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Abstract—In this work we review the design choices, the mathematical and software engineering techniques employed in the
development of the ROAMFREE sensor fusion library, a general, open-source framework for pose tracking and sensor parameter
self-calibration in mobile robotics. In ROAMFREE, a comprehensive logical sensor library allows to abstract from the actual sensor
hardware and processing while preserving model accuracy thanks to a rich set of calibration parameters, such as biases, gains,
distortion matrices and geometric placement dimensions. The modular formulation of the sensor fusion problem, which is based on
state-of-the-art factor graph inference techniques, allows to handle arbitrary number of multi-rate sensors and to adapt to virtually any
kind of mobile robot platform, such as Ackerman steering vehicles, quadrotor unmanned aerial vehicles, omni-directional mobile robots.
Different solvers are available to target high-rate online pose tracking tasks and offline accurate trajectory smoothing and parameter
calibration. The modularity, versatility and out-of-the-box functioning of the resulting framework came at the cost of an increased
complexity of the software architecture, with respect to an ad-hoc implementation of a platform dependent sensor fusion algorithm, and
required careful design of abstraction layers and decoupling interfaces between solvers, state variables representations and sensor
error models. However, we review how a high level, clean, C++/Python API, as long as ROS interface nodes, hide the complexity of

sensor fusion tasks to the end user, making ROAMFREE an ideal choice for new, and existing, mobile robot projects.

Index Terms—Sensor Fusion, Localization, Wheeled Robots, Service Robots, Calibration and Identification

1 INTRODUCTION

DOMETRY, i.e., the estimate of a mobile robot position
O and orientation from proprioceptive measurements, is the
first step in the development of autonomous mobile robots
and unmanned vehicles. The importance of such activity was
clear from early works in mobile robotics [1] and several
contributions have been published about improved models for
odometry [2], or odometry calibration [3]. When multiple
sources of information are available, position and orientation
estimation in mobile robots has often been addressed as a
problem of multi-sensor data fusion and solved by means of
Bayesian filters such as extended Kalman filters and particle
filters [4]. The Bayesian filtering approach has also been used
for online estimation of calibration parameters, such as, among
the others, the systematic and non-systematic components of
the odometry error [5], or the GPS latency [6].

Although the effectiveness of these approaches has been
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proven many times and they are now well established in
the literature, people dealing with robot development are still
required to write their own ad-hoc implementations to adapt
such techniques to the particular application or platform they
are developing. But the general case of a modular, kinematic
independent, sensor agnostic, self-calibrating, sensor fusion
framework is still an open issue, and this is indeed the scenario
we targeted in the ROAMFREE (Robust Odometry Applying
Multi-sensor Fusion to Reduce Estimation Errors) project.
The scientific relevance of this problem is confirmed by the
contemporary appearance in the literature of other frameworks
for multi-sensor fusion and, in some cases, sensor calibration
in mobile robotics: see for instance [7], in which an EKF is
employed for pose tracking and sensor self-calibration, and [8]
where the sensor fusion problem is modeled by means of a
factor graph, in a similar way with respect to the present work.

Modularity enables the re-use of components in different
products and prototypes, thus enlarging the share set, reducing
costs, in terms of both time and money, and improving overall
reliability too. Standardized components have been widely rec-
ognized as fundamental in cost effective prototyping, design,
and mass production. For instance, in the automotive field,
the car platform is often designed to share mechanical and
electronic parts among different models so that car manufac-
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turer can reduce costs and leverage on platform sharing [9].
In software engineering, software components, generally orga-
nized in libraries or frameworks, are re-used among different
projects and by several software producers [10].

For the vast majority of robotic applications, it is possible
to identify a reasonably small set of common functionalities,
which can be implemented in a standard way by modular
components. Being odometry one of those, in ROAMFREE
we designed a toolkit to be easily used in the development
of the odometry system of mobile applications. This goal is
significantly more difficult that developing one system that
performs odometry by sensor fusion, and should be regarded
as a framework to design and program systems that perform
robust odometry by sensor fusion. An example taken from
software engineering could be that of generic programming in
which “algorithms are written in terms of to-be-specified-later
types that are then instantiated when needed for specific types
provided as parameters” [11].

ROAMFREE sensor fusion library, described in this paper
and first introduced in [12][13], aims at the development of
a generic framework to provide robust odometry by sensor
fusion in mobile robots. Hand coding of a sensor fusion algo-
rithm, is often time consuming and the performance of higher
level control and navigation modules are tightly dependent on
its localization accuracy. Being able to obtain a result which
is comparable to hand coding from a generic algorithm has
required some critical design choices which description and
discussion is the main contribution of this paper.

The first design choice in ROAMFREE is the definition
of logical sensors in the form of the type of information
they provide about the robot displacement, e.g., absolute pose,
linear velocity, acceleration, etc. A second design choice has
been the definition of abstract sensors in terms of baclk box
information sources with a possible displacement with respect
to the odometric reference frame of the robot. Finally, tracking
and sensor fusion are performed by ROAMFREE through a
Maximum-A-Posteriori estimate over the joint probability of
robot poses, given the sensor readings, which is represented
as a factor graph. While this approach is often employed for
the solution of the Simultaneous Localization and Mapping
problem, in which it is referred as bundle adjustment, its
application to inertial navigation has appeared only recently
in the literature [14][15]. As we will discuss in details, this
approach forms the basis for the modularity of the framework
and ultimately enables its sensor-calibration capabilities.

Being able to estimate the robot position and attitude with
respect to a world fixed reference frame through multiple
sensors requires the calibration of their intrinsic (e.g., biases
and distortions) and extrinsic (e.g., relative displacements with
respect to the robot frame) parameters. Direct measurement
of these quantities is often impractical, or even impossible,
and the calibration task is usually performed by means of ad-
hoc, hand-tuned procedures especially designed to target the
platform in use. The abstract sensor idea, together with the
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factor graphs non-linear minimization provides also a generic
way of performing sensor calibration, both offline and online.

A high level description of the framework is given in
Section 2; in Sections 3 and 4 we go more in depth in the tech-
niques employed for the sensors and state variables modeling
respectively. According to the factor-graph formalism, each
measurement is treated as and error function to be minimized:
Section 5 introduces the factor-graph model and the solver
used to compute the MAP estimate. One case study about the
use of the framework, as well as an experimental evaluation,
is reported in Section 6 while Section 7 concludes the paper.

The source code of the ROAMFREE sensor fusion li-
brary is released under the GNU Lesser General Public
License (LGPL) and it is available at!.

2 FRAMEWORK STRUCTURE OVERVIEW

The ROAMFREE sensor fusion library is a flexible and mod-
ular framework designed to deliver (i) off-the-shelf position
and attitude tracking, (ii) intrinsic, extrinsic, and kinematic
parameters self-calibration to mobile robots and unmanned
vehicles developers. The framework ships a set of high level
sensor models which can be configured in terms of calibration
parameters (e.g., distortion and bias coefficients), and geomet-
ric displacement on the mobile robot, allowing the end user
to precisely describe its robot perceiving architecture instead
of coding from scratch the sensor fusion algorithm.

A flexible and modular formulation of the odometry sensor
fusion problem allows to deal with an arbitrary number of
multi-rate sensors, i.e., various sensors producing readings at
different rates, having non-constant frequencies of operation,
and possibly producing out of sequence data. The implemented
core fusion engine is based on a fixed-lag smoother whose goal
is to track not only the most recent pose, but all the positions
and attitudes of the mobile robot in a fixed time window:
short lags allow for real time pose tracking, still enhancing
robustness with respect to measurement outliers; long lags are
suited for offline calibration tasks in which the goal is to refine
the available estimate of sensor calibration parameters.

In the development of the library, we aim at delivering a
software tool which is independent from the actual hardware
machinery, or software algorithms, which originate the odo-
metric information. ROAMFREE sensor models are logical
descriptions of the actual sensors and characterize them in
terms of measurement domain and geometric displacement
with respect to the mobile robot kinematic center. We choose
not to describe physical models, nor attempt to provide soft-
ware interfaces for widespread commercial sensors, on the
contrary, we follow a black box approach focusing on the
nature of the information sources.

As a possible example, consider a gyro sensor being part of
an inertial measurement unit and a visual odometry algorithm
processing images acquired by a calibrated camera: both

l. http://roamfree.dei.polimi.it
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information sources can be seen as logical angular velocity
sensors. As long as the sensor abstract model is expressive
enough, from a pose tracking point of view there is no need
to distinguish between these two information sources. Indeed,
what we need, at the level of logical sensor, is a parametrized
error model which can be configured by the user to handle
the peculiarities of the actual sensor employed (e.g., bias in
case of a gyro and unknown scale in case of a monocular
visual odometry algorithm). We will discuss the logical sensor
paradigm in details in Section 3.

Another key feature of the ROAMFREE sensor fusion
library lies in the modularity of the implementation: mathemat-
ical and software engineering techniques have been employed
such that the main framework components, the logical sensors
models, the state variable representations, the sensor fusion
problem handler and the solver algorithms hide their internal
details under abstract interfaces. This allow the end user to
instantiate the framework with one or another implementation
of these components in a transparent way, choosing the one
that best fits its application needs.

Consider for instance the representation of 3-DOF rota-
tions, for which several choices exist, each one exhibiting
its own advantages and disadvantages (e.g., Euler angles,
unit quaternions, SO(3) manifolds, etc.). When formulating
a magnetometer error model, i.e., an equation which relates
the predicted sensor measurement given its orientation and
the actual Earth magnetic field reading, we do not need to
consider the internals of the sensor orientation representation;
we just require it to expose three operators: (i) the composition
of two rotations, (ii) the inverse, (iii) the application of the
rotation to a real vector. At the same time, even the sensor
fusion algorithm can be designed to ignore these details an
work with arbitrary state variable representation, as we will
discuss in details in Section 4.

The core of the ROAMFREE sensor fusion library lies in
a software module which keeps and updates the probabilistic
representation of the sensor fusion problem in terms of a factor
graph, composed of pose and sensor parameter nodes and
logical sensor error models connecting them. Other modules,
such as the actual solver algorithms and the outlier rejection
module, operate upon this representation, as it will become
clear in the next section.

2.1

What follows is a high level description of the functional
blocks that implement the sensor fusion tasks, from the point
of view of information flow through the framework. While
following the description, please refer to Figure 1; details for
each of the blocks will be given in later sections.

Data is introduced in the system in the form of timestamped
sensor readings; no component is included in the ROAMFREE
library to actually read data from physical sensors. On the
contrary, the user is supposed to implement adapters between
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Fig. 1. A simple schema of the ROAMFREE processing
triggered by the arrival of new measurements from logical
Sensors.

hardware or software information sources and the framework.
In Section 6 we present very simple and clean approaches to
perform this based on ROS [16], which is becoming a de-facto
standard in robotics research software development.

The entry point for timestamped sensor readings consists
in the Graph Management component, which is in charge
of updating the internal, probabilistic, representation of the
information fusion problem, for which we adopted a factor
graph formulation: a hypergraph is maintained in which nodes
represent robot poses and sensor calibration parameters in a
given time window while edges represent sensor measurement
constraints, i.e., error models (see Section 5).

As new sensor readings are available, the Graph Manage-
ment component selects the appropriate sensor model and uses
it to build a constraint edge in the hypergraph. If needed,
e.g., a measurement is newer than the most recent pose in
the graph, a new pose node is instantiated and an initial guess
is obtained by means of a forward kinematic logical sensor,
if available (see Section 3.3). Poses and constraints that are
old with respect to the considered time window are discarded
and are substituted by a prior constraint, equivalent in a local
neighborhood of the current nodes estimate.

Again by means of the Graph Management API, the user
invokes a Solver to be run on the hypergraph, which now
contains the full description of the sensor fusion problem.
The Graph Management thus freezes the graph representation,
deferring the handling of further sensor readings till the
estimation process is completed. Before the solver is run on
the graph, sensor models and other heuristics are employed
to perform an Outlier Rejection procedure, which is crucial to
handle situations in which there exist unmodeled error sources
compromising sensor readings. Consider for instance the case
in which a wheeled robot applies torque to its wheels trying
to achieve substantial acceleration: wheel slippage is likely to
occur. In this situation, the velocity estimate obtained applying
forward kinematics to the wheels encoder readings will proba-
bly be inconsistent with other, unaffected, information sources
such as a visual odometry system or an accelerometer. Indeed,
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Fig. 2. Outline of the sensor model class hierarchy.

the simplest form of forward kinematic equations assume no
slippage, which thus consists in an unmodeled error source.

In the previous scenario, fusing information sources in
a Bayesian way, without eliminating outliers, would yield
inaccurate results in which nor the encoders, nor the other
information sources are fully trusted. The reconstructed trajec-
tory would lie in the middle between the true one, measured
by the inertial sensors, and an inconsistent one based on the
wrong assumption of no slippage occurring. A solution to this
problem is to implement consensus heuristics able to detect
these situations and selectively disable the outlier sensors
edges in the problem graph. This is a very important issue
and it is currently subject of active research.

Once the solver has completed its tasks on the factor graph,
the nodes will contain an estimate of the robot poses in the
time window considered, and sensor calibration parameters,
based on all the sensor readings available at the time the
estimation process was started. Based on this information,
the ROAMFREE sensor fusion library accommodates for the
estimation latency, in case it is not negligible, predicting the
robot pose at the user specified timestamp by means of a
forward kinematics logical sensor (if available) or extending
the reconstructed trajectory assuming constant acceleration.

3 SENSOR MODELING

In the ROAMFREE project we aim at the development of a
general pose tracking and sensor calibration framework that
is independent from the actual robotic platform, sensors, and
middleware used for robot development. These goals required

FixedFeature| |AngularVelocity| |[Acceleration| |LinearVelocity| |Position| |VectorField
+Position +Bias +Gain +Gain +Gain
+Bias +Bias
+Distortion
+h

the design of a generic model for odometry sensors and
odometry sensor fusion that abstracts as much as possible
from the nature of the information sources, i.e., the odometry
sensors, and the fusion engine. To this extent, due to the wide
variety of sensors and algorithms available in motion tracking,
we decided not to base our models on physical sensors, i.e.,
sensors hardware and corresponding processing, but on logical
sensors described in terms of the type of measurements they
produce. This shift, from the physical process, and processing,
to the intrinsic type of information contained in the data allows
us to work at a higher level, providing more flexibility and
modularity, without missing any detail required to perform
accurate odometry fusion tasks. In the following we highlight
the hierarchical structure of the software architecture which
implements sensor models (see Figure 2 for reference).

As we have briefly mentioned in Section 2, and as we
will see in detail later on, sensor readings compose mea-
surement constraints as edges in the factor graph represent-
ing the probabilistic formulation of the information fusion
problem. Thus every class in this module implements the
generic edge interface. In particular, the key methods here are
computeError () and errorJacobians (), which are
the only methods required by solver algorithms.

The next level in the hierarchy consists of abstract sensors,
which describe the geometric properties of the real sensor
placement on the mobile robot, and provide a predictor for
the kinematic quantities such as velocities at the sensor
reference frame, given the current robot state estimate. Note
that in general these are different from the ones in the robot
reference frame. Building upon the predictor above, logical
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sensors extend this classes providing error models for the
actual sensor measurements. More precisely, a measurement
predictor, which is function of the kinematic quantities at the
sensor reference frame, is evaluated and compared with the
actual sensor reading, providing a measure of the likelihood
of the robot state estimate with respect to the sensor reading
considered. This two-stage procedure achieves the decoupling
between the equations required to handle misaligned and
misplaced hardware sensor with the ones employed to actually
model the information domains, easing the development of
new sensor models and allowing to test different kinematic
predictor formulations with the same error models.

3.1

The top level of sensor hierarchy consists in abstract sen-
sors, which give a geometric characterization of informa-
tion sources. Indeed, the ideal sensor placement in which
all sensors position and orientation match the ones of the
odometric center of the mobile robot is usually unachievable,
or impractical. To handle this, we characterize each abstract
sensor S; by means of two geometric parameters, i.e., SEO),
the origin of the i-th sensor reference frame with respect to
the odometric frame O, and Rgi, the rotation taking from
O to S;. These two parameter yield a possibly time varying
transformation I', = [SEO),Rgi] which expresses the i-th
sensor reference frame with respect to the robot odometric
center O, for which we track the position and orientation with
respect to the world fixed frame W. See Figure 3.

Note that at least a rough estimate of these parameters is
required to perform the fusion of multiple sensor information
properly. To see why, consider for instance a laser rangefinder
placed at the front-right corner of a differential drive robot. If
a scan-matching algorithm is employed to process its point
cloud output, it is possible to obtain an estimate of the
sensor linear and angular velocities, which may be inconsistent
with the forward kinematic ones, e.g., when the robot is
rotating in-place along its z axis: in this case the rangefinder
would report a non-zero linear velocity estimate, since, due
to its displacement with respect to the odometric center, the
rangefinder moves with respect to the fixed world it perceives
while the robot rotates in-place.

Given the state of the robot, i.e., the position and orientation
of the odometric reference frame with respect to the world,
by means of the parameters in the abstract sensors, we can
predict the kinematic quantities at the .S; reference frame.
More precisely, given the available estimates of the odometric
reference frame state, () (t), z(9)(t—1) and 2(?) (t—2), and
the sensor placement parameters, we derive (9 (t), which is
composed by [S“Z-(W) (1), R?’ (t)], the position and orientation of
the sensor with respect to the world frame, [6(%)(¢),0(%)(¢)],
its linear and angular velocities and [a(%)(t), a(%)(t)], the
linear and angular accelerations. These quantities characterize
the motion of the sensor reference frame with respect to

Abstract Sensors
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Fig. 3. Reference frames employed in the ROAMFREE
sensor fusion library. Abstract sensors S; and S, are
misplaced and misaligned with respect to the Odometric
reference frame O.

the world. To derive 2(%)(t), we rely on a discrete-time
formulation of the 6-DOF rigid body motion equations. These
predictors are employed, in a hierarchical fashion, to build the
measurement domain models.

3.2 Logical Sensors

The aim of logical sensors is to provide a predictor, Z(t) for the
expected sensor readings as a function of the sensor kinematic
state, so to allow the definition of an error function of the form

e(t) = 2(t; 29 (t)) — 2(t) + 1 (1)

where 7 is a zero-mean, Gaussian, noise vector and e(t) € R™.
The goal of the computeError () method is to evaluate
this function given the related state variable values. It is
possible to see that zero-mean error e(t) is obtained when the
prediction matches the actual sensor reading. In this formula
we have remarked the dependency of 2(¢) from the sensor
state predictor defined by the corresponding abstract sensor
in Section 3.1. Equation 1 indirectly relates the robot states
2O)(t), 2(O)(t — 1) and () (t — 2) with the sensor reading
at time ¢. Note that z(¢) seldom gives full information on the
robot state and, even if this was the case, it is often difficult
to invert the sensor model and give closed form expressions
for 2(9)(t) as a function of z(t). Yet, an estimate of the robot
state can be obtained implicitly minimizing e(¢) as a function
of z(P)(t). In most cases, e(t) is a non-linear function and
iterative minimization algorithms are employed. Moreover, it
might have multiple local-minima, thus at least a rough initial
guess for the state variables and the calibration parameters
must be available (see Section 3.3).

The specific form of the error function in Equation 1
depends on the type of measurement we are considering, thus
we have to specialize the concept of logical sensor to handle
the specific measurement domains: (i) absolute position and/or
orientation, (ii) linear and angular velocity in sensor frame,
(iii) acceleration in sensor frame, (iv) vector field in sensor
frame, (v) pose of a world fixed feature (e.g., a landmark) with
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respect to sensor frame. In this sense, a logical sensor is a black
box source of information characterized by its measurement
domain and inherits from the abstract sensor the geometric
properties which specify its displacement with respect to the
robot odometric reference frame. Note that the measurement
domains mentioned above handle all the hardware sensors and
software algorithms commonly employed in mobile robotics
pose tracking, e.g. GPS, SLAM, Visual Odometry, gyroscopes,
accelerometers, magnetometers, and so on.

Each logical sensor implementation introduces a set of
predefined parameters to model sources of distortion, bias
or other quantities which have to be known to evaluate the
predictor in Equation 1. These parameters can be enabled or
disabled by the user to accommodate for specific properties
of the information source considered. For instance, gyroscope
error models reported in the literature take into account a time-
varying bias, related to the nature of the underlying physical
process. In our case, an angular velocity logical sensor would
be employed, enabling its bias correction parameter. A more
complex example is the vector field error model:

2(t)

-1

e(t) = A(RY (5R)) B™ +b—2()+n, @)

where a bold font highlights sensor parameters.

In Equation 2 we made explicit the sensor orientation
predictor Rgv(t) dependency on the sensor misalignment
parameter Rg (see Section 3.1). In case this logical sensor
is employed to handle magnetometer readings, the distortion
matrix A and the bias vector b are enabled and account for
hard and soft iron distortion effects [17], while h™) have to
be set according to the local value of the Earth magnetic field.
The ROAMFREE sensor library includes full parametrized
implementations of a wide variety of error models for all
the physical sensors and processing algorithms commonly
employed in mobile robot pose tracking. Moreover, the hi-
erarchical structure of the sensor models allow the end user
to easily extend or refine the suite provided.

As a final remark, we present how the evaluation of
the errorJacobian () method benefits of the hierarchical
structure discussed above. This method is required to provide
the solver algorithms with a notion of the the error function
direction of steepest descent. For instance, it is employed by
Gauss-Newton solvers to compute the linearized system Hes-
sian matrix, and by Extended Kalman Filters to perform state
and covariance updates. Here we have to compute the Jacobian
matrix of the error function e(t) with respect to the state
variables involved, which consist in the robot poses at time
t,t — 1 and t — 2, the sensor displacement and misalignment
parameters, S; and Roi, and any other parameter introduced
by the current logical sensor. Here we split this evaluation into
two steps: first the logical sensors compute the Jacobian of e(t)
with respect to #(%)(t). Next, the abstract sensor evaluates the
Jacobian of 2(5)(t) with respect to the actual state variables
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(O (t), 2O (t —1),2)(t — 2),8;, R ]. As we remember
from calculus, the required Jacobian matrix is given by the
matrix product of the two blocks above. Regarding the other
parameters which are introduced by the logical sensors, if any,
the Jacobian matrix of the error function with respect to these
variables can be computed directly at the logical sensor level.
In this way, no notion of error function is required at the
abstract sensor level. Furthermore, the error function can be
formulated, and its Jacobian matrix computed, without having
to deal with the internal form of the predictors in section 3.1.

3.3 Forward Kinematics Logical Sensors

A special class of logical sensors consists in kinematic models,
e.g., differential drive, Ackermann, omnidirectional, and so on.
Readings coming from this kind of logical sensors are more
expressive then their more general counterpart since both the
linear and angular velocity of the odometric reference frame
can be computed as a function of the sensor readings. Thus,
a predictor of the next state (%) (¢ + 1) can be constructed,
given the current state (%) (¢) and the logical sensor reading
z(t). These kind of logical sensors usually introduce kinematic
parameters, such as wheel radius, baseline, number of encoder
ticks per revolution, and so on, which are required to compute
both the forward kinematic and the Z(¢) predictor.

As an example, consider a differential drive robot in which
two encoders read both wheels speed, w; and w,. The well
known forward kinematics equations for such a robot read as:

) = B wt) +w(t) 3)
@) = Ewrt) —w(t)

where the r parameter is the wheel radius and L is the wheel
baseline. Note that if we attempt to compute the full 6-DOF
v(©) and w(©) from the encoder readings only, we have to
implicitly assume that planar motion and no slippage occur.
These assumptions constrain the remaining components of the
linear and angular velocity in Equation 3. A simple Euler,
or more complex Runge-Kutta, integration scheme yields the
required predictor () (¢ + 1).

These kind of logical sensors allow to compute reasonable
initial guesses for the robot next state before the sensor
fusion algorithm is started. Moreover, these sensor often read
quantities which are actively driven, i.e., the robot is controlled
by means of the quantities these sensors measure. Thus, it
is possible to employ the predictor above with the actua-
tor setpoints wu(t), which will affect the observed quantities
starting at time ¢ + 1, instead of sensor readings z(t), which
refers to control actions happened in the past. For instance,
the differential drive robot in the example above certainly has
a control loop which regulates the speed of the wheels to
follow a known, and available, setpoint w(t). When we have
to compute an initial guess for the state 2(?) at the time t + 1
the encoder readings z(¢ + 1) are not available yet, so we do
not know the actual wheel speed. However, the last control
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setpoint u(t) is available and it affects the system starting
from time ¢ + 1. It can thus be employed in place of z(¢ + 1)
to evaluate the forward kinematic predictor.

4 STATE VARIABLES

As it has been already introduced, ROAMFREE provides
modularity of state and parameters representation too; in this
section we discuss the hierarchy of state variables, which fill
factor-graph nodes and include both 6-DOF robot poses and
sensor calibration or geometric parameters.

Each state variable has its own domain, eventually non-
Euclidean; in this work a technique called manifold encaplsu-
lation [18] is employed: it allows to handle variables whose
domain is a manifold, i.e., a topological space in which
each point has a neighborhood that resembles the Euclidean
space, in a transparent way, meaning that that the sensor
fusion algorithm and the sensor models do not need to know
the particular, non-Euclidean, structure of the space they are
operating upon, nor have they to access variables internal
representation, nor have they to take any special care to
ensure its consistency. Indeed, they rely only on operators
which define the state variable interface. Hiding the internal
representation of state variables achieves the decoupling of the
sensor fusion algorithms and sensor models formulation from
the actual state variable representation. We will discuss an
example based on well known unit quaternions in Section 4.1.

State variables can be fixed or not’>. A fixed variable is
treated like a constant, i.e., its value is considered to be
known and it is not subject to estimation during the filtering
process. Vice versa, if this property is set to false, the
sensor fusion engine tries to estimate its value. This property
can also be changed online. Consider, for instance, a state
variable holding the differential drive kinematic parameters, r
and L; it is known that their observability depends on the robot
trajectory [19]: a user developed heuristic could monitor this
condition and enable refinement of the kinematic parameters
estimate only when enough information is available.

State variables are also characterized by their dependency
on time. At the present stage of development, we consider
constant variables, i.e., their value does not depend on the
time, or it is assumed to be constant along the time window
considered, or time-variant with limited bandwidth. In the
second case the user can specify the maximum rate at which
the variable parameter is supposed to change as a function
of time. To compute the value of the parameter at time ¢ we
rely on a Lanczos resampling scheme [20] (see Section 4.2
for details).

4.1 Variable Domains

As previously introduced, each state variable has its own
domain. Well known examples of variable domains which

2. We remark that the term fixed does not have to be confused with the
time-invariant term. The difference will become clear in the following of this
section.
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Fig. 4. The state variables class hierarchy.
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are not Euclidean are unit quaternions, often employed to
represent 3-DOF rotation, and elements belonging to the space
of 6-DOF rigid transformations, SE(3). The representation of
these variables is often overparametrized, i.e., it is composed
by more variables with respect to the domain degrees of
freedom, and involves constraints (e.g., the norm of unit
quaternions must be 1, a rotation matrix must be orthonormal,
and so on). State variables belonging to such domains cannot
be correctly handled simply assuming they were Euclidean. A
good lesson come from the use of unit quaternion in EKFs:
during updates, unless special care is taken by means of ad-
hoc methods, e.g., Lagrange multipliers [21], the norm of the
quaternions eventually diverges from 1 and normalization has
to be performed. Furthermore, due to overparametrization, the
full state covariance matrix is always ill-conditioned.

In our work we follow the idea in [18] and define a
state variable interface which requires a set of operators to
be implemented. These allow both the error function to be
evaluated and the solver algorithm to perform state estimation
without the need to know or to handle the internals of state
variable representations. These operators are:

D B: MxR* > M

) B MxM—=R"?

3) *: M x R"™ — R", default action on R"

4) ~1: M — M, inverse

5 () : M x M — M, composition

The H operator applies a local, Euclidean, increment to the
non-Euclidean variable belonging to the manifold M and it is
employed by the sensor fusion algorithm to modify state vari-
ables ensuring the consistency of their internal representation.
The H operator can be seen as an inverse of the previous
operator, and x H y gives the element § € R™ such that
x B § = y. The % operator performs the manifold default
action on a real, Euclidean, vector, e.g., the application of
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a 3D rotation to an Euclidean vector rotates the vector. The
other two operators return the variable inverse and combine
two variables in the natural sense with respect to the variable
domain. Note that there are a number of subtleties regarding
the operators above. For instance, note that the expression
x B (x B 0) = ¢ cannot hold for every 4, since x resembles
R™ only locally. Refer to [18] for mathematical details.

To clarify how these operators can be implemented in a
practical case, we develop here an example based on unit
quaternions, which are the default choice to represent 3-DOF
orientations in the ROAMFREE sensor fusion library. Con-
sider a quaternion g = [¢u, ¢z, gy, ¢-| such that ||g|| = 1. The
expression of the perturbed quaternion § = ¢ Bw, w € R3,
can be obtained from the well known differential equation

1
q: iQ[Oawmvavwz}T—FquF) (4)

where () is the matrix representation of the quaternion product
operator and it is given by

qu —qx - Qy —q:
_ qx qw —q: qy (5)
Q qy qz quw —qx

9> —qy 4z quw

To build the H operator, we observe that, once we have
truncated Equation 4 to the first order and we have applied
an Euler integration scheme, a closed form expression for w
can be obtained solving the linear system Qz = 2(¢ — ¢) and
discarding the first component of z. Note that this holds only
if ||w]| is small, i.e., being it a local perturbation. Otherwise,
more complex expressions for w can be employed, e.g., the
well known Rodrigues formula.

Next, we derive the gxx, x € R3 expressions, in which the
x vector is rotated by q. The well known formulas to construct
a rotation matrix from a quaternion g are:

2(quway+9=9-)
2(_(1qu¢+(Iy(Iz)

2 2 2, 2
Qo — 92—y T4z

2(‘1m qdy —quw (Iz)

2 2, 2 2
Qw9 19y— 4
2(qw 9z +9yq=)

at+az—a;—a?
2((1m qy +(I1A7(Iz)
2(7(111) qy+9a (Iz)

R(q) =

and thus we can define g x x as & = R(q)x, where the usual
matrix product takes place.

The remaining two operators comes from the unit quater-
nion algebra and it holds that ¢~! = [qy, — s, —qy, —¢.] and
that ¢; - g2 = Q1¢q2, see Equation 5.

Here we have shown how the non-Euclidean structure of the
unit quaternion space can be hidden by a set of operators which
define the general interface for state variables. Employing
this paradigm, we decouple the internal representation of

meaningful quantities from their manipulation.

4.2 Time Dependencies

In this section we describe choices for state variables time
dependencies available in the ROAMFREE sensor fusion
library. Let us start discussing an example.

55

Intls"PoIation Samples "o
B Lanczos kernels =-------- |

- N W A~ 0 N
T
N

o

t[s]

Fig. 5. Example of Lanczos resampling. Five samples
are interpolated to produce a parameter signal whose
maximum bandwidth is 0.5 Hz.

Suppose we are employing a gyroscope to track the angular
velocity of a mobile robot. It is known that these kind of
sensors are biased. A basic error model in this case would be:

2(¢)
e(t) =w(t) +b(t) — z(¢t) + 7, @)

in which we have assumed that the gyroscope observes the true
angular speed, up to a bias, ignoring any other error sources
such as axes non-orthogonality. Since the bias b is not directly
observable, if we lack for other observations regarding w(t),
coming from other sensors, it is easy to see that ||e(t)|| can
be arbitrarily reduced by selecting proper values of b(¢), thus
compromising the information carried by z(t). The simplest
solution here is to assume that b(¢) does not change with
time, yielding the first type of time dependencies available in
roamfree, i.e., constant state variables. The fusion engine thus
would try to estimate the unknown value of b(t) assuming
that b(tl) = b(tg), vtth.

While the assumption above may hold if we consider only
local time windows, the gyroscope bias is known to be time-
varying and thus a constant state variable would fail to model
its behavior once a long enough time window is considered.
Another possible choice is to exploit the fact that b(t) is
known to change slowly. This introduces the second type of
time-dependencies currently available: limited bandwidth state
variables. In particular we let the user choose the maximum
bandwidth f a which of the variable is supposed to change
over time, thus introducing a constraint on the values of b(¢).

From signal processing theory we know that if we convolve
a discrete time signal with sampling frequency f. = 2f with
the sinc function we obtain a continuous time signal with
bandwidth f. Thus, a limited bandwidth parameter can be fully
described by the set of samples by, = b(t), t = k/f., k € Z.
To compute its value at an arbitrary time ¢ we employ Lanczos
resampling, i.e., we convolve the samples with the Lanczos
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kernel (see Figure 5):
asin(27rft)sin2%)
L(t) = 0 (27 ft)2

where the parameter « is an integer, typically 2 or 3. Unlike the
sinc function, the Lanczos kernel has compact support, thus
only a limited number of samples (i.e., 2a samples) contribute
to determine the parameter value at time ¢, which in our
example is given by:

if—a<22rft<a ®)
otherwise

[2ft|+a

D

k=|2ft]—a+1

b(t) = b L(27 ft — k), 9)

Note that this does not solve the issue discussed above in
the general case. However, now it seems much more difficult
to arbitrary reduce ||e(t)|| in Equation 7 choosing by, other
than samples of the true bias.

Limited bandwidth state variables are useful in situations
in which we have to track time-varying quantities such that
their value cannot be assumed constant over the time window
considered in the fixed lag smoother. A typical example is
the calibration problem in which hundreds of seconds of
sensor readings are considered. Up to the present stage of
development, a general interpolation scheme for variables
belonging to an arbitrary manifold has not been implemented
yet and only Euclidean, n-dimensional, parameters can have
a limited bandwidth time dependency. Furthermore, such a
scheme would have to be implemented relying only on opera-
tors defined in Section 4.1. However, although we could easily
imagine an application in which manifold limited bandwidth
state variables were valuable, we have never faced a case in
which their lack was a serious issue.

5 THE CORE FUSION ENGINE

The ROAMFREE sensor fusion library is based on state
of the art, non-linear, Bayesian inference techniques on a
factor graph representing the joint probability distribution
of the state variables, given the sensor measurements [22].
Here Gauss-Newton/Levenberg-Marquardt [23] optimization
algorithms are employed whose goal is to find the Maximum
A Posteriori (MAP) of this probability distribution, i.e., the
configuration of state variables which maximize their joint
probability, given all the sensor measurements. These formu-
lation has become popular in the Simultaneous Localization
and Mapping (SLAM) and photogrammetric communities
under the name of Bundle Adjustment [24] and it has been
effectively applied to large scale and/or online, 3D recon-
struction, problems in which both the camera egomotion and
the world-attached features have to be tracked. More recently,
factor graph approaches to the odometry and parameter self-
calibration problems appeared in the literature [14][15]. De-
spite the excellent performances reported for state-of-the-art
methodologies, few solutions exist that deliver multi-sensor
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O
SGps

Fig. 6. An instance of the pose tracking factor graph with
four pose vertices '}y (¢) (circles), odometry edges eopo
(triangles), two shared calibration parameters vertices k,
and ky (squares), two GPS edges egps and the GPS
displacement parameter S(GOIQS.

pose tracking and calibration as an off-the-shelf, flexible and
modular component. In this section we discuss the key features
of the ROAMFREE Graph Management and Solver compo-
nents, which form the basis for the desirable properties above.

The Graph Management component maintains a hypergraph
in which each node represents a robot pose at some time
t or a sensor parameter, and each hyperedge corresponds to
a measurement constraint involving one or more pose nodes
and the relevant sensor calibration parameters. For instance,
consider an odometry measurement obtained from the wheel
speed readings in a differential drive robot at time ¢. This
information defines a hyperedge involving the robot poses
at time ¢ — 1 and ¢, the wheel radius and baseline distance
parameters. This edge constraints the difference of the two
poses according to the forward kinematics of the robot. In
Figure 6 it is possible to see a more complex example
involving odometry constraint edges, eopo, which in turn
depend on two kinematics parameters, kg and k,, and GPS
edges, eqps, constraining the position of the robot frame up
to a misplacement parameter, S(GOP), g

When a new sensor reading is available, the Graph Man-
agement component is responsible of instantiating a proper
logical sensor edge and inserting it into the factor graph as it
is incident to the pose and sensor parameter nodes required
to evaluate the state likelihood (i.e., the logical sensor error
function). In particular, the logical sensor traits specify the
order of the associated error function, i.e., if it constraints
only robot pose and/or orientation (order 0), or if it refers to
velocities and accelerations (order 1 and 2), and the calibration
parameters, as long as the dimensions of the error and noise
vectors. The proper pose nodes are then chosen according to
the logical sensor order and measurement timestamp. In case
the sensor reading is newer with respect to the latest pose
available in the graph, a new node has to be instantiated.
The Graph Management component thus checks if the current
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logical sensor implements the Predictor interface. If so,
the predictNextState () method is called to compute
an initial guess for the new pose node. Otherwise, the mea-
surement handling is deferred. Moreover, as new pose nodes
are inserted into the graph, old ones have to be removed
so that the length of the fixed-lag window remains constant.
This causes old constraints to be removed as well, implying
information loss. To avoid this, old nodes are marginalized and
an linear constraint which is locally equivalent with respect to
the removed nodes and constraints it is inserted over their
Markov blanket, as described in [25].

The advantages of the factor graph formulation for the pose
and parameter tracking problem are many; first of all, it allows
for an arbitrary number of sensors to be handled in a modular
and independent way: different sensor models implement the
abstract hyperedge interface and they are handled uniformly as
they are inserted into the graph. This also implies that sensors
can be dynamically turned on and off online. Moreover, out-of-
order measurements, i.e., sensor readings which are reported
to the Graph Management module with wrong order with
respect to their timestamps, can be handled in a natural way
simply picking the pose nodes with appropriate timestamps
when constructing the corresponding edge. Note that, even if
sensor reading edges constraint past nodes, they still contribute
to the refinement of the most recent pose estimate through the
other constraints already present in the graph. In a similar
way, it is possible to deal with arbitrary and non-constant
reading rates. Moreover, from the estimation quality point of
view, it has been argued that the factor graph formulation
is more accurate, and, in certain circumstances, even less
computationally expensive than traditional EKFs [26].

As it has been presented in Section 3 and 4, sensor models
and state variables conceal their internals under nodes and
hyperedges interfaces. Thus, the specific algorithm which
solves the MAP problem is independent from their specific
formulation. The guideline adopted here is to decouple vari-
able and sensor modeling from the problem solution tasks.
Abstract interfaces for nodes and edges are defined such
that a generic, non-linear, optimization algorithm can deal
with arbitrary nodes and edges without knowing their internal
structure and functioning. At the highest level, edges, and thus
logical sensors, implement the computeError () method,
which associates a likelihood to the current configuration of
involved nodes, given the sensor reading and error model.
An additional errorJacobians () method may be added
to provide the solver with a notion of the error function
direction of steepest descent, avoiding its computation with
numerical schemes such as finite differences. Finally, nodes
hide their internal representation to the solver algorithms by
means of the HH and H operators introduced in Section 4.1.
Consider for example a Gauss-Newton optimization algorithm,
which computes an approximation of the MAP attempting to
minimize the sum of the squared error vectors, weighted by
sensor information matrices. To do so, it iterates through all
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Fig. 7. The LURCH autonomous wheelchair. The two
Hokuyo URG-04LX are visible near the footrests, while
the Prosilica is mounted behind the seatback.

the edges in the hypergraph asking error vectors and Jacobian
matrices evaluation. It then construct the Hessian matrix of
the linearized system and solves the resulting quadratic form
yielding values for the Euclidean increments, which are then
applied to the variables by means of the B operator and the
process is repeated till termination criteria occur.

As for the implementations of the solver algorithms we rely
on the g?o [27] software library, a general framework for least
squares optimization, fine tuned to exploit the sparsity of factor
graph optimization problems such as the ones considered in
this work. At the present stage of development, three solver
algorithms are available: Gauss-Newton, LevenbergMarquardt
and Peconditioned Conjugate Gradients. Nevertheless, many
sensor fusion algorithms, such as an Extended Kalman Filter,
or incremental smoothing, such as iISAM2 [28], can be formu-
lated such that they rely only on the available primitives and
implemented as new MAP solvers without changes in the rest
of the architecture.

6 EXPERIMENTAL EVALUATION

In this section we show how the ROAMFREE sensor fusion
library can be employed to perform the pose tracking and
odometry calibration tasks for the LURCH [29] autonomous
wheelchair (see Figure 7). The key aspect of the deployment
of the sensor fusion node will be discussed assuming that
ROS is employed to distribute and pre-process sensor readings.
Along with the description of the software architecture, we
will consider an indoor benchmark scenario in which fiducial
markers are present in the environment and we will discuss
pose tracking and calibration results. We will show how the
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Fig. 8. The LURCH sensor frames: Sy and S placed at
the two Hokuyo range-fiders, and S¢ at the Prosilica.

same software module can be employed to perform offline
parameter self-calibration, relying on sensor readings only, and
online pose tracking, employing the determined estimates.

The LURCH autonomous wheelchair is equipped with
multiple, heterogeneous sensors: two URG-04LX laser range-
finders, which have a 240 degrees field of view, a 5.6 m range
and 10 Hz operating frequency, are mounted such that each one
covers one side of the robot plus a portion of the front. These
are employed to compute odometry and to detect dynamic
and static obstacles in autonomous navigation. Moreover, a
Prosilica GC1020 is mounted behind the seatback and looking
backward, capturing frames at 10 Hz. As fiducial marker
become visible, they give a notion of the camera position with
respect to the world. Finally, wheel speed is estimated at 50 Hz
rate from low resolution encoders. A sketch of the reference
frames is depicted in Figure 8.

While wheel encoder sensor readings can directly feed
the ROAMFREE sensor fusion library, the laser range-finders
point clouds and the camera images are not directly handled
by the framework. However, 2D estimates for the linear and
angular velocities can be obtained by processing successive
laser scans with an Iterative Closest/Corresponding Point (ICP)
algorithm [30], which also return a measurement of the esti-
mates uncertainty. In the considered architecture, two identical
ROS nodes, one for the left Hokuyo and one for the right one,
subscribe to the respective scan topic and publish velocity
estimates. Moreover, another node subscribes to the camera
image topic and employs the ALVAR library [31] to track
fiducial markers visible in the current frame, publishing their
relative position with respect to the camera. In this case no
uncertainty measure is computed by the tracking library. Here
we assume that it increases with the square of the marker
distance. Note that the two modules above are not part of the
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framework and they come as off-the-shelf ROS components.

In the following we will setup a rospy node that configures
logical sensors, subscribes to measurement topics, delivers
them to the Graph Management module (See Section 5) and
operates the main estimation loop.

In Listing 1 we begin instantiating a wrapper object in-
cluding all the components required to solve a pose tracking
problem. By means of its constructor arguments we specify
key properties such as the length of the fixed-lag window,
in seconds, the timestamp of the first pose and its initial
value, as long as the solver algorithm for the optimization
problem. We employ a Gauss-Newton solver for online track-
ing, because of its deterministic execution time. Conversely,
in offline calibration runs we choose Levenberg-Marquardt,
which, adjusting the step size, it is able to prevent diver-
gence and better handles irregular error function landscapes.

RF = ROAMFREE (
fixedLagLenght = L,
t0 = rospy.get_time(),
x0 = [0, 0, 0, 1, 0, 0, 07,
solver = SolverMethod.GaussNewton

)
Listing 1. Instantiation of the main ROAMFREE object

RF .addSensor (' Odo’, master=True,
type=SensorTypes.DiffDriveKinematic)

RF.setSensorDisplacement (/ Odo’,
[0.0, 0.0, 0.0], fixed=True)
RF.setSensorMisalignment (’ Odo’,
[0.0, 0.0, 0.0], fixed=True)

RF.addParameter (ParameterTypes.EuclideanlD,

"Odo_r’, [R_guess], fixed=True) # wheel radius
RF.addParameter (ParameterTypes.EuclideanlD,

"Odo_L’, [L_guess], fixed=True) # ... and baseline

Listing 2. Configuring the differential drive kinematics
logical sensor for online tracking. It is the master sensor,
i.e., the Forward Kinematic one which triggers pose nodes
to be instantiated when new reading are available.

Next, we configure a Differential Drive logical sensor to
handle wheel encoder readings (see Listing 2). This sensor
refers to the odometric center of the robot, it has null displace-
ment and misalignment abstract sensor parameters. Moreover,
it sports two constant kinematic parameters, r and L, i.e., the
wheel radius and the robot baseline. During offline calibration
we set the fixed flag (See Section 4) to False and we
provide initial guesses obtained by means of direct inspection
on the robot; then, we consider long time lags and employ
all the collected sensor readings to simultaneously estimate
robot poses and parameters without the need of an external
ground truth source. Conversely, in the online pose tracking
case we fix these parameters and employ their calibrated value.
Note that this is the kinematic master sensor, i.e., the one
which causes new pose nodes to be inserted into the graph as
new sensor readings become available (see Section 5). Other
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Fig. 9. Experimental setup

sensors instead have to pick the existing pose whose timestamp
is nearest to the current reading.

The ICP scan-matching nodes estimate the rigid transfor-
mation needed to overlap two successive laser scans, which
can be interpreted as a linear and angular velocity mea-
sure, given the sensor operating frequency. In Listing 3 we
setup a generic odometer logical sensor to handle the ICP
scan-matching output. The misplacement and misalignment
of this sensor cannot be neglected: while we are quite
confident in our knowledge of the laser displacement, we
have only a rough guess for the laser yaw. Thus, in of-
fline calibration runs, we configure the misalignment param-
eter as to be estimated setting to False its fixed flag.

RF.addSensor (' Hokuyo_left’, master=False,
type=SensorTypes.GenericOdometer)

RF.setSensorDisplacement (’ Hokuyo_left’,

[0.75, 0.25, 0.0], fixed=True)
RF.setSensorMisalignment (' Hokuyo_left’,

[0.0, 0.0, 90.0], fixed=False) #looks to the left

Listing 3. Configuring the logical sensor to handle the
left Hokuyo scan-matching readings. The right ones are
handled in a similar way.

Next, we have to configure the logical sensors that allows to
handle fiducial markers position readings. As it happens with
image features in visual SLAM algorithms, the position of the
markers with respect to the world, encoded in the calibration
parameter F(W), it is not known and it has to be determined
online. However, the considered case is simpler with respect
to the visual SLAM one since each fiducial marker encodes a
different identifier which allows to distinguish between them,
ultimately eliminating the data association problem. In the
considered scenario, each time a new marker is detected by
the Alvar tracking library, a new logical sensor is instantiated
and its calibration parameter is initialized with the current
robot pose (see Listing 4). Note that, while we need multiple
logical sensor to handle the fiducial markers, all of the sensor
readings come from the same physical sensor, i.e., the Prosilica
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camera, thus we make the fiducial marker sensors share the
misplacement and misalignment calibration parameters with
the camera. These parameters are instantiated separately, as it
has been done in the range-finders case, and the misalignment
one is set to be estimated in calibration runs.

RF.addSensor ('FM_’ +str (id), master=False,
type=SensorTypes.FixedFeaturePosition) #e.g. FM_5

RF.addParameter (ParameterTypes.Euclidean3D,
"FM_'’+str(id)+'Fposition’, pose, fixed=False)

RF.shareGeometricParameters ('FM_’ +str(id), ’'Camera’)

Listing 4. Configuring the logical sensor to handle fiducial
marker position readings

Once all the required logical sensors have been configured,
we define the callback functions that, according to the pub-
lish/subscribe paradigm implemented in ROS, will be invoked
as soon as new sensor reading messages are available. In
Listing 5 we present an example of a callback to handle the
output of the ICP scan-matching nodes, which are supposed
to be available as standard ROS nav_msgs/Odometry
messages. The addMeasurement method, which is part of
the Graph Management module API, is the only method that
has to be called to feed the sensor fusion library.

def laser_callback (msg) :

[ msg.twist.twist.linear.x,
msg.twist.twist.linear.y,
0.0,
0.0,
0.0,
msg.twist.twist.angular.z
]

T = timeFromROSheader (msg)

7 =

RF.addMeasurement (' Hokuyo_left’, T, z, z_cov)

rospy.Subscriber ("/laser_odometry_left",
nav_msgs/Odometry, laser_callback)

Listing 5. Defining a callback function to handle laser
odometry readings available as standard ROS messages.

# try to run at constant frequency, i.e. 10 Hz

r = rospy.Rate (10)

while not rospy.is_shutdown () :
# run 5 solver iterations
pose = RF.estimate (iterations=5)

# publish pose transformation
TF.sendTransform(pose, rospy.Time.now(),

"base_link", "world")

r.sleep();

Listing 6. Running estimation and publishing results.

Finally, we review the main loop for online pose tracking,
which is typically run at constant rate. The pose estimate can
be made available to the rest of the architecture as a tf£,
transform as shown in Listing 6. Note that incoming sensor



60

0.08
0.06
0.04
0.02

error [m]
o

-0.02
-0.04
-0.06
-0.08 : : : : :

t[s]

Fig. 10. Final LURCH X-Y position error with respect to
ground truth for the calibration run.

readings are handled by callback functions in different threads.
Concurrent access to the factor-graph is handled internally by
the Graph Management component.

Next we discuss pose tracking and sensor parameter calibra-
tion benchmarks for the described software architecture. We
consider an area of approximately 25 m? and we disseminate
on the floor 14 markers of size 18 x 18 cm (see Figure 9).
An Optitrack motion capture system, which reaches millimeter
level tracking accuracy, is available as a ground truth source
for both the markers and the wheelchair pose.

We first perform the calibration of the unknown sensor pa-
rameters, which in the considered case are: the z components
of the laser misalignment qg, and q§, . the 3-DOF camera
misalignment qgc, the wheel radius r and the baseline L,
along with the position of the fiducial markers. For these
parameters, except for the marker positions, we provide initial
guesses obtained by direct inspection on the robot. To collect
sensor readings for the offline calibration runs we manually
drive the robot along eight-shaped paths inside the marker
area. The rospy node waits till a 60 s fixed-lag-windows has
been filled and then triggers the estimation process. We first
determined the camera misalignment, then the wheel radius
and baseline, and finally the laser range-fiders yaw. Each
calibration problem had approximately 5000 constraint edges
and could be solved by menas of levenberg-Marquardt in less
than 2 s. In Figure 10 we plot the LURCH position error
with respect to the Optitrack ground truth at the end of the
calibration process, while in Table 1 we list the estimated
marker positions and their true value. The results for the
calibration parameters can be seen in Table 2.

Unfortunately, it is very difficult to provide ground truth
values for sensor calibration parameters in real world exper-
iments, especially regarding 3-DOF rotations. However, note
that the orientation of the camera with respect to the robot
has to be precisely determined, especially regarding the pitch,
to be able to correctly determine the position of the markers.
From pose tracking and marker position estimate results it
is possible to see that outstanding, centimeter level, position
accuracy has been achieved while simultaneously being able
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estimate [m] | GT [m] | error [cm] | distance [cm]

T 3.444 3.400 4.378

Ml Y —0.320 —0.238 —8.299 9.709
z 0.025 0.000 2.493
T 2.596 2.553 4.300

M2 y —1.188 —1.089 —9.897 10.945
z 0.018 0.000 1.833
T 1.757 1.707 5.033

M3 Y —2.062 —1.931 —13.170 14.155
z 0.013 0.000 1.262
T 0.700 0.741 —4.113

M4 Y —1.863 —1.860 —0.365 4.377
z 0.014 0.000 1.450
T 0.107 0.110 —0.262

M5 Y —1.203 —1.225 2.148 2.498
z 0.012 0.000 1.248
T —0.947 —0.946 —0.114

M6 Y —1.012 —1.012 —0.004 2.908
z 0.029 0.000 2.906
T —1.659 —1.582 —7.715

M7 Y —0.400 —0.370 —3.089 8.402
z 0.012 0.000 1.233
T —1.800 —1.728 —17.203

M8 Y 1.096 1.066 3.004 8.364
z 0.030 0.000 3.008
T —1.272 —1.266 —0.556

M9 Y 2.097 2.015 8.242 8.580
z 0.023 0.000 2.316
T —0.256 —0.265 0.896

MIO0O gy 2.391 2.263 12.852 12.925
z 0.010 0.000 1.037
T 0.841 0.801 3.998

MIil gy 2.673 2.531 14.207 15.056
z 0.030 0.000 2.978
T 1.823 1.724 9.849

MI12 gy 2.404 2.365 3.980 11.084
z 0.032 0.000 3.166
T 2.714 2.610 10.395

M13 gy 1.566 1.560 0.627 10.721
z 0.025 0.000 2.548
T 3.599 3.473 12.634

Ml4 gy 0.747 0.725 2.209 13.274
z 0.034 0.000 3.422

TABLE 1

Final marker position estimate and ground truth for the
calibration run.

to calibrate unknown sensor parameters.

Next we consider the online pose tracking case in which
the estimated values for the sensor calibration parameters are
employed, with the exception of the fiducial marker positions,
which are tracked online, as it happens in SLAM algorithms.
Here we consider a 10 s fixed-lag window length, and older
nodes are marginalized as described in Section 5, so that in
any given time window we do not have observations for every
marker. We run the main estimation loop at 10 Hz for 240
s. The resulting position error is depicted in Figure 11. It
is possible to see that centimeter level accuracy is obtained
and that the overall position error is bounded despite the old
constraint marginalization procedure.

In this section have presented an overview of how very com-
plex sensor fusion tasks can be setup and handled in a clean,
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estimate | initial guess
r 0.159 0.150
L 0.545 0.500
w | +0.3641 +0.000
o x | —0.5837 +0.000
95c 'y | —0.5940 |  +0.000
z | +0.4108 +1.000
a9,z [ +0.5966 [ +0.7071
qg, z | —0.6659 | —0.7071
TABLE 2

Final parameter estimates and provided initial guesses
for the calibration run.

simple and abstract way by means of the ROAMFREE sensor
fusion library. All the internals of the sensor fusion problem
and handling are hidden behind a clean Python API, delivering
a complete, off-the-shelf, pose tracking and sensor calibration
framework. Moreover, we have discussed benchmarks for the
pose tracking and sensor parameter calibration case which
showed that remarkable performances are achievable and no
application dependent heuristic or tweak is required.

7 CONCLUSIONS

In this paper we have presented the design choices we made
in ROAMFREE, a generic framework for the development
of odometry systems through sensor fusion. Although several
methods for odometry and pose tracking have been proposed
in the literature, no open-source framework for out-of-the-box
odometry and sensor self-calibration was available.

As in any generic framework, ROAMFREE modularity
and flexibility come at a cost. The development of such a
system required the design of a complex software architec-
ture achieving the decoupling among sensor hardware, state
variable representations, measurement error models and solver
algorithms, whose structure is presented in this work. We do
not see in the complexity of the resulting code the real cost
for the end user since we provided easy to use interfaces to
handle it; the real cost in ROAMFREE is related to the key
assumption behind logical sensors. On the one hand logical
sensor provide a fundamental abstraction which makes the
system independent with respect to the actual platform and
hardware sensor employed. On the other hand, the black-box
assumption prevents the solver to deal with the internals of
the actual sensor or processing algorithm.

Consider for instance a visual odometry system. These
algorithms usually track simultaneously the camera egomotion
and a set of world-fixed features. Their output could be
used to drive a linear and angular velocity logical sensor
that, along with the other ones available in the architecture,
would contribute to the final pose estimate. However, the
pose estimate obtained with the full sensor set will in general
be different from the one that is determined internally by
the visual odometry algorithm. Because of the black-box
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Fig. 11. Final X-Y position error with respect to ground
truth for the online run.

assumption, no general mechanism is available to overcome
this potential source of inconsistency. It is subject of active
research to determine how the ROAMFREE pose estimate
could be employed to provide general feedback loops to the
logical sensors. Regarding the example above, the internal
state of the visual odometry algorithm, i.e., the position of
the features and the camera, could be corrected taking into
account the estimate obtained with the full sensor set. This
would further increase he overall complexity of the framework;
hiding this complexity to the end user, which could also be
the logical sensor developer, will be the next challenge.

As a further extension, we note that the developed sensor
fusion library it is already able to solve the full and the online
SLAM problems. A simplified example of such application
was presented in Section 6, where exteroceptive logical sensors
were employed that measured the relative position of a world
attached feature, i.e., the fiducial markers. In the calibration
run we were able to precisely determined the map of the
environment, in this case consisting in the fiducial markers
positions, delimiting the robot operation area. More complex
cases could be considered in which the fiducial marker were
replaced with scale invariant features detected in camera
images, as it happens in visual SLAM algorithms, or with
laser scan associated with robot poses.
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