more ef�cient
search, which might be explored as a future direction in the g raph-based search of
models.

Other content-based approaches. Other approaches use speci�c algorithms for
similarity search. The work in [Syeda-Mahmood et al. 2005] u ses domain-independent
and domain-speci�c ontologies for retrieving Web services from a repository by enrich-
ing their descriptions with semantic associations. A frame work for model querying in
the business process modeling phase, enabling reuse, suppo rt of the decision making,
and querying of the model guidelines is presented in [Markov ic et al. 2008].

Other approaches exploit domain knowledge, also in terms of ontologies, for formu-
lating the queries; however, these approaches are typicall y bound to one speci�c kind
of models (e.g., business process models). The work [Belhaj jame and Brambilla 2011]
proposes a query by example approach that relies on ontologi cal description of business
processes, activities, and their relationships, which can be automatically built from the
work�ow models themselves. The work [Kiefer et al. 2007] pro posed the use of seman-
tic business processes and offer an approximate query engin e based on iSPARQL to
perform the process retrieval task and to �nd inter-organiz ational matching between
business partners. With respect to our work, these techniqu es leverage on semantic de-
scriptions of the models. This means that models need to be en riched with annotations
from ontologies for improving the retrieval performance.

Our previous work. The results described in this paper are rooted in our
previous work on model search. The early work [Bozzon et al. 2 010] de�ned the
problem of searching over DSL repositories and proposed a te chnical architecture
for the case of keyword-based model retrieval; no evaluatio n with a gold stan-
dard for the keyword-based retrieval system was reported ye t. The subsequent
works [Bislimovska et al. 2011b; Bislimovska et al. 2011a] i ntroduced the approach of
content-based search, supported with the A-star algorithm , and reported a preliminary
evaluation of results with a limited ground truth dataset co mpiled by the authors.

To the best of our knowledge, our work is the �rst one that syst ematically com-
pares keyword-based and content-based search for models ex pressed in a Domain
Speci�c Language, providing insight on the interplay betwe en con�guration param-
eters of the search engines, the structure of the modeling la nguage, and the nature
of the user's queries. Our approach to keyword-based search is inspired by informa-
tion retrieval techniques and it is related to works like [Lu crédio et al. 2010]. With
respect to this work, we focus on the comparison with content -based search and
thus adopt a rather straightforward approach to indexing an d search, which uses
only the knowledge present in the text content and in the meta model. The exten-
sion to a semantically richer treatment of the domain knowle dge, e.g., for term ex-
pansion and domain-driven clustering of projects, can be ea sily envisioned for our
approach. As for the content-based search, our approach mos tly draws inspiration
from graph-based works in the context of business process mo dels, most notably,
[Dijkman et al. 2009; Dijkman et al. 2011]. With respect to BP M-oriented content-
based search, DSL-oriented search shares the mix of label an d structural knowledge
exploited in indexing and searching, but must cope with a ric her language syntax and
semantics, which we have considered in the design of paramet er con�gurations.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:44 B. Bislimovska et al.

6. CONCLUSIONS

In this paper we have addressed the problem of designing sear ch systems for reposito-
ries of projects in a model-driven Web application developm ent environment. We have
contrasted two major approaches for the implementation of s earch: keyword-based
and content-based. Extensive experimentation has been con ducted with a sample of
10 queries against a real-world repository of 341 WebML area s, for which a gold stan-
dard set has been constructed that embodies what experts con sider good responses to
both keyword-based and content-based queries. Experiment s have shown that even
traditional text indexing techniques can deliver good perf ormance for keyword-based
queries, but adding metamodel knowledge to the index can imp rove accuracy. For
content-based search, the conclusion is that matching the t extual content of project
is still important, but the system bene�ts from an appropria te injection of metamodel
knowledge regarding both the types of the elements and the st ructure and topology of
models. Furthermore, content-based search results exhibi ted greater variability and
dependency on the queries than keyword-based results.

We underline once more that these results have been gathered in the context of
a mid-scale experiment and cannot be generalized in an absol ute way. They provide
insight about what expert WebML modelers consider suitable queries and responses
and about the way in which two different classes of informati on retrieval systems can
be con�gured to respond to the expectations of these searche rs. Nonetheless, we believe
that the results presented in this work provide a number of in teresting observations
about the usage of keyword-based and content-based techniq ues for model search and
therefore respond to the research questions we initially de �ned in Section 1.2.

Future work will develop along several complementary lines :

— On the search systems side, both keyword-based and content -based approaches will
be further explored. The keyword-based approach will be exp anded with a better ex-
ploitation of semantics and domain knowledge, both at query time (e.g., by means of
keyword expansion), and at indexing time (e.g., by means of t ext feature extraction
and project topical clustering). The content-based approa ch also lends itself to sev-
eral investigation directions: other graph similarity fun ctions and graph matching
algorithms exist that could be pro�tably compared to the app roach presented in this
paper.

— On the usage of metamodel information, several additional options for embodying
such knowledge in the search system can be evaluated. Beside s using metamodel
knowledge to segment projects and to in�uence the matching a nd ranking of the IR
system, it is also possible to use it for mining relevant info rmation from the project
repository, such as term distribution, and for automating c oncept weighting based
on the analysis of concept centrality in the collection of mo del element graphs.

— On the Web engineering side, it would be interesting to proc eed with the analy-
sis of other DSLs, and to compare search techniques for gener al purpose (notably,
UML) and domain speci�c languages. We also plan to investiga te how the intro-
duction of explicit reuse-oriented constructs, e.g., WebM L reusable modules, alters
the structure of projects and the modeling style of develope rs, and thus impacts
content-based search.

— On the evaluation side, we are building a system for large sc ale evaluation with “ex-
pert crowds”. The CrowdSearch platform [Bozzon et al. 2012] is a general-purpose
task crowdsourcing system that can be used to design user stu dies and deploy them
on top of open social networks and/or closed groups. We plan t o formulate as crowd
tasks several types of search result evaluation questions, so to gather a large scale
collection of queries and expert-validated result relevan ce scores, exploiting both

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:45

open groups (e.g., LinkedIn MDE groups) and closed communit ies (e.g., the WebRa-
tio developers network).

REFERENCES

ACERBIS , R., BONGIO , A., B RAMBILLA , M., AND BUTTI , S. 2007. Webratio 5: An eclipse-based case tool for
engineering web applications. In ICWE , L. Baresi, P. Fraternali, and G.-J. Houben, Eds. Lecture No tes
in Computer Science Series, vol. 4607. Springer, 501–505.

AKEHURST , D. H. AND BORDBAR , B. 2001. On querying uml data models with ocl. In Proceedings of the 4th
International Conference on The Uni�ed Modeling Language, Modeling Languages, Concepts, and Tools .
Springer-Verlag, London, UK, 91–103.

ANDA , B., H ANSEN , K., G ULLESEN , I., AND THORSEN , H. 2006. Experiences from introducing uml-based
development in a large safety-critical project. Empirical Software Engineering 11, 4, 555–581.

ARTECH CONSULTORES S.R.L. Last accessed August 2012. Genexus Marketplace.
http://marketplace.genexus.com.

ATLAN M OD GROUP . Last accessed August 2012. AtlanMod Zoos. http://www.emn.fr/z-info/atlanmod/
index.php/Zoos .

BAJRACHARYA , S., OSSHER , J., AND L OPES, C. 2009. Sourcerer: An internet-scale software repositor y. In
Search-Driven Development-Users, Infrastructure, Tools and Evaluation, 2009. SUITE '09. ICSE Work-
shop on. 1–4.

BELHAJJAME , K. AND BRAMBILLA , M. 2011. Ontological description and similarity-based di scovery of busi-
ness process models. International Journal of Information System Modeling and D esign (IJISMD) 2 ,
47–66.

BEN K HALIFA , H., K HAYATI , O., AND GHEZALA , H. 2008. A behavioral and structural components retrieval
technique for software reuse. In Advanced Software Engineering and Its Applications, 2008. ASEA 2008 .
134–137.

B ILENKO , M., M OONEY , R., COHEN , W., RAVIKUMAR , P., AND F IENBERG , S. 2003. Adaptive name match-
ing in information integration. Intelligent Systems, IEEE 18, 5, 16–23.

B ISLIMOVSKA , B., B OZZON , A., B RAMBILLA , M., AND FRATERNALI , P. 2011a. Content-based search of
model repositories with graph matching techniques. In Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Too ls, and Evaluation . SUITE '11. ACM, New
York, NY, USA, 5–8.

B ISLIMOVSKA , B., B OZZON , A., B RAMBILLA , M., AND FRATERNALI , P. 2011b. Graph-based search over web
application model repositories. In Proceedings of the 11th international conference on Web eng ineering .
ICWE'11. Springer-Verlag, Berlin, Heidelberg, 90–104.

BOZZON , A., B RAMBILLA , M., AND CERI , S. 2012. Answering search queries with crowdsearcher. In Pro-
ceedings of the 21st international conference on World Wide Web. WWW '12. ACM, New York, NY, USA,
1009–1018.

BOZZON , A., B RAMBILLA , M., AND FRATERNALI , P. 2010. Searching Repositories of Web Application Mod-
els. International Conference on Web Engineering , 1–15.

BRAMBILLA , M., B ONGIO , A., B UTTI , S., FRATERNALI , P., K LING , W., M OLTENI , E., AND SEIDEWITZ ,
E. 2013. Interaction Flow Modeling Language (IFML). Standa rdization speci�cation ptc/2013-03-08,
Object Management Group (OMG), http://www.omg.org/spec/ IFML/. March.

BUNKE , H. 2000. Graph matching: Theoretical foundations, algori thms, and applications. In International
Conference on Vision Interface . 82–88.

CAL �I , A., GOTTLOB , G., ORSI , G., AND PIERIS , A. 2012. Querying uml class diagrams. In Proceedings of
the 15th International Conference on Foundations of Softwa re Science and Computational Structures
(FOSSACS 2012). Lecture Notes in Computer Science Series, vol. 7213. Sprin ger, Tallinn, Estonia, 1–
25.

CERI , S., FRATERNALI , P., AND BONGIO , A. 2000. Web Modeling Language (WebML): a modeling languag e
for designing Web sites. Computer Networks 33, 1, 137–157.

CERI , S., FRATERNALI , P., BONGIO , A., B RAMBILLA , M., C OMAI , S., AND M ATERA , M. 2003. Designing
data-intensive Web applications . Morgan Kaufmann Publisher.

CHATTERJEE , S., JUVEKAR , S., AND SEN , K. 2009. Sniff: A search engine for java using free-form que ries. In
Proceedings of the 12th International Conference on Fundam ental Approaches to Software Engineering:
Held as Part of the Joint European Conferences on Theory and P ractice of Software, ETAPS 2009 . FASE
'09. Springer-Verlag, Berlin, Heidelberg, 385–400.

CONALLEN , J. 2000. Building Web applications with UML . Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:46 B. Bislimovska et al.

COOK , S. A. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM
symposium on Theory of computing . STOC '71. ACM, New York, NY, USA, 151–158.

D IJKMAN , R., DUMAS , M., AND GARCÍA -BAÑUELOS , L. 2009. Graph matching algorithms for business
process model similarity search. In Proceedings of the 7th International Conference on Busines s Process
Management . BPM '09. Springer-Verlag, Berlin, Heidelberg, 48–63.

D IJKMAN , R., DUMAS , M., VAN DONGEN , B., K Ä ÄRIK , R., AND M ENDLING , J. 2011. Similarity of business
process models: Metrics and evaluation. Inf. Syst. 36, 2, 498–516.

D IJKSTRA , E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 1,
269–271.

FERN ÁNDEZ , M., C ANTADOR , I., AND CASTELLS , P. 2006. CORE: A tool for collaborative ontology reuse and
evaluation. In Proceedings of the 4th Int. Workshop on Evaluation of Ontolo gies for the Web (EON'06),
at the 15th Int. World Wide Web Conference (WWW'06). Edinbur gh, UK . Citeseer.

FRAKES , W. B. AND N EJMEH , B. A. 1987. Software reuse through information retrieval. SIGIR Forum 21, 1-
2, 30–36.

FRANCE , R., B IEMAN , J., AND CHENG , B. H. C. 2006. Repository for model driven development (rem odd).
In Proceedings of the 2006 international conference on Models in software engineering . MoDELS'06.
Springer-Verlag, Berlin, Heidelberg, 311–317.

FRANCE , R., B IEMAN , J., M ANDALAPARTY , S., CHENG , B., AND JENSEN , A. 2012. Repository for model
driven development (remodd). In Software Engineering (ICSE), 2012 34th International Conf erence on.
IEEE Press, 1471 –1472.

GOGUEN , J., N GUYEN , D., M ESEGUER , J., ZHANG , D., AND BERZINS , V. 1996. Software component search.
Journal of Systems Integration 6, 1, 93–134.

GOMES , P., PEREIRA , F. C., PAIVA , P., SECO, N., C ARREIRO , P., FERREIRA , J. L., AND BENTO 1, C. 2004.
Using wordnet for case-based retrieval of uml models. AI Communications 17, 1, 13–23.

GÓMEZ , J., B IA , A., AND PÁRRAGA , A. 2007. Tool support for model-driven development of web a pplications.
IJITWE 2, 3, 65–78.

GÓMEZ , J. AND CACHERO , C. 2003. Information Modeling for Internet Applications . Idea Group Publishing,
Hershey, PA, USA, Chapter OO-H Method: Extending UML to Mode l Web Interfaces, 144–173.

GREGORY, L. AND K ITTLER , J. 2002. Using graph search techniques for contextual colo ur retrieval. Struc-
tural, Syntactic, and Statistical Pattern Recognition , 193–213.

GRIGORI , D., CORRALES , J. C., B OUZEGHOUB , M., AND GATER , A. 2010. Ranking bpel processes for service
discovery. IEEE Transactions on Services Computing 3 , 178–192.

H OLMES , R. AND M URPHY , G. C. 2005. Using structural context to recommend source co de examples. In
ICSE '05: Proceedings of the 27th international conference on Software engineering . ACM, New York,
NY, USA, 117–125.

H UTCHINSON , J., ROUNCEFIELD , M., AND WHITTLE , J. 2011. Model-driven engineering practices in indus-
try. In Proceedings of the 33rd International Conference on Softwa re Engineering . ICSE '11. ACM, New
York, NY, USA, 633–642.

H YLTON , J. 1996. Identifying and merging related bibliographic re cords. Ph.D. thesis, MASSACHUSETTS
INSTITUTE OF TECHNOLOGY.

J ÄRVELIN , K. AND K EK ÄL ÄINEN , J. 2002. Cumulated gain-based evaluation of ir techniques . ACM Trans.
Inf. Syst. 20 , 422–446.

J IN , T., WANG , J., AND WEN , L. 2011. Ef�cient retrieval of similar business process mo dels based on struc-
ture. On the Move to Meaningful Internet Systems: OTM 2011 , 56–63.

JOHO , H. 2011. Diane kelly: Methods for evaluating interactive i nformation retrieval systems with users -
foundation and trends in information retrieval, vol 3, nos 1 -2, pp 1-224, 2009, isbn: 978-1-60198-224-7.
Inf. Retr. 14, 2, 204–207.

K IEFER , C., BERNSTEIN , A., L EE , H. J., K LEIN , M., AND STOCKER , M. 2007. Semantic process retrieval
with iSPARQL. In ESWC. 609–623.

K LEPPE , A. G., WARMER , J., AND BAST, W. 2003. MDA Explained: The Model Driven Architecture: Practice
and Promise . Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

K LING , W., J OUAULT , F., WAGELAAR , D., B RAMBILLA , M., AND CABOT, J. 2011. Moscript: A dsl for querying
and manipulating model repositories. In SLE , A. M. Sloane and U. Aßmann, Eds. Lecture Notes in
Computer Science Series, vol. 6940. Springer, 180–200.

K RAUS , A., K NAPP, A., AND K OCH , N. 2007. Model-driven generation of web applications in uw e. In MDWE
(2008-05-30), N. Koch, A. Vallecillo, and G.-J. Houben, Eds . CEUR Workshop Proceedings Series, vol.
261. CEUR-WS.org.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:47

K UNZE , M. AND WESKE , M. 2010. Metric trees for ef�cient similarity search in lar ge process model repos-
itories. In Business Process Management Workshops, M. zur Muehlen and J. Su, Eds. Lecture Notes in
Business Information Processing Series, vol. 66. Springer , 535–546.

L EVENHSTEIN , V. 1966. Binary codes capable of correcting deletions, ins ertions, and reversals. In Soviet
Physics-Doklady . Vol. 10.

L IU , H., L IU , G., WANG , Y., AND L IU , D. 2012. A novel behavioral similarity measure for artifac t-oriented
business processes. Technology for Education and Learning , 81–88.

L UCR ÉDIO , D., DE M. F ORTES, R., AND WHITTLE , J. 2010. MOOGLE: A model search engine. Model Driven
Engineering Languages and Systems , 296–310.

M ANNING , C. D., RAGHAVAN , P., AND SCH ÜTZE , H. 2008. Introduction to Information Retrieval . Cambridge
University Press.

M ARKOVIC , I., P EREIRA , A., AND STOJANOVIC , N. 2008. A framework for querying in business process
modelling. In Proceedings of the Multikonferenz Wirtschaftsinformat ik (MKWI), Munchen, Germany .

M CM ILLAN , C., GRECHANIK , M., P OSHYVANYK , D., F U, C., AND X IE , Q. 2012. Exemplar: A source code
search engine for �nding highly relevant applications. Software Engineering, IEEE Transactions on . To
appear.

M CM ILLAN , C., GRECHANIK , M., P OSHYVANYK , D., X IE , Q., AND FU, C. 2011. Portfolio: �nding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Softwa re Engineering .
ICSE '11. ACM, New York, NY, USA, 111–120.

M ENDIX . Last accessed August 2012. The Mendix App Store. https://a ppstore.mendix.com.
M ENDLING , J., VAN DONGEN , B. F., AND VAN DER AALST , W. M. P. 2007. On the degree of behavioral

similarity between business process models. In EPK. 39–58.
M ESSMER , B. 1996. Ef�cient graph matching algorithms for preproces sed model graphs. Ph.D. thesis, Uni-

versity of Bern, Switzerland.
MIT. Last accessed August 2012. MIT process handbook. http: //ccs.mit.edu/ph/.
M OHAGHEGHI , P. AND DEHLEN , V. 2008. Where is the proof? - a review of experiences from ap plying mde

in industry. In Proceedings of the 4th European conference on Model Driven A rchitecture: Foundations
and Applications . ECMDA-FA '08. Springer-Verlag, Berlin, Heidelberg, 432– 443.

N IEMANN , M., S IEBENHAAR , M., S CHULTE , S., AND STEINMETZ , R. 2012. Comparison and retrieval of
process models using related cluster pairs. Computers in Industry .

OMG. 2011. Interaction Flow Modeling Language (IFML) Reque st For Proposal. http://www.omg.org/cgi-
bin/doc?ad/11-12-06.

OUTSYSTEMS I NC . Last accessed August 2012. The Agilenetwork Component Sto re.
https://www.outsystems.com/NetworkSolutions/Home.as px.

PLATZER , C. AND DUSTDAR , S. 2005. A vector space search engine forweb services. In EC OWS '05: Pro-
ceedings of the Third European Conference on Web Services. Web Services, 2005. ECOWS 2005. Third
IEEE European Conference on , 62+.

QIAO , M., A KKIRAJU , R., AND REMBERT , A. 2011. Towards ef�cient business process clustering and re-
trieval: combining language modeling and structure matchi ng. Business Process Management, 199–214.

REM ODD T EAM . Last accessed August 2012. ReMoDD The Repository for Model -Driven Development.
http://www.cs.colostate.edu/remodd/v1/ .

ROSSI , G. AND SCHWABE , D. 2008. Modeling and implementing web applications with O OHDM. In Web
Engineering: Modelling and Implementing Web Applications , G. Rossi, O. Pastor, D. Schwabe, and
L. Olsina, Eds. Human-Computer Interaction Series. Spring er, London, Chapter 6, 109–155.

SANFELIU , A. AND K ING -SUN , F. 1983. A distance measure between attributed relational graphs for pattern
recognition. IEEE transactions on systems, man, and cybernetics 13, 3, 353–362.

SEACORD , R. C., H ISSAM , S. A., AND WALLNAU , K. C. 1998. Agora: A search engine for software compo-
nents. IEEE Internet Computing 2, 6, 62–70.

SHAO , Q., SUN , P., AND CHEN , Y. 2009. Wise: A work�ow information search engine. In Proceedings of the
2009 IEEE International Conference on Data Engineering . ICDE '09. IEEE Computer Society, Washing-
ton, DC, USA, 1491–1494.

SHAPIRO , L. AND H ARALICK , R. 1981. Structural descriptions and inexact matching. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 5, 504–519.

STREET , A. P. AND STREET , D. J. 1987. Combinatorics of Experimental Design . Oxford University Press.
SYEDA -M AHMOOD , T., SHAH , G., AKKIRAJU , R., I VAN , A.-A., AND GOODWIN , R. 2005. Searching service

repositories by combining semantic and ontological matchi ng. In Proceedings of the IEEE International
Conference on Web Services. ICWS '05. IEEE Computer Society, Washington, DC, USA, 13–2 0.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

A:48 B. Bislimovska et al.

WEB RATIO S .R.L . Last accessed August 2012. The WebRatio Store. http://sto re.webratio.com.
YESSOFTWARE , I NC . Last accessed August 2012. CodeCharge Marketplace.

http://www.codecharge.com/marketplace.
ZHUGE , H. 2002. A process matching approach for �exible work�ow pr ocess reuse.Information & Software

Technology 44, 8, 445–450.

Received August 2012; revised February 2013; accepted September 2013

ACM Transactions on the Web, Vol. V, No. N, Article A, Publica tion date: January YYYY.

	Introduction
	Motivating Example
	Goals and Contributions
	Outline

	Fundamentals of Search for Model Repositories
	Information Retrieval Techniques for Model Search
	Content and Query Processing
	Indexing
	Search

	Searching Repositories of Web Application Models
	The Web Modeling Language
	Keyword-Based Model Search
	Illustrative example
	Content Processing
	Indexing
	Query Processing
	Search

	Content-Based Model Search
	Illustrative example
	Content and Query Processing
	Search

	Experimental Evaluation
	Experimental setting and dataset
	Test bed
	Gold Standard Creation
	Experimental scenario

	Evaluation Metrics
	Quantitative Evaluation
	Keyword-based search
	Content-based search
	Content-based search with locality constraints
	Query Execution Time

	User Study
	User Study 1: single system evaluation
	User Study 2: system to system comparison
	Analysis of Results

	Discussion
	Relevance of Metamodel information
	Keyword- Vs. Content-Based Search
	Search system design guidelines
	Project design guidelines

	Threats to Validity

	Related Work

