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In this paper we describe a general and systematic approach to the centre-manifold
reduction and normal form computation of flows undergoing complicated bifurcations.
The proposed algorithm is based on the theoretical work of Coullet & Spiegel (1983)
and can be used to approximate centre manifolds of arbitrary dimension for large-scale
dynamical systems depending on a scalar parameter. Compared to the classical multiple-
scale technique frequently employed in hydrodynamic stability, the proposed method can
be coded in a rather general way without any need to resort to the introduction and tuning
of additional time scales. The method is applied to the dynamical system described by
the incompressible Navier–Stokes equations showing that high-order, weakly-nonlinear
models of bifurcating flows can be derived automatically, even for multiple codimension
bifurcations. We first validate the method on the primary Hopf bifurcation of the flow past
a circular cylinder and after we illustrate its application to a codimension-two bifurcation
arising in the flow past two side-by-side circular cylinders.
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1. Introduction

When a steady flow becomes linearly unstable owing to the variation of a control
parameter, a bifurcation process occurs due to the inherent nonlinearity of the governing
Navier–Stokes equations. As a result of this process, a new flow state develops, either
steady or unsteady, being usually characterized by an inferior degree of symmetry with
respect to the basic state. Classical examples are represented by the flow between rotating
cylinders (Taylor-Couette flow), convection in a fluid layer heated from below (Rayleigh-
Bérnard-Marangoni flow) and by the flow past a bluff body such as a circular cylinder or
a sphere. In the simplest case, when the flow instability is driven by a single global mode,
relevant information concerning the frequency and the spatial pattern of the emerging
flow state can be deduced from a linear stability analysis. However, when two or more
linear modes become unstable for the same values of the control parameters, neither
stability nor pattern selection can be completely explained based solely on the linear
approach. Such a condition, which corresponds to the occurrence of multiple codimension
bifurcations, has been found to characterize several flow configurations (Rehberg & Ahlers
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1985; Tuckerman 2001; Marques et al. 2002; Meliga et al. 2012; Marques et al. 2013;
Tchoufag et al. 2014).
Within the framework of nonlinear dynamical systems, the problem of mode selection

among competing instabilities can be tackled by means of the centre-manifold approx-
imation of the nonlinear dynamics (Charru 2011). In fact, it is well known that in the
neighbourhood of the bifurcation of a fixed equilibrium, the essential dynamics is deter-
mined only by those modes which are marginally stable in the linearized description, i.e.
the critical modes. If all the remaining modes are stable and heavily damped, the state of
the nonlinear system rapidly converges onto a low-dimensional, attractive and invariant
manifold in the phase space, the centre manifold (Guckenheimer & Holmes 1983; Hara-
gus & Iooss 2011). Once the original system has been reduced to a centre manifold, the
description of the dynamics can be further simplified to its normal form while preserving
its structural properties. This reduction allows one to deduce relevant information of the
system behaviour based on the general normal-form theory and classification. For several
physical systems, the normal form structure can also be deduced a priori from symmetry
considerations, making use of the theory of groups (Crawford & Knobloch 1991).
Different methods have been described in the literature to build an approximation to

the centre manifold and to reduce it to its normal form, the two operations being often
treated as two successive distinct steps. Basically the various techniques can be divided
in two main classes, with respect to the computation of the centre manifold (Kuznetsov
1998). Methods of the first class require the explicit computation of all the eigenvalues
and eigenfunctions associated with the linearized vector field in order to change the
natural system state basis into the eigenbasis. This requirement makes such techniques
unaffordable for large-scale applications where the computation of the whole spectrum
of the linearized operator is prohibitively expensive. On the contrary, methods of the
second class rely on the projection of the nonlinear state onto the critical subspace.
Hence, only direct and adjoint critical linear modes are needed: for typical applications,
a small number of such modes is present, thus making the latter approach suitable for
high-dimensional dynamical systems.
The projection approach lies at the heart of the method described by Coullet & Spiegel

(1983) and of that of multiple time-scales which has been used for a long time in the field
of hydrodynamic stability (Stuart 1971). In both cases, the centre-manifold reduction
and the normal-form computation are obtained within a single step, thus avoiding the
introduction of near-identity nonlinear transformations, usually involved in the deriva-
tion of the normal form (Charru 2011). Based on the common framework of asymptotic
expansions, the flow state in the neighbourhood of the critical threshold is approximated
in power series of the bifurcation parameter and of the renormalised critical mode am-
plitudes, the involved expansion procedure being handled manually. Although on one
hand this can provide additional physical insight by granting access step by step to the
individual terms of the expansion and to their dependence from low-order ones, on the
other hand, however, this approach becomes quite cumbersome at increasing orders of
the approximation, especially in the case of high-codimension bifurcations.
The aim of this paper is to illustrate a different technique with respect to that of mul-

tiple scales to perform the weakly nonlinear analysis of bifurcating flows within a global
setting (Sipp & Lebedev 2007; Meliga et al. 2012). Compared to the method of multiple
scales, the proposed technique has the main advantage that it can be fully automated by
means of numerical computations in a rather general way and for an arbitrary dimen-
sion of the critical subspace. Moreover, the additional complications associated with the
introduction of a slow time-scale to separate the motion onto the centre manifold from
the fast-decaying stable dynamics are avoided. For such purpose, the approach described
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by Coullet & Spiegel (1983) is recast into a formulation which can be coded directly into
a computer algorithm, without any need to resort to symbolic computation. Then the
method is applied to two examples of bifurcating flows. In the first one, the onset of the
cylinder vortex-shedding is considered, for which both the normal-form (Landau) coef-
ficients and the related nonlinear global modes have been computed by various authors
(Sipp & Lebedev 2007; Meliga & Chomaz 2011). In the second one, the codimension-
two pitchfork-Hopf bifurcation which characterizes the flow past two side-by-side circular
cylinders is examined.
The paper is organized as follows. First, a brief reminder of the centre-manifold and

normal-form theory for finite-dimensional dynamical systems is given in §2. In §3 the
centre-manifold reduction is introduced within an abstract, general framework and a
simple low-dimensional example is illustrated in §3.2. The application to the incom-
pressible Navier–Stokes equations is discussed in §4 and results obtained for the above
mentioned flow configurations are described in §4.2 and §4.3. Finally a summary of the
work is given in §5.

2. Centre manifold & normal form: a brief review

Let us consider the generic autonomous finite-dimensional dynamical system

q̇ = F (q), (2.1)

with q(t) ∈ Rn and a related fixed point q0, i.e. F (q0) = 0. Without loss of generality
we can assume that q0 = 0. The nature of the fixed point q0 depends on the stability of
the linearized vector field around it

q̇ = Lq, (2.2)

where L denotes the Jacobian of F evaluated for q = q0. Denoting with Λ(L) the
spectrum of L, q0 is called hyperbolic if Re(λ) 6= 0, ∀λ ∈ Λ(L). Hence in the hyperbolic
case no marginally stable modes exist and the local stability of q0 follows from that of
the linearized system (2.2).
For a nonhyperbolic fixed point at least one eigenmode of L is found to be critical

and the invariant subspace Ec spanned by those eigenmodes which are marginally stable
is referred to as the critical or centre subspace. In this case it can be proved that an
invariant smooth manifold Vc also exists in the phase space which has the same dimension
of Ec, the centre manifold. The centre manifold theory is of particular interest when all
the eigenvalues of L are stable except those lying on the imaginary axis. In such a
condition the local stability of q0 can not be deduced from that of the linearized system
(2.2). At the same time it can be shown that starting from any given initial condition,
the trajectories of the nonlinear system asymptotically approach the centre manifold
(Guckenheimer & Holmes 1983). Therefore, the centre-manifold approximation of the
nonlinear dynamics naturally provides a low-dimensional description of its asymptotic
behaviour in a neighbourhood of q0. To better explain this point let us rewrite the system
(2.1) as follows:

{

q̇c = Lcqc + fc(qs, qc),

q̇s = Lsqs + fs(qs, qc),
(2.3)

where qc(t) ∈ R
nc and qs(t) ∈ R

n−nc , nc being the dimension of the critical subspace.
As already mentioned, usually nc ≪ n for large-scale systems. The above formulation
is simply derived from the decomposition of F (q) into its linear and nonlinear part, i.e.
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F (q) = Lq + f(q) followed by a linear coordinate transformation in the eigenbasis of
L. This latter transformation allows q to be partitioned according to the invariant sub-
spaces Ec and Es, where Es denotes the subspace spanned by the stable modes of L,
i.e. its stable subspace. Correspondingly the spectrum of Lc lies on the imaginary axis
while all the eigenvalues of Ls have strictly negative real part. The nonlinear functions
f c and f s are assumed to be smooth and at least quadratic near the origin, i.e. in the
neighbourhood of q0. Under these assumptions, the centre-manifold theorem guarantees
the existence of a smooth nc-dimensional manifold which can be represented as a map
q̃s = Υ (q̃c) from Ec to Es and which is tangent to Ec at the origin, i.e. at the fixed
point q0 (Guckenheimer & Holmes 1983). It is worthwhile to remember that if F (q)
belongs to the class C r, Vc belongs only to the class C r−1. In addition Vc is not nec-
essarily unique (Guckenheimer & Holmes 1983, pag. 124). More precisely if more than
one centre manifold exists with different maps Υ , all the resulting reduced-order systems
are topologically equivalent in the neighbourhood of q0 (Kuznetsov 1998). Therefore in
our discussion we will refer to ‘the’ centre manifold rather than to ‘a’ centre manifold.
Lastly, as reported by Roberts (1997), the computation of the centre-manifold reduction
relies on the so-called approximation theorem which guarantees that the map Υ can be
approximated up to the same order of accuracy at which (2.1) is satisfied.
Once the map q̃s = Υ (q̃c) has been introduced, the system dynamics onto Vc is

described by the low-dimensional system:

˙̃qc = Lcq̃c + fc(Υ (q̃c), q̃c). (2.4)

These equations are often referred to as the amplitude equations (Coullet & Spiegel 1983).
When applied to the above set of equations, the derivation of the normal form provides
the simplest parametrization of the motion of the system onto the centre manifold. Start-
ing from (2.4), the normal-form computation usually involves a sequence of near-identity
nonlinear transformations needed to eliminate as many nonlinear terms as possible from
f c(Υ (q̃c), q̃c) up to a selected finite order while preserving the linear part Lc. Of course
some nonlinear terms can not be eliminated by any coordinate change: these terms which
rule the asymptotic behaviour of the system dynamics are usually referred to as resonant
terms. Indeed, as it will be made clear in the description of the proposed method, these ir-
reducible nonlinearities are associated with the forced harmonic response q(t) = q̂ωc

eıωct

of the linearized system at one of its critical frequencies:

(L− ıωcI)q̂ωc
= ĥωc

, (2.5)

where the harmonic forcing ĥωc
arises from the nonlinear-mode interaction, I ∈ Rn×n

denotes the identity matrix and ıωc ∈ Λ(Lc). To avoid confusion with the integer index
i, in this paper the imaginary unit is denoted by the special character ı. The special case
of a steady critical mode simply corresponds to ωc = 0. Note that L − ıωcI is singular
by definition which expresses the resonance condition. Therefore to compute q̂ωc

, the
Fredholm solvability condition must be enforced by introducing additional degrees of
freedom which are shown to correspond to the normal form coefficients. A complete and
rigorous discussion on this point can be found in the theoretical work by Coullet &
Spiegel (1983) and Elphick et al. (1987).
It should be noted that the computation of high-order normal forms can exploit several

techniques which focus on the automatic and efficient handling of the sequence of involved
nonlinear transformations, see e.g. Zhang et al. (2000), Hsu et al. (2001) and Yu & Yuan
(2003). However the description of such techniques is beyond the scope of our discussion
since, as already mentioned in §1, the proposed method allows one to derive directly the
amplitude equations in their normal form.
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3. Centre-manifold reduction

In this section the proposed centre-manifold reduction technique is described in detail.
With respect to the classical approach mentioned in §2, the present method allows the
computation of the centre-manifold reduction in its normal form just within a single
step, without introducing any coordinate transformation in the eigenbasis of L. Instead,
only the knowledge of the critical subspace is required in order to project the system
dynamics onto Ec and its orthogonal complement Es (Kuznetsov 1998), thus enabling
the treatment of large-scale systems.
Let us consider the nonlinear dynamical system (2.1) where the dependency on a real

control parameter ǫ is introduced. In addition, for the sake of generality, we rewrite (2.1)
in the generalized form

Bq̇ = F (q, ǫ), (3.1)

where B can be singular such as for the discretised incompressible Navier–Stokes system
in primitive variables. Splitting the nonlinear operator F into the linear part L and
nonlinear part f(q, ǫ) yields

Bq̇ = Lq + f (q, ǫ), (3.2)

where, under the assumptions introduced in §2, f(0, 0) = 0. Note that the, possibly non-
linear, dependence on ǫ is accounted for in f . Here the description of the method is limited
to the case of L being diagonalisable although an extension to the non-diagonalisable case
is possible. In the neighbourhood of the fixed nonhyperbolic point q0 = 0 we known that
the system dynamics asymptotically evolves on the centre-manifold whose dimension is
equal to the dimension nc of the critical subspace. Therefore we can express q(t) as a
function of a reduced system state a(t) = (a1(t), a2(t), . . . , anc

(t)) and of the bifurcation
parameter ǫ

q(t) = q(a(t), ǫ). (3.3)

The components aℓ of a are called critical amplitudes and can be interpreted as gener-
alised coordinates describing the motion of the dynamical system on the centre manifold
which is ruled by the low-dimensional nonlinear equation

ȧ = g(a(t), ǫ). (3.4)

By virtue of the centre-manifold approximation theorem and based on the approach
proposed by Coullet & Spiegel (1983), we can then approximate the system dynamics
using the method of asymptotic expansions. In the neighbourhood of q0, both q(a(t), ǫ)
and g(a(t), ǫ) are expanded as infinite power series of aℓ(t) and ǫ,

q(t) =

∞
∑

m=1

∑

|i|+k=m

q̂i,k a
i(t)ǫk, (3.5)

g(a(t), ǫ) =

∞
∑

m=1

∑

|i|+k=m

ĝi,k a
i(t)ǫk, (3.6)

where i = (i1, i2, . . . , inc
) is a multi-index of nc integers with |i| =

∑nc

ℓ=1 iℓ and a is raised
to i-th power according to

ai ≡
nc
∏

ℓ=1

aiℓℓ . (3.7)

In (3.5) the vector-valued coefficients q̂i,k represent the generalised nonlinear modes
which allow one to recover the full system state starting from the reduced state a(t). Once
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the unknown expansion coefficients q̂i,k and ĝi,k have been determined, the time evolution
of dynamical system (3.1) on the centre manifold is obtained first by solving (3.4) and
then reconstructing q(t) using (3.5). Although different notations could be used to handle
the expansions in (3.5) and (3.6), the compact one adopted here is particularly convenient
since terms of equal order m = |m|+ p are collected together. We note in passing that,
while in the multiple-scale formalism an expansion in powers of the ǫ is first assumed,
with the expansion in the critical amplitudes being derived by construction (Charru
2011, p. 251), in the centre-manifold approximation formalism (Coullet & Spiegel 1983;
Elphick et al. 1987), the solution is expanded in polynomial series of both the parameter
and the critical amplitudes ab initio. It should be noted that the amplitudes have a
slightly different meaning in the two formalisms, as shown in §4.2. In order to compute
the expansion coefficients q̂i,k and ĝi,k, the expressions (3.5) and (3.6) are introduced in
(3.1) and the terms with the same indices (i, k) are collected, thus equating the coefficients

of all similar monomials ai11 . . . a
inc
nc ǫk. As it will be made clear later on, this procedure

leads to the solution of a sequence of linear systems which correspond to the forced
harmonic response of the linearised dynamics to nonlinear interactions

(L− ıωB)q̂ω = ĥω. (3.8)

When the forcing occurs at one of the critical frequencies, a resonant term of the ex-
pansions is generated. As already mentioned in §2, only these terms contribute to the
normal form and therefore only the related coefficients ĝi,k in (3.6) are different from
zero, providing the required degrees of freedom to enforce the solvability condition for
the resonant linear systems (2.5).

3.1. Reduction procedure

The above introduced expansions for q(a, ǫ) and g(a, ǫ) are now truncated up to a
selected finite degree r̄ = |i| + p to address the problem numerically. The number of
terms of fixed degree m = |i| + p is expressed by the binomial fraction nm =

(

nc+m
nc

)

.

Then the total number of terms up to the truncation order r̄ is nt =
∑r̄

m=1 nm. By
introducing (3.5) and (3.6) in (3.1) we obtain for the generic term (m, p)

〈

B

r̄
∑

m=1

∑

|i|+k=m

q̂i,k
˙(ai)ǫk

〉

m,p

= Lq̂m,p +
〈

f(q(a, ǫ), ǫ)
〉

m,p
, (3.9)

where the notation 〈w(a, ǫ)〉m,p stands for the vector coefficient of the (m, p)-th term in
the power series expansion of w(a, ǫ). For a wide class of finite-dimensional dynamical
systems, including many of those derived from the numerical discretisation of PDEs, the
dependency of f on both q and ǫ is exactly expressed in algebraic form by means of
multivariate polynomials (usually of small degree) in the components of q and in ǫ. More
generally in the case of transcendent functions, an approximate algebraic expression for
f (q, ǫ) can be derived by expanding in Taylor series in the neighbourhood of q = 0 and
ǫ = 0. As an example, for a generic quadratic nonlinearity we can write

{f(q1, . . . , qn, ǫ)}i = Aiǫ+ Bijqjǫ+ Cijkqjqk + Diǫ
2, (3.10)

where the Einstein summation convention has been used along with the notation {w}i =
wi for the i-th component of the vector w. By substituting (3.5) in (3.10), the corre-
sponding power series of f(q, ǫ) in the critical amplitudes and in ǫ is easily derived:

{f̂m,p}i = δm,0
p,1

Ai + δm,0
p,2

Di + {f̂
(ǫ)

m,p}i +
∑

i+n=m

q+k=p

Cijℓ{q̂i,q}j{q̂n,k}ℓ, (3.11)
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where

{f̂ (ǫ)

m,p}i =
{

0 for p = 0,
Bij{q̂m,p−1}j for p > 1,

(3.12)

and

δm,i
p,k

=

{

1 for (m, p) = (i, k),
0 otherwise.

(3.13)

It can be observed that no coupling among terms of the same degree can arise due to the
nonlinear term, since f is assumed to be at least quadratic in the neighbourhood of the
origin.
At this point, in order to reduce (3.9) to a pure algebraic linear problem, time deriva-

tives ˙(ai) are expressed using the chain rule

˙(ai) =
dai

da
· ȧ =

dai

da
·g(a, ǫ), (3.14)

where we made use of the notation

dai

da
≡
(

i1
ai

a1
, . . . , iℓ

ai

aℓ
, . . . , inc

ai

anc

)

. (3.15)

It is worthwhile to observe that this operation is analogous to the derivation with respect
to the slow-time scale employed in the multi-scale approach (Coullet & Spiegel 1983).
By inserting the formulae (3.14) and (3.4) into the left-hand side of (3.9), this latter is
rewritten as follows

〈

B

r̄
∑

m=1

∑

|i|+k=m

q̂i,k

r̄
∑

n=1

∑

|n|+j=n

ĝn,j ·
dai

da
an ǫk+j

〉

m,p

, (3.16)

which can be simplified to obtain

B

m̄
∑

m=1

∑

|i|+k=m

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,p−k}ℓ q̂i,k, (3.17)

where m̄ = |m| + p and the notation 1ℓ has been introduced to indicate a multi-index
whose entries are all zero except for the ℓ-th one which is set equal to one.

3.1.1. Order m̄ = 1

Let us consider the generic term (1m, 0). In this case f(q, ǫ) does not contribute to
the right-hand side of equation (3.9) which reduces to

Lq̂1m,0 −B
nc
∑

ℓ=1

q̂1ℓ,0{ĝ1m,0}ℓ = 0. (3.18)

For m = 1, . . . nc we obtain a set of nc coupled homogeneous linear problems which
are under-determined in the unknowns q̂1m,0 and ĝ1m,0. Therefore for each system of
the form (3.18) we need to introduce nc auxiliary linear equations, even if, in order to
avoid trivial solutions, only nc−1 can be chosen arbitrarily. In particular we can observe
that the coupling among these linear problems arises through the entries of ĝ1m,0. If we
assume that ĝ1m,0 = σmêm for m = 1, . . . nc, each problem gets further simplified in the
form

Lq̂1m,0 − σmBq̂1m,0 = 0, (3.19)

which is a generalized eigenvalue problem for the linear matrix pencil (L,B) with the
eigenvalue σm ∈ C and the eigenvector q̂1m,0. Since we know that Ec is tangent to
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Vc at the origin, it can be deduced that the pairs (q̂1m,0, σm) for m = 1, . . . , nc exactly
correspond to the critical eigenpairs thus providing the linear approximation to the centre
manifold dynamics:

ȧm = ıωmam, m = 1, . . . nc. (3.20)

with ıωm ∈ Λ(Lc). For the critical eigenvectors, the additional notation ϕm = q̂1m,0 is
employed in the following. Critical adjoint eigenvectors ψm are also introduced:

LHψm + ıωmB
Hψm = 0, (3.21)

where (·)H denotes the complex-conjugate transpose and the normalization condition
ψH

i Bϕj = δij holds. The knowledge of the adjoint eigenmodes is indeed essential in
order to build up the projectors onto Ec and Es when enforcing the proper solvability
condition on the resonant systems.
To complete the computation of the first-order contributions to the expansions (3.5)

and (3.6), the term (0, 1) has to be considered. For such term, (3.9) reads as

Lq̂0,1 = −f̂0,1 +BΦĝ0,1, (3.22)

where Φ = [ϕ1, . . . ,ϕnc
]. If at least one steady critical mode is present, the above system

corresponds to a steady resonance, L being singular. In this case the scalar entries of ĝ0,1
provide the required degrees of freedom to enforce the solvability condition on (3.22). As
an example, let us suppose that only a single eigenvalue lies at the origin of the complex
plane, namely ωn̄ = 0. Based on the Fredholm alternative theorem, the above linear
system makes sense only when its right-hand side is orthogonal to ψn̄. Such a condition
can be guaranteed through a proper choice of ĝ0,1. More precisely, only the n̄-th entry of
ĝ0,1 is actually needed while all the remaining elements can be set equal to zero. Indeed,
by recognizing that the term (0, 1) is resonant due to the n̄-th eigenmode, only the n̄-th
entry of ĝ0,1 is expected to be different from zero in the normal form of the amplitude
equations, i.e. ĝ0,1 = ĝ0,1ên̄ where ên̄ is the n̄-th canonical base-vector of Rnc . Once the
compatibility condition has been satisfied, the solution q̂0,1 of (3.22) is defined up to an
arbitrary component in the direction of ϕn̄ which can be fixed to zero by introducing the
additional condition ψH

n̄ Bq̂0,1 = 0. As a result of the above statements, the following
bordered (non-singular) linear system is derived:

[

L −Bϕn̄

ψH
n̄ B 0

](

q̂0,1

ĝ0,1

)

=

(

−f̂0,1

0

)

, (3.23)

which allows one to compute at once both q̂0,1 and the normal-form coefficient ĝ0,1.
More generally in the case of multiple eigenmodes at zero-frequency, i.e. for ωℓ = 0 with
ℓ = 1, . . . , n0 and 1 < n0 6 nc, the above system is replaced by its extended form

[

L −BΦ0

ΨH
0 B 0

](

q̂0,1

ĝ0

)

=

(

−f̂0,1

0

)

, (3.24)

where Φ0 = [ψ1, . . . ,ψn0
], Ψ0 = [ψ1, . . . ,ψn0

] and ĝ0 = (ĝ1, . . . , ĝn0
) collects the entries

of ĝ0,1 associated with the resonant critical amplitudes at zero frequency

ĝ0,1 =

n0
∑

ℓ=1

ĝℓêℓ. (3.25)

When ωℓ 6= 0 ∀ ℓ ∈ [1, nc], the term (0, 1) is non-resonant which allows one to set
ĝ0,1 = 0 since it does not contribute to the normal form of the amplitude equations. In
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this case (3.22) reduces to

Lq̂0,1 = −f̂0,1, (3.26)

which uniquely determines q̂0,1.

3.1.2. Order m̄ > 2

Dealing with the computation of the centre-manifold reduction at a fixed order m̄ > 2,
it can be shown that the involved linear problems can be solved sequentially only when
proceeding at increasing order in the power of ǫ. For such purpose the expression (3.17)
has to be further manipulated and related details are relegated to the Appendix A. By
exploiting such results and those obtained at order m̄ = 1, the linear problem associated
with the generic term (m, p) in the unknowns q̂m,p and ĝm,p reads as

(L− cmB)q̂m,p −BΦĝm,p = ĥm,p, (3.27)

with cm =
∑nc

ℓ=1 ımℓωℓ. The right-hand side ĥm,p can be computed using the formula:

ĥm,p = −f̂m,p + (1− δ0,p)B

nc
∑

ℓ=1

(mℓ + 1){ĝ0,1}ℓ q̂m+1ℓ,p−1

+B

m̄−1
∑

m=2

∑

|i|+k=m

nc
∑

ℓ=1

iℓ {ĝm−i+1ℓ,p−k}ℓ q̂i,k.
(3.28)

We note that all the expansion coefficients in the above expression have been already
computed at an order lower than m̄ (first and last term in (3.28)) or at the same order
according to the introduced ordering of the m̄-degree terms in increasing power of ǫ
(second term in 3.28). A resonance condition for (3.27) clearly arises when cm = ıωc, ωc

being a critical frequency since the the matrix L− cmB becomes singular. If nωc
critical

modes have the same frequency ωc, namely ωℓ = ωc ∀ℓ ∈ [1, nωc
], exploiting the same

arguments introduced in §3.1.1, (3.27) is replaced by the bordered linear system
[

L− ıωcB −BΦc

ΨH
c B 0

](

q̂
m,p

ĝc

)

=

(

ĥm,p

0

)

, (3.29)

where Φc = [ψ1, . . . ,ψnωc
], Ψ c = [ψ1, . . . ,ψnωc

] and again the introduced short-hand
ĝc defined as ĝc = (ĝ1, . . . , ĝnωc

) collects the involved normal-form coefficients, with
ĝm,p =

∑nωc

ℓ=1 ĝℓêℓ.
In the non-resonant case, i.e. for cm 6= ıωℓ, ∀ℓ = [1, nc], the coefficients ĝm,p are set to

zero and q̂
m,p is uniquely determined as the solution of the non-singular system

(L− cmB)q̂m,p = ĥm,p. (3.30)

3.1.3. Final remarks

It is worthwhile to note that two key steps in the above procedure allow one to obtain
the normal form of the centre manifold straight away:
i) The coefficients q̂1m,0 of expansion (3.5) are chosen to correspond exactly to the

critical eigenvectors of L, thus uncoupling the linear terms of the expansions. This also
justifies the term ‘critical amplitudes’ which has been used for the functions aℓ(t): at
first order these functions are actually the amplitudes of the critical eigenmodes and the
same term is used by extension for higher-order terms.
ii) The non-resonant coefficients in the expansion (3.6) are set to zero. Note that this

choice is possible since the corresponding linear systems to be solved in order to compute
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the nonlinear modes q̂m,p, (3.30), are well posed and no regularisation procedure with
the introduction of additional degrees of freedom has to be applied.

3.2. Low-dimensional example

The centre-manifold reduction is now applied to a simple three-dimensional model system
borrowed from the work by Noak et al. (2003):















u̇ = µu− v − uw,

v̇ = µv + u− vw,

ẇ = −w + u2 + v2,

(3.31)

with µ ∈ R being a small control parameter, i.e. |µ| ≪ 1. This system has a fixed point at
the origin which becomes linearly unstable for µ > 0 owing to a pair of complex-conjugate
eigenvalues λ1,2 = µ ± ı that cross the imaginary axis. Thus a Hopf bifurcation occurs
with the onset of the periodic solution

u(t) =
√
µ cos(t), v(t) =

√
µ sin(t), w =

√
µ, (3.32)

which is asymptotically and globally stable. As shown by Noak et al. (2003), the system
trajectories rapidly approach the paraboloid w = u2 + v2 on which the limit cycle takes
place for µ > 0.
Given the system (3.31), we are interested in the centre-manifold approximation of its

behaviour for µ > 0 in the neighbourhood of the critical threshold µ = 0. As a first step
let us recast (3.31) in the form (3.2) with ǫ =

√
µ:





u̇
v̇
ẇ



 =





0 −1 0
1 0 0
0 0 −1









u
v
w



+





ǫ2u− uw
ǫ2v − vw
u2 + v2



 . (3.33)

The matrix L has two marginally stable eigenvalues, i.e. λ = ±ı, whose corresponding
eigenvectors are expressed by ϕ1,2 = ψ1,2 = (±ı/

√
2, 1/
√
2, 0)T with the normalization

condition ψH
i ϕj = δij . Indeed since L consists of a skew-symmetric 2× 2 diagonal block

plus a diagonal entry, the corresponding eigenvectors are orthogonal to each other: thus
for the same eigenvalue, the right and left eigenvectors are equal to each other.
Let us now introduce the truncated centre-manifold expansions (3.5) and (3.6) at order

r̄ = 3. In the present case, the critical subspace has dimension nc = 2 and therefore a
total of nr̄ = 19 terms has to be computed; the related multi-index sequence is listed in
table 1. The linear approximation to the centre manifold follows straightforwardly from
the knowledge of the critical subspace with q̂1ℓ,0 = ϕℓ and ĝ1ℓ,0 = λℓeℓ for ℓ = 1, 2. The
linear term (m, p) = ((0, 0), 1) is non-resonant and with reference to (3.26), q̂0,1 = 0 since

f̂0,1 = 0. In fact this term corresponds to a first-order correction in the Taylor-series
approximation of the fixed point q0(ǫ) around ǫ = 0:

q0(ǫ) = q0(0) +
dq0
dǫ

∣

∣

∣

∣

ǫ=0

ǫ+
1

2

d2q0
dǫ2

∣

∣

∣

∣

ǫ=0

ǫ2 + . . . , (3.34)

where q0(0) = 0 and q̂(0,0),k = (1/k!)dkq/dǫk|ǫ=0. However since q0(ǫ) = 0 ∀ǫ, no
correction to the equilibrium solution occurs as ǫ is increased, with the terms q̂(0,0),2 and
q̂(0,0),3 being identically equal to zero.
Dealing with the computation of second-order terms, we now consider the term (m, k) =

(2, 0, 0) which is non-resonant. This term corresponds to the forced harmonic response of
the linearized system at the frequency ω = 2ω0 = 2 and it is expected to be equal to zero
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m̄ = 1 m̄ = 2 m̄ = 3

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m1 1 0 0 2 1 0 1 0 0 3 2 1 0 2 1 0 1 0 0
m2 0 1 0 0 1 2 0 1 0 0 1 2 3 0 1 2 0 1 0
p 0 0 1 0 0 0 1 1 2 0 0 0 0 1 1 1 2 2 3

Table 1. Sequence of multi-indices (m, p) involved in the computation of the centre-mani-
fold reduction up to order r̄ = 3 with nc = 2. The following notation has been introduced:
m = (m1, m2)

T , m̄ = |m| and s ∈ S3 (see §3.3).

based on (3.32). With reference to (3.28), it can be observed that the second contribution
to this formula is always null due to the fact that ĝ0,1 = 0, while the last contribution in

(3.28) is involved only in the computation of terms of order m̄ > 3. Therefore, for ĥ(2,0),0

we have

ĥ(2,0),0 = −f̂ (2,0),0 =







û(1,0),0ŵ(1,0),0

v̂(1,0),0ŵ(1,0),0

−û(1,0),0û(1,0),0 − v̂(1,0),0v̂(1,0),0






= 0, (3.35)

and the solution of (3.30) results q̂(2,0),0 = 0. The same result holds for the its complex-
conjugate term with q̂(0,2),0 = 0 and ĝ(0,2),0 = 0. Then we examine the term (m, k) =
(1, 1, 0). This non-resonant term introduces a mean-field correction to the equilibrium
solution. For ĥ(1,1),0 we have

ĥ(1,1),0 = −f̂ (1,1),0 =







û(1,0),0ŵ(0,1),0 + û(0,1),0ŵ(1,0),0

v̂(1,0),0ŵ(0,1),0 + v̂(0,1),0ŵ(1,0),0

−2û(1,0),0û(0,1),0 − 2v̂(1,0),0v̂(0,1),0






= −





0
0
2



 , (3.36)

which leads to q̂(1,1),0 = (0, 0, 2)T . Finally, let us consider the term (m, p) = (1, 0, 1).
This term is resonant because of cm = ı1: indeed it corresponds to the forced linearized
response at the critical frequency. However it can be shown that ĥ(1,0),1 = −f̂ (1,0),1 =
0. Therefore the bordered system (3.29) admits the trivial solution ĝ(1,0),1 = 0 and
q̂(1,0),1 = 0.

At third order, the only non-zero contributions are given by the resonant terms (m, p) =
(2, 1, 0) and (m, p) = (1, 0, 2) along with their complex-complex conjugates. For ĥ(2,1),0

we obtain the formula

ĥ(2,1),0 =− f̂ (2,1),0 + 2q̂(2,0),0{ĝ(1,1),0}1 + q̂(1,1),0{ĝ(2,0),0}1
+q̂(1,1),0{ĝ(1,1),0}2 + 2q̂(0,2),0{ĝ(2,0),0}2,

(3.37)

where besides f̂ (2,1),0, additional contributions stemming from the time-derivative elim-

ination are present. However only f̂ (2,1),0 is different from zero with

f̂ (2,1),0 =







−û(1,0),0ŵ(1,1),0

−v̂(1,0),0ŵ(1,1),0

0






=







−i
√
2

−
√
2

0






= −2ϕ1. (3.38)

The solution of the corresponding bordered linear system is q̂(2,1),0 = 0 and ĝ(2,1),0 =
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−2ê1. Finally for ĥ(1,0),2 the following expression is derived:

ĥ(1,0),2 =− f̂ (1,0),2 + 2q̂(2,0),0{ĝ(0,0),2}1 + q̂(1,1),0{ĝ(0,0),2}2
+ q̂(1,0),1{ĝ(1,0),1}1 + q̂(0,1),1{ĝ(1,0),1)}2,

(3.39)

where again only f̂ (1,0),2 = ϕ1 is non-zero, leading to q̂(1,0),2 = 0 and ĝ(1,0),2 = ê1.
By collecting the obtained results and taking into account the complex-conjugate sym-

metry of the amplitude equations with a1 = a∗2 = a, the third-order centre-manifold
expansion can be written as







u(t)

v(t)

w(t)






≈







i/
√
2

1/
√
2

0






a(t) +







−i/
√
2

1/
√
2

0






a(t)∗ +







0

0

2






|a(t)|2, (3.40)

with

ȧ = ıa+ ǫ2a− 2a|a|2. (3.41)

The linear term in the above amplitude equation can be exactly integrated by introducing
the change of variable a(t) = A(t)eıt leading to recover the well-known complex Landau
equation, i.e. the normal form of the considered Hopf bifurcation:

Ȧ = ǫ2A− 2A|A|2. (3.42)

Moreover for this particular case, the computed third-order centre-manifold approxi-
mation exactly reproduces the periodic solution (3.32). Indeed in the asymptotic limit
a(t)→ (ǫ/

√
2)eıt and







u(t)

v(t)

w(t)






→







2Re{ıa(t)/
√
2}

2Re{a(t)/
√

(2)}
|a(t)|2






=







ǫ sin(t)

ǫ cos(t)

ǫ2






. (3.43)

In (3.40), the periodic motion in the plane (u, v) is described by means of the critical
eigenvectors whose amplitude has been ‘renormalised’ under the action of the nonlin-
ear terms in (3.41). At the same time, the equation for w provides the required mean-
field correction which is expressed by the analytical second-order centre-manifold graph
w(u, v) = |a(t)|2 = (u2 + v2)/2. However for the considered model problem, this latter
result is not completely general. More precisely it is related to the particular choice made
in the definition of ǫ, i.e. ǫ =

√
µ, which has been introduced in (3.33). Indeed it can

be shown that by performing the centre-manifold reduction of the system (3.31) with ǫ
being defined as ǫ = µ, (3.40) and (3.42) are replaced by







u(t)

v(t)

w(t)






≈







i/
√
2

1/
√
2

0






a(t) +







−i/
√
2

+1/
√
2

0






a(t)∗ +







0

0

2






|a(t)|2 −







0

0

4






ǫ|a(t)|2, (3.44)

and

Ȧ = ǫA− 2A|A|2, (3.45)

respectively. Hence the same normal form along with the same values of the coefficients
for A and A|A|2 are obtained, as one would expect. However the last term in (3.44)
introduces a third-order correction to the centre-manifold equation which prevents the
recovery of the exact limit cycle solution (3.32) in the asymptotic limit. It easy to verify
that the same term appears as a fourth-order contribution in the expansion (3.5) when



Centre-manifold reduction of bifurcating flows 13

+1

· · ·

· · ·

· · ·
2 3

m1

m2

m3

p

r̄ + 1

mind

ordt

M2 terms

· · ·
· · ·

Figure 1. Implementation of the centre-manifold algorithm: an example of data structures to
handle the multi-index sequence associated with each ordered set Mm for m = 1, . . . , r̄. In the
considered example nc = 3, with m = (m1, m2,m3). The block of multi-indices (m, p) associated
with terms of order m = |m|+p is accessed in mindthrough the sequence of column indices given
by ordt(m) + 1, . . . , ordt(m+ 1).

using the definition of ǫ =
√
µ. Therefore in this latter case the possibility to recover the

exact limit cycle solution at the third-order is a mere coincidence.

3.3. Implementation

As already mentioned, a key feature of the outlined method is the possibility to code
it into a general computer algorithm by means of numerical calculations only. In doing
that, some implementation issues arise for which useful guidelines are discussed below.
Finally the centre-manifold algorithm is summarized in Algorithm 3.
i) Given the truncation order r̄ of the centre-manifold reduction, the set of integer

numbers Sr̄ ≡ [1, nr̄] is introduced to enumerate all the terms in the truncated expansions
(3.5) and (3.6). A one-to-one mapping s↔ (m, p) is thus defined, with s ∈ Sr̄. In addition,
for each order m the set Mm = {si}nm

i=1 of ordered indices corresponding to the expansion
terms of degree equal to m can be introduced:

si ↔ (m, p) with |m|+ p = m ∀si ∈ Mm. (3.46)

The elements of Mm are ordered at increasing power of ǫ, i.e. p 6 q for i 6 j ∀si, sj ∈
Mm with si ↔ (m, p) and sj ↔ (i, q). The mapping s → (m, p) and the family of
sets Mm can be computed explicitly and stored once and for all in integer arrays. A
simple example of these data structures is described in figure 1. The ordered sequences
of multi-indices (m, p) associated with each setMm,m = 1, . . . , r̄, are stored as sequential
column blocks in the two-dimensional array mindof dimension (nc + 1) × nr̄. Therefore
the s-th column of mindprovides the scalar entries of (m, p) for the s-th term in the
expansion, according to adopted enumeration of all expansion terms. In particular in the
considered example the first nc rows of mindcontain the elements of m while the last
row provides the value of p. For a selected order m = |m|+ p, the multi-index sequence
associated with Mm and stored in mindis accessed through the column indices given by
the sequence ordt(m)+1, . . . , ordt(m+1), ordt being an array of dimension 1× (r̄+1).
This is illustrated in figure 1 with reference to terms of order m = 2. Conversely the
implementation of the inverse mapping (m, p) → s (which is needed to compute the
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right-hand side ĥm,p) requires a conditional loop on the elements of Mm=|m|+p as shown
in Algorithm 1.

Algorithm 1 Compute (m, p)→ s

1: function Invmind(m, p)
2: s← 0
3: m← |m|+ p
4: for z = (ordt(m) + 1) : ordt(m+ 1) do
5: k ← mind(nc + 1, z)
6: if k = p then

7: i← mind(1 : nc, z)
8: if i = m then

9: s← z
10: return s
11: end if

12: end if

13: end for

14: return s
15: end function

ii) Additional data structures can be introduced to handle the computation of the
coefficients f̂

m,p. Let us consider the case of a pure quadratic nonlinearity which is
meaningful to the application to the Navier–Stokes equations. According to (3.11) we
have:

{f̂m,p}i =
∑

i+n=m

q+k=p

Cijℓ{q̂i,q}j{q̂n,k}ℓ, for i = 1, . . . , n, (3.47)

where summation over repeated indices is implied. Then let us introduce the indices
s, i, j ∈ Sr̄ which correspond to the involved expansion terms in the above expression:

s↔ (m, p), i↔ (i, q), j ↔ (n, k),

and the set Ds of integer pairs (i, j) defined as follows:

Ds := {(i, j), i, j ∈ Sm−1 | i+ n = m and q + k = p}. (3.48)

where |m| > 1 is assumed. A family of sets Ds can be derived ∀s ∈ Sr̄/{M1} and stored once
and for all in the pre-processing phase. As an example, for s = nc+2, . . . nr̄, the sequence
of integer pairs in Ds can be stored as a column block in the two-dimensional array
qtermsof dimension 2× ns, where ns denotes the total number of index pairs for all the
sets Ds. With reference to figure 2, for a selected term of the expansion labeled with s̄, the
corresponding integer pairs collected in Ds̄ are accessed in qtermsthrough the sequence of
column indices qind(s̄)+1, . . .qind(s̄+1), where qindis an array of 1×nr̄ integers. The
integer values extracted from qtermsprovide then access to all data structures associated
with the truncated expansion, such as the multi-index data structure mind, through the
introduced enumeration of all expansion terms. Once provided with these data structures,
the computation of each coefficient f̂m,p can be performed using a single loop on the
index pairs stored in qterms, as illustrated in Algorithm 2. The definition of these data
structures and of the outlined procedure can be extended to handle each term in the
algebraic expression of f(q, ǫ).
iii) When a real dynamical system is considered, both computing time and memory

storage can be saved by taking directly into account the conjugate-symmetry of the
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+1

· · ·

· · ·

· · ·
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m1

m2

m3

p

nr̄ + 1

qterms

qind

mind

· · ·
· · ·

· · ·
· · ·

Figure 2. Implementation of the centre-manifold algorithm: example of data structures to
handle the computation of the coefficients f̂

m,p associated with a pure quadratic nonlinearity
in q in the expression of f(q, ǫ).

Algorithm 2 Computation of f̂
m,p

Require: (m, p)
1: s̄←invmind(m, p)
2: f̂m,p = 0
3: for z = (qind(s̄) + 1) : qind(s̄+ 1) do
4: s1 ← qterms(1, z)
5: s2 ← qterms(2, z)
6: i← mind(1 : nc, s1), q ← mind(nc + 1, s1)
7: n← mind(1 : nc, s2), k ← mind(nc + 1, s2)
8: {f̂m,p}i ← {f̂m,p}i + Cijℓ{q̂i,q}j{q̂n,k}ℓ
9: end for

complex-valued terms of the expansion, i.e. those pairs of terms {(m, p), (i, p)} which
satisfy the relation i = Pm, P ∈ Nnc×nc being a permutation matrix defined as follows:

Pij =

{

1 if ωi = −ωj, with ϕi = ϕ
∗
j andωi 6= 0

0 otherwise,

where (·)∗ is used to denote the complex-conjugate. For such pairs, the expansion coef-
ficients are related by the conjugate-symmetry conditions

q̂∗
m,p = q̂i,p, ĝ∗

i,p = P ĝm,p. (3.49)

Hence these coefficients can be computed and stored only once. Moreover, the elements
of ĝm,p are different from zero only if the term (m, p) is resonant.
iv) The numerical solution of bordered linear systems (3.24) and (3.29), although being

possible, should be avoided, especially for large-scale applications. As a matter of fact
the bordered structure results in a substantial increase of the factorization fill-in when
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using LU solvers while for iterative solvers, a suitable preconditioner must be introduced.
More conveniently, resonant solutions can be computed using the same solver employed
for non-resonant systems, provided that it can handle singular linear operators. This
is the case of several freely-available linear-algebra packages, either based on the LU
factorization or on Krylov-subspace iterations (Heroux & Willenbring 2003; Balay et al.
2013). In particular in the algorithm provided with the UMFPACK library by Davis
(2004) (which has been employed in our computations), during the factorization step the
LU solver is able to replace the singular matrix by a fictitious invertible linear operator
which is equivalent to the original matrix except for its restriction to the null-space where
it is substituted by the identity.
Therefore the computation of the solution of (3.29) breaks up in a two-step regularization
procedure. First, the array of the normal-form coefficients ĝc is computed by projecting
the first equation in (3.29) on the ker(L− ıωcB) ≡ Φc through the adjoint eigenvectors
Ψ c which yields

ĝc = −ΨH
c ĥm,p. (3.50)

Then, the considered equation in (3.29) is recast in the form

(L− ıωcB)q̂m,p = ĥm,p +BΦcĝc = P
⊥
c ĥm,p, (3.51)

where P⊥
c = (I − BΦcΨ

H
c ) is the orthogonal projector with respect to the resonant

eigenmodes, thus making the above singular system well-posed. If we denote by q̃m,p

the solution issuing from the LU solver, then the solution q̂
m,p of (3.29) is obtained by

fixing to zero the component of q̃m,p on the subspace spanned by the columns of Φc, i.e.

q̂m,p = P⊥
c q̃m,p.

Similarly, for Krylov solvers available within the package PETSc (Balay et al. 2013), a
basis for the null-space of the linear operator has to be provided in input to the algorithm
along with the system (3.51). In this case the solution issuing from the solver already
satisfies the second equation in (3.29), i.e. q̂m,p = q̃m,p, and thus the orthogonalization
step is not required.

4. Application to the incompressible Navier–Stokes equations

Let us examine the application of the proposed technique to the continuous dynamical
system described by the incompressible (nondimensional) Navier–Stokes equations











∂u

∂t
+ (u ·∇)u+∇p− 1

Re
∇2u = 0,

∇·u = 0,

(4.1)

where u(x, t) denotes the velocity vector field and p(x, t) the scalar pressure field. The
fluid motion is described in a regionΩ of the physical space where the above equations are
supplemented by suitable initial and boundary conditions. In particular these latter are
assumed to be time-independent in order to deal with an autonomous dynamical system.
For such a generic fluid system, the Reynolds number Re defines the most obvious control
parameter which is known to rule a large number of flow instabilities. Notwithstanding,
different and additional control parameters can be introduced as well, appearing in the
definition of the boundary conditions or being hidden in the geometrical description of
Ω. Although the proposed centre-manifold reduction method has been introduced in
§3 within a finite-dimensional setting, it can be extended to infinite-dimensional PDE
systems (Haragus & Iooss 2011). Such a formalism is preferred here to avoid dealing with
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Algorithm 3 Centre-manifold reduction

Require: r̄, nc, {ıωℓ,ϕℓ,ψℓ}nc

ℓ=1

1: loop s = (ordt(1) + 1) : (ordt(2)− 1) ⊲ Centre subspace approximation
2: m← mind(1 : nc, s), p← mind(nc + 1, s)
3: q̂

m,p ← ϕs

4: ĝm,p ← ıωsês
5: end loop

6: if ∃ n̄ ∈ [1, nc] s. t. ωn̄ = 0 then ⊲ Term (0, 1)
7: linear-solver(Eq. (3.24)) ⊲ Resonant system
8: store(q̂0,1, ĝ0,1)
9: else

10: linear-solver(Eq. (3.26))
11: store(q̂0,1, ĝ0,1 ≡ 0).
12: end if

13: for m = 2 : r̄ do ⊲ Approximation at order m > 2
14: loop s = (ordt(m) + 1) : ordt(m+ 1)
15: m← mind(1 : nc, s), p← mind(nc + 1, s)
16: ĥm,p ←assemble-rhs(s)
17: if ∃ n̄ ∈ [1, nc] s. t. cm = ıωn̄ then

18: linear-solver(Eq. (3.29)) ⊲ Resonant system
19: store(q̂

m,p, ĝm,p)
20: else

21: linear-solver(Eq. (3.30))
22: store(q̂m,p, ĝm,p ≡ 0).
23: end if

24: end loop

25: end for

specific details related to the employed numerical setup. Therefore, in the following, we
will refer to continuous quantities which are intended to be replaced by their discrete
counterpart when applying the procedure described in §3. Once this parallelism has been
established, the reduction to the centre manifold requires first to recast (4.1) in the
general form (3.2). Let us suppose that q̃0 = (u0(x), p0(x)) is a steady state solution of
(4.1) for Re = Re0, i.e.







(u0 ·∇)u0 −
1

Re0
∇2u0 +∇p0 = 0,

∇·u0 = 0.

(4.2)

The following auxiliary variables are introduced

ũ(x, t) = u(x, t)− u0(x), p̃(x, t) = p(x, t)− p0(x), (4.3)

which satisfy the homogeneous form of the boundary conditions imposed for u0 and p0.
In addition the following definition of the control parameter ǫ is introduced

ǫ = (Re− Re0)/(ReRe0). (4.4)

Indeed this nonlinear transformation allows the dependency on Re to be exactly recast
in a linear form. The alternative definition of ǫ2 = (Re − Re0)/(ReRe0), which is often
preferred in the multi-scale analysis (Sipp & Lebedev 2007; Meliga & Chomaz 2011),
could be employed as well for Re > Re0. By inserting (4.3) and (4.4) into (4.1), this
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latter is rewritten as follows

B∂q̃
∂t

= Lq̃ +Q(q̃, ǫ), (4.5)

where q̃ is the auxiliary total flow field, i.e. q̃ = (ũ, p̃)T , and the linear operators B and
L are defined as

Bq̃ =

(

ũ

0

)

, Lq̃ =





−(u0 ·∇)ũ− (ũ ·∇)u0 +
1

Re0
∇2ũ−∇p̃

∇· ũ



 , (4.6)

whereas the nonlinear operator Q(q̃, ǫ) reads

Q(q̃, ǫ) = −
(

(ũ ·∇)ũ+ ǫ∇2u0 + ǫ∇2ũ

0

)

. (4.7)

According to the assumptions made in §2 and §3, the system (4.5) admits the trivial
equilibrium solution q̃ = 0 for ǫ = 0. Its restriction to the linear terms in q̃ clearly
corresponds to the set of linearized Navier–Stokes equations describing the evolution
of small perturbations around the steady base flow q̃0. Critical eigenpairs involved in
the centre-manifold reduction are thus identified as those linear global modes ξ(x, t) =
ξ̂(x)eσt of the fluid system which are marginally stable, being non-trivial solutions of

σBξ̂ = Lξ̂, (4.8)

with the additional condition Re(σ) = 0. Critical adjoint global modes η(x, t) = η̂(x)e−σ∗t

need to be introduced as well:

σ∗Bη̂ = L†η̂, (4.9)

where L† is the adjoint operator of L with respect to the following energy-based Hermitian
scalar product

〈q̃A, q̃B〉 =
∫

Ω

q̃∗A · q̃BdΩ. (4.10)

The direct and adjoint global modes are normalized such that 〈η̂A,Bξ̂A〉 = 1. For further
details on the global mode analysis and on their computation see the recent reviews by
Theofilis (2011) and Luchini & Bottaro (2014).

4.1. Numerical methods

In the following sections we describe the application of the centre-manifold reduction to
two different flow configurations, namely the flow past an isolated cylinder and the flow
past two cylinders arranged side-by-side with respect to the free stream. In both cases
the Navier–Stokes equations are made dimensionless using the cylinder diameter D∗,
the velocity of the free stream U∗

∞, and the (constant) density ρ∗, the Reynolds number
being defined as Re = U∗

∞D∗/ν∗, where ν∗ denotes the kinematic viscosity. The Navier–
Stokes equations have been spatially discretised in conservative form on a rectangular
computational domain Ωc. A standard second-order finite-difference scheme is used on
a Cartesian, smoothly-varying staggered grid and the no-slip boundary conditions on
the solid surfaces are imposed using an immersed-boundary method which preserves the
second-order accuracy of the discretisation (see Giannetti & Luchini 2007, for further
details).
With reference to figure 3, a Cartesian coordinate system is adopted with its origin

being located on the cylinder centre and its x-axis being aligned with the uniform free-
stream velocity. In such a reference system the velocity vector field is described by means
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Γout

d2

d1

d1

Γtop

Γbottom

Γin

x

y

Figure 3. Sketch of the computational domain Ωc employed for numerical investigations of
the flow past an isolated cylinder.

of its components u = (u, v). In our computational setup, the solid body is placed at
a distance d1 = 50 from the inlet Γin and the upper and lower boundary, Γtop and
Γbottom, while the outlet Γout is located at a distance d2 = 150 from the origin. On Γout,
equations (4.1) are supplemented with the boundary conditions −p + 2Re−1∂u/∂x = 0
and ∂v/∂x = 0. On Γin, Γtop and Γbottom, the vorticity is set to zero as well as the velocity
component v. The computational domain is discretised using 600× 300 grid points with
a clustering near the cylinder surface. More precisely, a uniform mesh is adopted in the
small square subdomain [−1, 1]× [1, 1] enclosing the body, with the finest mesh size being
∆x = ∆y = 0.02.
For the numerical simulation of the flow past the two side-by-side cylinders, the same

domain size and boundary conditions are employed except on the boundaries Γin, Γtop

and Γbottom where the vorticity is set to zero and the flow perturbation produced by
the two cylinders on the incoming uniform stream is assumed to decay to zero as the
leading term of the potential flow around it. The two cylinder centres are aligned on the
y-axis and symmetrically positioned with respect to the x-axis. In this case, the uniform
subgrid is extended to the subdomain [−1, 1]× [−2.5, 2.5] and a total of 600× 450 grid
points is employed. For further details see also Carini et al. (2014b,a).
In order to compute the centre-manifold approximation, both the base flow and the

related critical global modes are required. For each considered configuration, the basic
flow state is obtained by solving the steady version of (4.1) by Newton iterations. Di-
rect and adjoint global modes are then computed using the Krylov–Arnoldi algorithm
implemented in the ARPACK library (Lehoucq et al. 1998) based upon a shift-invert
strategy. More precisely, a discrete adjoint approach is adopted. In this way the proper
boundary conditions for the adjoint problem are accounted for automatically and the
biorthogonality condition between direct and adjoint eigenfunctions is satisfied up to
machine precision in the discrete setting.
Direct numerical simulations (DNS) are performed by advancing in time the spa-

tially discretised nonlinear equations using the hybrid third-order Runge-Kutta/Crank-
Nicolson scheme of Rai & Moin (1991). The same scheme is also employed for time
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Figure 4. Nonlinear modes appearing in the centre-manifold reduction of the first Hopf bifur-
cation of the single cylinder wake: streamwise velocity component (real part). (a) û(0,0),1. (b)
û(1,1),0. (c) û(2,0),0. (d) û(1,0),1.

integration of the amplitude equations (3.6) obtained from the centre-manifold reduc-
tion. All the required matrix inversions are handled by means of the sparse LU solver
provided with the software package UMFPACK (Davis 2004).

4.2. Flow past a circular cylinder

The two-dimensional flow past a circular cylinder has been extensively investigated
both experimentally and numerically owing to its practical and theoretical relevance
(Williamson 1996). For such flow, the primary instability occurs via a Hopf bifurcation
of the basic steady state at Re ≈ 47, leading to the onset of an alternate vortex shedding
with the formation of the so-called Bernard-von Kármán vortex street. In the context of
hydrodynamic stability, the bifurcating cylinder flow dynamics is usually described by
means of the Stuart-Landau equation:

dA

dτ
= λA− µA|A|2, (4.11)

whereA(τ) denotes the renormalised critical mode amplitude, τ = ǫ t represents the ‘slow’
time scale of its nonlinear evolution and λ, µ ∈ C are the so-called Landau constants. The
values of λ and µ have been computed by Sipp & Lebedev (2007) and Meliga & Chomaz
(2011) while performing a weakly-nonlinear global analysis of this flow using the classical
multiple-scale approach.
In order to validate our technique, the centre-manifold reduction is applied to the

considered flow and obtained results are then compared with those described in the
previously cited works. By performing a linear stability analysis, critical values of the
Reynolds number and of the global mode frequency St0 = Im(σ)/2π are found, Re0 ∼
46.51 and St0 ∼ 0.117, respectively, which are in good agreement with those computed
by Giannetti & Luchini (2007), Sipp & Lebedev (2007), Marquet et al. (2008), and
Meliga & Chomaz (2011). Since the Hopf bifurcation involves a conjugate pair of critical
eigenvalues, only a single amplitude equation will be considered in the following as done
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ĝ(1,0),0 0.7333ı

ĝ(1,0),1 0.9099 × 101 + 0.3238 × 101ı

ĝ(1,0),2 0.1509 × 103 − 0.1064 × 103ı

ĝ(1,0),3 0.1862 × 104 − 0.7884 × 104ı

ĝ(2,1),0 −0.1588 × 10−2 + 0.5762 × 10−2ı

ĝ(2,1),1 0.2053 − 0.1645 × 101ı

Table 2. Centre-manifold reduction of the first Hopf bifurcation of the cylinder wake:
computed normal-form coefficients up to order r̄ = 4.

λ Im(µ)/Re(µ)

Sipp & Lebedev (2007) 9.14 + 3.27i −3.42

Meliga & Chomaz (2011) 9.153 + 3.239i −3.32

Present 9.099 + 3.238i −3.63

Table 3. Landau constants λ, µ of the first Hopf bifurcation of the cylinder wake: comparison
of computed values with those reported by other authors.

in §3.2. At order r̄ = 4 we obtain:

ȧ = g̃1(ǫ)a+ g̃2(ǫ)a|a|2, (4.12)

where

g̃1(ǫ) = ĝ(1,0),0 + ĝ(1,0),1ǫ+ ĝ(1,0),2ǫ
2 + ĝ(1,0),3ǫ

3,

g̃2(ǫ) = ĝ(2,1),0 + ĝ(2,1),1ǫ.
(4.13)

The third-order form of the amplitude equation is simply derived by dropping the terms
ĝ(1,0),3ǫ

3 and ĝ(2,1),1ǫ in the above expressions. The computed values of the normal-form
coefficients are listed in table 2. The identification of the Landau constants follows from
the relation between a(t) and A(τ) with

a(t) =
√
ǫA(ǫt) exp(iω0t). (4.14)

Therefore λ = ĝ(1,0),1 and µ = −ĝ(2,1),0. Both λ and the ratio Im(µ)/Re(µ) are intrinsic
quantities, i.e. they do not depend on the adopted global mode normalization since
their appear in the expression of the limit-cycle frequency derived from the normal-form
analysis, as shown by Sipp & Lebedev (2007). A comparison with the values computed
by these latter authors and by Meliga & Chomaz (2011) is reported in table 3: good
agreement is observed with a small deviation affecting the value of Im(µ)/Re(µ). In their
work Sipp & Lebedev (2007) have shown that the computation of µ is very sensitive to
the downstream location of the outlet boundary and in order to get converged results this
boundary must be moved at least 50 diameters downstream of the cylinder position. This
requirement is fulfilled by our computational domain and hence the small discrepancy in
the value of Im(µ)/Re(µ) may be ascribed to the different numerical discretisation.
Some of the computed nonlinear global modes ûm,p are illustrated in figure 4. These

modes exactly correspond to those reported by Sipp & Lebedev (2007) and Meliga &
Chomaz (2011) except for a scale-factor which is due to a different choice in the nor-
malization of the critical eigenmodes. Consistently with their physical interpretation the
same spatial pattern is reproduced: as an example the mode û(0,0),1, figure 4(a), pro-
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St C̄D C′

L C′

D

DNS 0.119 1.415 0.0296 5.171 × 10−5

Centre-manifold, r̄ = 3 0.121 1.428 0.0282 2.923 × 10−5

Centre-manifold, r̄ = 4 0.120 1.407 0.0293 4.478 × 10−5

Table 4. Unsteady flow past a single circular cylinder at Re = 48 (ǫ = 6.7×10−4): comparison of
the aerodynamic coefficients and the Strouhal number obtained from DNS with those computed
from the centre-manifold reduction of the Hopf bifurcation at r̄ = 3 and r̄ = 4. C̄D denotes
the mean drag coefficient while C′

L and C′

D indicate the maximum amplitude of the lift- and
drag-coefficient fluctuations, respectively.
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Figure 5. Flow past a single cylinder at Re = 48: phase-portrait of the aerodynamic coefficients
over a time interval of 300 nondimensional time units. Comparison between DNS (black lines)
and centre-manifold approximation of the flow at order r̄ = 3 (dark grey lines) and r̄ = 4 (light
grey lines).

vides the base-flow correction due to an ǫ increment of Re−1 while the modes û(1,1),0,
figure 4(b), and û(2,0),0, figure 4(c), represent the second-order mean-flow correction and
the second-harmonic interaction, respectively. In addition, figure 4(d) shows the mode
associated with the resonant term aǫ, i.e. û(1,0),1.
In the neighbourhood of Re0, the computed centre-manifold approximation provides us

with a reduced-order model of the unsteady cylinder wake. For Re = 48 (ǫ = 6.7×10−4),
the nondimensional shedding frequency St associated with the asymptotic limit-cycle so-
lution of (4.12) is reported in table 4 for r̄ = 3 and r̄ = 4. As expected, these values match
very well the one computed from the DNS which is also indicated. Once the asymptotic
limit-cycle solution of (4.12) has been derived, the approximation of the whole flow field
at each time instant is straightforwardly computed by exploiting (3.5). A comparison of
the predicted values of the aerodynamic coefficients with those obtained from DNS is
also reported in table 4. The phase diagrams of both the aerodynamic coefficients and
the velocity fluctuations sampled at three distinct points in the flow field are reported in
figures 5 and 6, respectively. These results indicate that a good approximation of the fully
developed cylinder vortex shedding is obtained for r̄ = 4. In figure 7(a)–(c) the stream-
lines of the centre-manifold-reconstructed flow field are compared with those of the DNS
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Figure 6. Flow past a single cylinder at Re = 48: phase-portrait of the velocity field sampled
at (xs, ys) = (1.5, 0) (a), (xs, ys) = (1.5, 1.5) (b) and (xs, ys) = (1.5,−1.5). Comparison between
DNS (black lines) and centre-manifold approximation of the flow at order r̄ = 3 (dark grey lines)
and r̄ = 4 (light grey lines).
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Figure 7. Flow past a single cylinder at Re = 48: streamlines and vorticity fields computed
at the same shedding phase indicated in figure 5 (grey-black dots). Comparison between DNS
(a)–(b) and centre-manifold approximation at order r̄ = 4 (c)–(d). The same contour levels are
employed in figure (a) and (c) for the streamline representation.

snapshot computed at the same shedding phase: the same streamfunction contour levels
are employed in both cases, thus highlighting that vortical structures in the near-wake
region are well captured by means of the nonlinear global mode superposition in (3.5).
On the contrary, in the far-wake region, spurious eddies affect the reconstructed flow
field as shown in figure 7(b)–(d). Such results suggest that while the centre-manifold de-
scription is able to correctly reproduce the flow behaviour where the self-sustained global
instability develops, i.e. in the so-called wavemaker region (Giannetti & Luchini 2007),
it fails to adequately capture the flow dynamics in the far-wake region where nonlinear
interactions of damped linear modes can still play an important role.

4.2.1. Amplitude power-series convergence

A critical comparison of the obtained results with DNS data should take into account
the issue of convergence of the power series in the critical amplitudes while varying
the bifurcation parameter ǫ. The asymptotic behaviour of this power series and the
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Figure 8. Centre-manifold reduction of the first Hopf bifurcation of the cylinder wake: computed
values of the limit cycle amplitude ̺∞ for different values of ǫ and of the truncation order r̄ of
the expansion series up to r̄ = 10. For ǫ = 5× 10−4 and r̄ = 9 the limit cycle solution does not
exist.

estimation of its radius of convergence can be investigated by exploiting the capability
to easily compute high-order amplitude equations provided by the proposed method. For
this purpose let us consider the general expression of the amplitude equation associated
with the Hopf bifurcation

ȧ = g̃1(ǫ)a+

∞
∑

k=2

g̃k(ǫ)a|a|2(k−1), (4.15)

where in our approach the dependence of the normal-form coefficients on the bifurcation
parameter is also approximated in power series of the parameter itself, as shown in
(4.13) for third- and fourth-order centre-manifold approximations. For a given value of
the bifurcation parameter ǫ = ǭ, d|a|/dt → 0 as t → ∞ if an asymptotic limit cycle
solution exists for this solution. By denoting with ̺∞ the asymptotic value approached
by |a|, ̺∞ can be computed as a root of the real-valued coefficient polynomial

Re(g̃1(ǫ))̺∞ +

∞
∑

k=2

Re(g̃k(ǫ))̺
2κ−1
∞ = 0. (4.16)

Once the value of ̺∞ has been obtained, the limit-cycle circular frequency ω∞ is given
by

ω∞ = Im(g̃1(ǫ)) +
∞
∑

k=2

Im(g̃k(ǫ))̺
2(κ−1)
∞ . (4.17)

At this point in order to estimate the range of values of ǫ for which the amplitude power
series converges, the expansions (3.5) and (3.6) are truncated at increasing order r̄ of the
centre-manifold approximation, and for each considered value of ǫ and r̄, ̺∞ is obtained
by computing the roots of the truncated form of (4.16). Obviously only real positive
roots make sense and when multiple, real, strictly-positive solutions are found, only
the one which can be ‘continued’ from the third-order normal form is considered. The
present analysis has been applied to the cylinder wake by computing the centre-manifold
reduction of the related Hopf bifurcation up to r̄ = 10. The obtained values of ̺∞ are
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r̄ ǫ = 5× 10−4 ǫ = 2.5 × 10−4 ǫ = 1× 10−4 ǫ = 5× 10−5 ǫ = 1× 10−5

3 0.119611 0.118156 0.117287 0.116998 0.116767
4 0.119390 0.118102 0.117278 0.116996 0.116767
5 0.116860 0.117842 0.117245 0.116988 0.116766
6 0.119212 0.117964 0.117251 0.116989 0.116766
7 0.120328 0.118168 0.117264 0.116990 0.116766
8 0.117445 0.118008 0.117260 0.116990 0.116766
9 − 0.117593 0.117254 0.116989 0.116766
10 0.123123 0.118121 0.117257 0.116990 0.116766

Table 5. Centre-manifold reduction of the first Hopf bifurcation of the cylinder wake: computed
values of the universal limit-cycle frequency St∞ = 2π/ω∞ for different values of ǫ and of the
truncation order r̄ of the expansion series up to r̄ = 10. Note that for ǫ = 5 × 10−4 and r̄ = 9
the limit cycle solution does not exist.

reported in figure 8 indicating that the convergence radius of the series in terms of ǫ, ǫc
is rather small, with ǫc ≈ 10−4 (Re ≈ 46.73 compared to Re0 = 46.51). Corresponding
values of St∞ = 2π/ω∞ are also reported in table 5. Therefore the computed centre-
manifold approximation for Re = 48 falls outside the radius of convergence of the series,
a fact which could also explain the unphysical flow-field reconstruction in the far-wake
region.

4.3. Flow past two side-by-side circular cylinders

Despite the simple geometry, it is known that the flow past two circular cylinders in side-
by-side arrangement is characterized by the onset of various flow instabilities, depending
on the Reynolds number and even more on the gap spacing between the two cylinder
surfaces g = g∗/D∗. A global stability analysis of this flow has been performed by
Akinaga & Mizushima (2005), Mizushima & Ino (2008) and more recently by Carini
et al. (2014a), showing that for different values of g and Re, the steady symmetric base
flow becomes linearly unstable due to different global modes either associated with the
onset of vortex shedding or with the occurrence of a steady asymmetric flow characterized
by the deflection of the fluid stream through the gap. In particular, three codimension-two
points have been found in the related bifurcation diagram.
As a more demanding application of the proposed method, we compute the centre-

manifold approximation of the considered flow in the codimension-two pitchfork-Hopf
bifurcation point which is associated with the simultaneous criticality of the steady Anti-
Symmetric (AS) mode and of the oscillatory (IP) mode of In-Phase, synchronized vortex-
shedding. According to the neutral curves reported in Carini et al. (2014a) this point is
located at (g0,Re0) = (0.725, 56.46). For these values of the parameters, the computed
critical eigenvalues corresponding to the AS and the IP modes are σ1 = −2.1145×10−10+
6.4185 × 10−17i and σ2,3 = −4.8497 × 10−10 ± 0.6618i, respectively. These modes are
depicted in figures 9(a)–(b) by means of the u component of the velocity field (real part).
In this case two bifurcation parameters are present, namely ǫ1 = (Re−Re0)/(ReRe0) and
ǫ2 = g− g0. Although the proposed technique can be extended to deal with an arbitrary
number of parameters, in the present work only one of two bifurcation parameters is
considered at a time while the other is fixed to its critical value. Thus the centre-manifold
reduction is repeated twice, once for ǫ = ǫ1 and then for ǫ = ǫ2. However, the parameter
g does not appear explicitly in the governing equations (4.1), neither in the expression
of the boundary conditions. For such a case where the dependency on the bifurcation
parameter is hidden in the domain definition or, more generally, in the mathematical
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Figure 9. Nonlinear modes appearing in the centre-manifold reduction of the pitchfork-Hopf
bifurcation at (g0,Re0) = (0.725, 56.46) in the flow past two side-by-side cylinders: streamwise
velocity component (real part). (a) û(1,0,0),0 (AS mode). (b) û(0,1,0),0 (IP mode). (c) ûǫ1

(0,0,0),1.

(d) ûǫ2
(0,0,0),1. (e) û(2,0,0),0. (f) û(1,1,0),0. (g) û(3,0,0),0. (h) û(1,2,0),0.

formulation of the governing equations, we can resort to its Taylor-series approximation.
This can be done by expanding F (·, ǫ) in the neighbourhood of ǫ = 0

F (·, ǫ) ≈ F 0(·) + ǫF ǫ(·) + ǫ2F ǫ2(·) + . . . (4.18)

where the nonlinear operators F ǫk(·) are formally defined as follows

F ǫk(·) =
1

k!

dkF (·, ǫ)
dǫk

∣

∣

∣

∣

ǫ=0

, (4.19)

and their action can be numerically computed by means of suitable finite-difference for-
mulas. As an example

dF (q, ǫ)

dǫ

∣

∣

∣

∣

ǫ=0

≈ F (q, ∆ǫ)− F (q, 0)

∆ǫ
, (4.20)

with ∆ǫ being a positive and small-enough ǫ-increment. This has been done in the present
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computations by exploiting our implementation of the immersed-boundary technique,
with the body surface being analytically described.
For the considered bifurcation, equation (3.4) can be reduced to a system of one real-

valued and one complex-valued equations since only one of the two amplitude equations
associated with the pair σ2,3 is considered. Let us denote with a1(t) the real critical
amplitude associated with the pitchfork branch and with a2(t) the complex one related
to the Hopf branch. Then the computed normal form at r̄ = 3 reads











ȧ1 = g̃1,1(ǫ) + g̃1,2(ǫ)a1 + g̃1,3(ǫ)a
2
1 + g̃1,4(ǫ)|a2|2

+ g̃1,5(ǫ)|a2|2a1 + g̃1,6(ǫ)a
3
1,

ȧ2 = g̃2,1(ǫ)a2 + g̃2,2(ǫ)a1a2 + g̃2,3(ǫ)a
2
1a2 + g̃2,4(ǫ)a2|a2|2,

(4.21)

where

g̃1,1(ǫ) = ĝ(0,0,0),1ǫ+ ĝ(0,0,0),2ǫ
2 + ĝ(0,0,0),3ǫ

3,

g̃1,2(ǫ) = ĝ(1,0,0),1ǫ+ ĝ(1,0,0),2ǫ
2,

g̃1,3(ǫ) = ĝ(2,0,0),0 + ĝ(2,0,0),1ǫ,

g̃1,4(ǫ) = ĝ(0,1,1),0 + ĝ(0,1,1),1ǫ,

g̃1,5(ǫ) = ĝ(1,1,1),0,

g̃1,6(ǫ) = ĝ(3,0,0),0,

(4.22)

and

g̃2,1(ǫ) = ĝ(0,1,0),0 + ĝ(0,1,0),1ǫ+ ĝ(0,1,0),2ǫ
2,

g̃2,2(ǫ) = ĝ(1,1,0),0 + ĝ(1,1,0),1ǫ,

g̃2,3(ǫ) = ĝ(2,1,0),0,

g̃2,4(ǫ) = ĝ(0,2,1),0.

(4.23)

The computed values of these coefficients for ǫ = ǫ1 and ǫ = ǫ2 are listed tables 6–7.
Some of the computed nonlinear global modes are illustrated in figure 9 by means of
the u component of the inherent velocity field. The first-order base flow correction, i.e.
the mode û(0,0,0),1, is shown in figures 9(c) and 9(d) for ǫ = ǫ1 and ǫ = ǫ2, respectively.
In particular the correction induced by a reduction of the gap size, i.e. a negative ǫ2
variation, results in a reduction of the velocity through the gap, which is consistent with
the results reported by Mizushima & Ino (2008). The remaining nonlinear modes in
figure 9 are associated with other terms such as the second-order coupling term a1a2,
figure 9(f), and the third-order terms a31 and a1a

2
2 illustrated in figures 9(g) and 9(h),

respectively. All these modes do not depend on the choice of the bifurcation parameter.
It is worthwhile to note that the proposed algorithm can provide directly the normal

form unfolded with respect to those symmetries that are not explicitly enforced in the
dynamical system model. With respect to the case where the symmetry condition is
exactly satisfied, additional normal-form coefficients are found slightly different from zero.
This can be shown by examining the pure pitchfork branch of the considered codimension-
two bifurcation. Setting a2 = 0 in the first equation of (4.21) we obtain

ȧ1 = g̃1,1(ǫ) + g̃1,2(ǫ)a1 + g̃1,3(ǫ)a
2
1 + g̃1,6(ǫ)a

3
1. (4.24)

The above normal form indicates that the pitchfork branch is imperfect. Indeed the
inherent symmetry with respect to the x-axis is not enforced at the discrete level and
small numerical errors are responsible for the coefficients g̃1,1(ǫ) and g̃1,3(ǫ) being different
from zero. However, in the neighbourhood of the bifurcation point with |ǫ| ≪ 1, these
terms are negligible compared to the other terms of (4.24) and they can be discarded,



28 M. Carini, F. Auteri and F. Giannetti

ǫ1 ǫ2

ĝ(0,0,0),1 −7.1205 × 10−4 5.5039 × 10−6

ĝ(0,0,0),2 1.7490 × 10−2 1.5968 × 10−5

ĝ(0,0,0),3 −9.4191 × 10−2 2.3925 × 10−5

ĝ(1,0,0),1 6.0956 −4.7117 × 10−2

ĝ(1,0,0),2 −1.3469 × 102 −7.5918 × 10−2

ĝ(2,0,0),0 1.6787 × 10−6 1.6787 × 10−6

ĝ(2,0,0),1 −8.1029 × 10−5 −2.4073 × 10−6

ĝ(0,1,1),0 1.4494 × 10−6 1.4494 × 10−6

ĝ(0,1,1),1 −9.0440 × 10−5 7.3458 × 10−6

ĝ(1,1,1),0 −1.2408 × 10−2 −1.2408 × 10−2

ĝ(3,0,0),0 −4.7903 × 10−3 −4.7903 × 10−3

Table 6. Centre-manifold reduction of the incompressible Navier-Stokes system at the codi-
mension-two bifurcation point in the flow past two side-by-side cylinders: computed coefficients
of the pitchfork-branch of the third-order normal form (4.21) (first equation) for both ǫ = ǫ1
and ǫ = ǫ2.

ǫ1 ǫ2

ĝ(0,1,0),0 0.6618ı 0.6618ı

ĝ(0,1,0),1 1.4212 × 101 + 6.3352ı 0.1750 + 0.2891ı

ĝ(0,1,0),2 2.5564 × 101 − 2.3368 × 102ı −0.5466 − 0.2788ı

ĝ(1,1,0),0 1.1392 × 10−5 + 2.5308 × 10−5ı 1.1392 × 10−5 + 2.5308 × 10−5ı

ĝ(1,1,0),1 2.3611 × 10−3 − 2.6340 × 10−3ı 1.2941 × 10−5 − 2.4604 × 10−6ı

ĝ(2,1,0),0 −4.8763 × 10−2 − 0.1083ı −4.8763 × 10−2 − 0.1083ı

ĝ(0,2,1),0 −1.1397 × 10−3 + 4.0353 × 10−3ı −1.1397 × 10−3 + 4.0353 × 10−3ı

Table 7. Centre-manifold reduction of the incompressible Navier-Stokes system at the codi-
mension-two bifurcation point in the flow past two side-by-side cylinders: computed coefficients
of the Hopf-branch of the third-order normal form (4.21) (second equation) for both ǫ = ǫ1 and
ǫ = ǫ2.

CD,1 CD,2 CL,1 CL,2

DNS 1.473 1.488 0.389 −0.396

Centre-manifold 1.472 1.489 0.388 −0.396

Table 8. Steady asymmetrical flow for Re = Re0 and g = 0.72: aerodynamic force coefficients
of the two cylinders. Comparison between the solution of the steady Navier-Stokes equations
(DNS) and its centre-manifold approximation.

thus recovering the normal form of the generic pitchfork. Asymptotically (4.24) reduces
to a third-order polynomial equation in the unknown a1: the three related roots ā1,0, ā1,−
and ā1,+ can be interpreted as perturbed solutions of the generic normal form due to the
small deviation from the exact symmetric condition. Indeed for ǫ2 = 0.005, (g = 0.72),
we obtain ā1,0 = 1.161× 10−4, ā1,− = −0.2164 and ā1,+ = 0.2166 to be compared with
the values ā1,0 = 0 and ā1,± = ±0.2165 computed using the generic normal form. The
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Figure 10. Streamlines of the steady asymmetric flow past two side-by-side circular cylinders
for g = 0.72 and Re = Re0: comparison between DNS (a) and centre-manifold approximation at
r̄ = 3. The same contour levels are employed in both figures.
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Figure 11. Computed eigenvalues σ = λ+ıω associated with the IP (black lines) and AS modes
(grey lines) for g = 0.7 and Re ∈ [55.5, 61]: growth-rate λ (a) and frequency ω (b). Comparison
between linear stability results (round dots) and normal-form calculations in (4.21) (continuous
lines).

unfolded solution ā1,+ can be used to approximate the steady asymmetric flow arising
through the pitchfork bifurcation. In figure 10 the centre-manifold reconstructed flow
field at r̄ = 3 is compared with the asymmetric steady solution of (4.1) computed by
means of Newton-iterations for Re = Re0 and g = 0.72. The same stream-function levels
are employed in figures 10(a) and 10(b). Both the small gap-flow deflection and the
recirculating flow structures behind the two cylinders are accurately captured and a very
good agreement is obtained in terms of the aerodynamic coefficients which are listed in
table 8.

4.3.1. Codimension-two normal form analysis

The obtained results can be used to investigate the phase-space portrait of the con-
sidered flow in the neighbourhood of its codimension-two bifurcation point. Based on
classical bifurcation theory (Kuznetsov 1998), the following third-order normal form is
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Figure 12. Bifurcation diagram resulting from the analysis of the normal-form (4.25) related
to the considered codimension-two pitchfork-Hopf bifurcation (white dot) in the flow past two
side-by-side cylinders. Black thick lines indicate the neutral branches associated with the AS
and IP eigenmodes.

derived from (4.21):










ḃ = b(λ1(ǫ1, ǫ2) + γ11b
2 + γ12r

2),

ṙ = r(λ2(ǫ1, ǫ2) + γ21b
2 + γ22r

2),

φ̇ = ω(ǫ1, ǫ2),

(4.25)

where b = |a1| and the polar-coordinate transformation a2(t) = r(t)eiφ(t) has been in-
troduced. In the derivation of the above equations, the generic form of the pitchfork
bifurcation is assumed, thus making possible to replace a1 by its modulus. The coeffi-
cients γij are simply given by γ11 = ĝ(3,0,0),0, γ12 = ĝ(1,1,1),0, γ21 = Re{ĝ(2,1,0),0} and
γ22 = Re{ĝ(0,2,1),0}. Their values do not depend on the definition of ǫ. On the contrary,
the remaining coefficients in (4.25) are assumed to depend linearly on both bifurcation
parameters:

λ1(ǫ1, ǫ2) = ĝ
(ǫ1)
(1,0,0),1ǫ1 + ĝ

(ǫ2)
(1,0,0),1ǫ2,

λ2(ǫ1, ǫ2) = Re{ĝ(ǫ1)(0,1,0),1}ǫ1 +Re{ĝ(ǫ2)(0,1,0),1}ǫ2,

ω(ǫ1, ǫ2) = Im{ĝ(0,1,0),0}+ Im{ĝ(ǫ1)(0,1,0),1}ǫ1 + Im{ĝ(ǫ2)(0,1,0),1}ǫ2,

(4.26)

where the notation ĝ
(ǫi)
m,p has been introduced to distinguish among normal-form coeffi-

cients which are referred to a different definition of ǫ. These coefficients provide indeed a
linear estimate to the growth-rate and frequency of the IP and AS modes when moving
away from criticality. A comparison of the growth-rate and frequency computed by the
full linearized system and those obtained by the normal form is illustrated in figure 11
for g = 0.7 and Re ∈ [55.5, 61], showing a good fit of the actual eigenvalues, see figure
11(a) and 11(b).
The bifurcation diagram associated with the low-dimensional system (4.25) is only

determined by the first two equations, since the last equation in (4.25) simply describes
a rotation at the constant angular velocity ω in the plane b = 0 of the inherent three-
dimensional phase-space. Since γ11γ22 > 0, the present situation corresponds to the
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‘simple’ case in the classification reported by Kuznetsov (1998). For such case, the planar
system for (b, r) can be conveniently rewritten as follows:















dξ1
dτ

= ξ1(λ1 − ξ1 − θξ2),

dξ2
dτ

= ξ2(λ2 − δξ1 − ξ2),

(4.27)

where the time has been rescaled with τ = 2t and the new phase variables ξ1(τ) = −γ11b2
and ξ2(τ) = −γ22r2 have been introduced along with the coefficients θ = γ12/γ22 and
δ = γ21/γ11 for convenience. Let us denote by ξ the reduced state vector ξ = (ξ1, ξ2)

T .
For all values of the parameters the system (4.27) admits the trivial equilibrium at the
origin, i.e. ξ0 = 0 which corresponds to the symmetric steady base flow. Two other trivial
equilibria are found that are ξ1 = (λ1, 0)

T and ξ2 = (0, λ2)
T which correspond to the

asymmetric steady flow and to the in-phase vortex shedding limit cycle, respectively. In
addition, a third non-trivial equilibrium ξ3 may also exist in a small neighbourhood of the
origin and for sufficiently small values of the parameters. This latter solution corresponds
to an asymmetric periodic solution ξ3 being defined as

ξ3 =

(

−λ1 − θλ2

θδ − 1
+O(ǫ21 + ǫ22),

δλ1 − λ2

θδ − 1
+O(ǫ21 + ǫ22)

)T

. (4.28)

It is worthwhile to note that the above expression is valid since the condition θδ− 1 6= 0
holds. Based on the computed values of the normal-form coefficients, the system (4.27)
falls in the subcase “I” of the classification reported by Kuznetsov (1998, Sec. 8.6.2) and
according to the related bifurcation diagram, the parameter plane in the neighbourhood
of the codimension-two bifurcation point can be partitioned into six regions which are
illustrated in figure 12. In the same figure the two thick lines represent the neutral curve
branches associated with the AS and the IP modes. For each region a different phase-
portrait is described:
(i) only ξ0 exists which is a stable node;
(ii) both ξ0 and ξ1 exist, ξ0 being a saddle and ξ1 a stable node;
(iii) both ξ0 and ξ2 exist, ξ0 being a saddle and ξ2 a stable node;
(iv) three equilibria exist: ξ0, ξ1 and ξ2, ξ0 being a source, ξ1 a saddle and ξ2 a stable

node;
(v) three equilibria exist: ξ0, ξ1 and ξ2, ξ0 being a source, ξ2 a saddle and ξ1 a stable

node;
(vi) four equilibria exist: ξ0, ξ1, ξ2 and ξ3, ξ0 being a source, ξ1 and ξ2 stable nodes

and ξ3 a saddle.
With reference to figure 12 a small discrepancy is observed in the position of region

(v) with respect to the results obtained from linear stability computations. However this
discrepancy should be interpreted based on the local character of the above analysis.
Notwithstanding its local validity, the above diagram still provides a rationale to bet-
ter understand the behaviour of the flow for a fixed gap spacing of g = 0.7, close to the
instability threshold. Indeed it is known that higher-codimension bifurcations play an im-
portant role as ‘organizing centres’ of the system dynamics in their neighbourhood in the
parameter space (Wiggins 2003). For g = 0.7, the linear stability analysis indicates that
the primary flow instability is driven by the AS mode for Re > 55.94 while the IP mode
becomes unstable for Re > 57.53; this is illustrated in figure 11(a) and in the diagram
of figure 12. For Re = 57 the DNS shows that the fluid system asymptotically evolves to
the steady asymmetric flow, as illustrated by the time traces of the drag coefficients of
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Figure 13. DNS of the flow past two side-by-side cylinders: time history of the drag
coefficients of the two cylinders. (a) g = 0.7, Re = 57. (b) g = 0.7, Re = 60. (c) g = 0.75,

Re = 60.

the two cylinders in figure 13(a). Therefore the supercritical pitchfork branch defines the
primary bifurcation on the symmetric equilibrium and further increasing the Reynolds
number secondary instabilities are expected to develop on top of the asymmetric steady
flow. However for Re = 60 the in-phase vortex shedding limit-cycle occurs, figure 13(b).
Such a behaviour is indeed consistent with the phase-portrait described for the considered
values of the parameters (region vi) for which, both the in-phase limit-cycle (ξ2) and the
asymmetric steady flow (ξ1) are stable nodes. The bifurcation scenario is confirmed by
means of additional DNS for different values of the parameters. In particular for g = 0.75
and Re = 60, when adding a small asymmetric perturbation to the base flow, which is
used as the initial condition of our simulations, the flow converges to the asymmetric
steady state whereas for the same value of g, the primary flow instability is driven by the
IP mode, figure 12. For such case the time traces of the drag coefficients are reported in
figure 13(c). In particular the small oscillations which are observed during the transient
can be interpreted as the system trajectory approaching the saddle point ξ3.

5. Conclusion

In this paper a systematic approach to compute the centre-manifold reduction of flows
undergoing complex bifurcations has been described and applied to the incompressible
Navier–Stokes equations. The method relies on a power-series expansion in the renor-
malised critical mode amplitudes and in the bifurcation parameter, leading to the solu-
tion of a sequence of linear systems. The reduction process results in a low-dimensional
model of the bifurcated system dynamics based on its normal-form description. The main
advantage of the proposed technique with respect to the classical multi-scale approach
of hydrodynamic stability is that it can be easily coded in a rather general form for
large-scale applications and up to an arbitrary order of truncation, without any need to
resort to symbolic computations. At the same time it allows for a general definition of
the centre subspace and of the bifurcation parameter. Useful guidelines for its numerical
implementation have been provided within the paper.
The proposed algorithm has been validated on the first Hopf bifurcation of the cylinder

wake by comparing the obtained results with those computed by other authors as well
as with DNS data. Then, the technique has been used to compute the normal-form
coefficients of the pitchfork-Hopf codimension-two bifurcation characterizing the flow
past two side-by-side cylinders where, besides the Reynolds number, the geometrical
parameter defined by the gap spacing between the two cylinder surfaces is involved.
For such case the phase-portrait derived from the analysis of the normal form provides
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a rationale to interpret the flow behaviour observed in the DNSs which can not be
completely explained based on the linear stability results only.

The convergence of the amplitude power-series with respect to the bifurcation param-
eter has also been investigated for the first considered example, i.e. the cylinder wake. In
this case it is shown that the estimated radius of convergence of the amplitude power-
series remains vanishingly small. Although such a result could motivate some criticism on
the practical need for high-order normal forms, it cannot be straightforwardly generalised
to all flow configurations. Moreover, since it provides the possibility of easily comput-
ing the bifurcation normal form at increasing orders, the proposed method provides a
useful tool to investigate the convergence properties of the centre-manifold reduction for
different flow configurations.

The observed behaviour for the cylinder-wake bifurcation clearly stimulates the ques-
tion of how to improve the robustness of the centre-manifold reduced-order system with
respect to small but finite departures of the bifurcation parameter from its critical value.
From a geometrical point of view, this corresponds to the problem of introducing a dif-
ferent parameterisation of the dynamical system motion on the centre manifold, with
some of the properties and information associated with the normal-form representation
being unavoidably lost. However such a theoretical investigation is beyond the scope of
the present paper.

Appendix A. Derivation of equations (3.27)–(3.28)

Let us consider the expression (3.17) up to a given order m̄ with 2 6 m̄ 6 r̄

B

m̄
∑

m=1

∑

|i|+k=m

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,p−k}ℓ q̂i,k. (A 1)

This sum can be split into three different contributions stemming from linear terms,
terms of order m = 2, . . . , m̄− 1 and terms of order m̄:

B

nc
∑

ℓ=1

{ĝ
m,p}ℓ q̂1ℓ,0

+B
m̄−1
∑

m=2

∑

|i|+k=m

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,p−k}ℓ q̂i,k

+B
∑

|i|+k=m̄

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,p−k}ℓ q̂i,k.
(A 2)

The last contribution in the above expression can be further simplified since |m − i +
1ℓ|+ |p−k| = 1 and two cases arise. If p−k = 1 then |m− i+1ℓ| = 0 which is possible if
and only if i = m+ 1ℓ since the elements of the multi-index must be positive. Otherwise
p = k and |m − i + 1ℓ| = 1. Based on this observation, the contribution from terms of
order m̄ in (A 2) can be rewritten as follows

B
∑

|i|+k=m̄

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,p−k}ℓ q̂i,k = B
∑

|i|=|m|

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,0}ℓ q̂i,p

+ (1− δ0,p)B

nc
∑

ℓ=1

(mℓ + 1){ĝ0,1}ℓ q̂m+1ℓ,p−1

(A 3)
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At a first glance the first term on the right-hand side of (A 3) seems to couple all the
terms with |i| = |m|. However it can be noticed that

|i| = |m| ⇒ i =

{

m or

m− 1q + 1r, q, r s.t. 1 6 q 6 nc, 1 6 r 6 nc, r 6= q, mq > 0,

(A 4)
and according to this

B
∑

|i|=|m|

nc
∑

ℓ=1

iℓ {ĝm−i+1ℓ,0}ℓ q̂i,p =

= B









nc
∑

ℓ=1

mℓ {ĝ1ℓ,0}ℓ q̂m,p +

nc
∑

q=1
mq>0

nc
∑

r=1
r 6=q

nc
∑

ℓ=1

(mℓ − δq,ℓ + δr,ℓ) {ĝ1q−1r+1ℓ,0}ℓ q̂m−1q+1r,p









= B









nc
∑

ℓ=1

mℓ {ĝ1ℓ,0}ℓ q̂m,p +

nc
∑

q=1
mq>0

nc
∑

r=1
r 6=q

nc
∑

ℓ=1

δr,ℓ(mℓ − δq,ℓ + δr,ℓ) {ĝ1q,0}ℓ q̂m−1q+1r,p









= B









nc
∑

ℓ=1

mℓ {ĝ1ℓ,0}ℓ q̂m,p +

nc
∑

q=1
mq>0

nc
∑

r=1
r 6=q

(mr + 1){ĝ1q,0}r q̂m−1q+1r,p









= B









nc
∑

ℓ=1

mℓ {ĝ1ℓ,0
}ℓ q̂m,p +

nc
∑

q=1
mq>0

nc
∑

r=1
r 6=q

(mr + 1) ıωq δq,r q̂m−1q+1r,p









=

(

nc
∑

ℓ=1

ımℓωℓ

)

Bq̂m,p = cmBq̂m,p,

(A 5)
which demonstrates the uncoupling among terms of order m̄ having the same index p.
Therefore the only coupling which arises is due to the second term in (A 3); this coupling
can be easily removed by computing the expansion terms at increasing order with respect
to the power of ǫ. By exploiting the above results in (A 2), this latter can be rewritten as

cmBq̂m,p +B

nc
∑

ℓ=1

{ĝm,p}ℓq̂1ℓ,0 +B

m̄−1
∑

m=2

∑

|i|+k=m

nc
∑

ℓ=1

iℓ{ĝm−i+1ℓ,p−k}ℓq̂i,k

+ (1− δ0,p)B

nc
∑

ℓ=1

(mℓ + 1){ĝ0,1}ℓq̂m+1ℓ,p−1,

(A 6)

where only the first two terms depend (linearly) on the unknowns q̂m,p and ĝm,p associ-
ated with the computation of the (m, p) term of the expansion. Finally by substituting
(A 6) in (3.9), equations (3.27) and (3.28) are thus derived.
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