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Abstract A method to design ballistic capture orbits in the real solar system model is presented, so extend-
ing previous works using the planar restricted three-body problem. In this generalization a number of issues
arise, which are treated in the present work. These involve reformulating the notion of stability in three-
dimensions, managing a multi-dimensional space of initial conditions, and implementing a restricted n-body
model with accurate planetary ephemerides. Initial conditions are categorized into four subsets according to
the orbits they generate in forward and backward time. These are labelled weakly stable, unstable, crash,
and acrobatic, and their manipulation allows us to derive orbits with prescribed behavior. A post-capture
stability index is formulated to extract the ideal orbits, which are those of practical interest. Study cases
analyze ballistic capture about Mercury, Europa, and the Earth. These simulations show the effectiveness
of the developed method in finding solutions matching mission requirements.

Keywords Ballistic Capture · Restricted Three-Body Problem · Real Solar System Model

1 Introduction

Ballistic capture orbits have been receiving increased attention throughout the past two decades due to their
flexibility in providing multiple insertion opportunities and their capability in reducing fuel requirements
(Circi and Teofilatto 2001; Yagasaki 2004; Topputo 2013). Compared to the classic hyperbolic approaches,
ballistic capture reduces the excess velocity, and generates orbits requiring less insertion costs. In principle,
insertion maneuvers can even be avoided if temporary capture orbits about the target body are accepted.
A strategy relying on ballistic capture may also exploit multiple close passages, so mitigating the risks
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associated to single-point failures, typical of hyperbolic approaches. The price to pay is a generally longer
time to approach the target. Ballistic capture enabled the rescue of Hiten (Belbruno and Miller 1993), was
used in SMART-1 (Schoenmaekers et al. 2001), and was the baseline solution in GRAIL (Chung et al. 2010).
It has also been proposed in BepiColombo (Jehn et al. 2004), Lunette (Elliot and Alkalai 2011), and ESMO
(Vetrisano et al. 2012) .

Ballistic capture arises in n-body models, with n ≥ 3, therefore a restricted three-body problem suffices
to reproduce such mechanism. As no analytic solutions exist in these models, direct numeric simulations
are employed. Based on a geometric, energetic definition of stability, a number of recent works have studied
the sets composed by the stable initial conditions. In Belbruno (2004), the planar circular restricted-three
body problem (CRTBP) was used, along with an algorithmic definition tracking the particle Kepler energy
and its first return on a radial segment emanating from the smaller primary. This definition was revisited
in Garćıa and Gómez (2007), and connections with the invariant manifolds of the CRTBP were sought (see
also Fantino et al. (2010) ). An efficient method to derive the stable sets was given in Topputo and Belbruno
(2009), and their connections with the stable manifolds of the CRTBP was proven in Belbruno et al. (2010,
2013) under certain conditions on mass ratio and energy. A method to derive ballistic capture orbits with
prescribed behavior was formulated in Hyeraci and Topputo (2010) within the framework of the planar
elliptic restricted three-body problem (ERTBP). In the same model, the effect of primaries’ true anomaly
was treated in Hyeraci and Topputo (2013); the effect of planetary eccentricity was instead assessed in
Circi and Teofilatto (2005). The appropriateness of the CRTBP to study the ballistic capture dynamics
was questioned in Makó and Szenkovits (2004). Stable and unstable orbits about Mercury were analyzed in
Makó et al. (2010) and Makó (2014) within the ERTBP. The topological properties of the stable sets were
studied in Ceccaroni et al. (2012) . Methods to apply the stable sets for lunar capture where studied in
Sousa Silva and Terra (2012a), and their boundaries were characterized in Sousa Silva and Terra (2012b).
The same task was done in Romagnoli and Circi (2009) and Circi (2012) within a four-body context.

Although some light was shed by the above-mentioned works, some issues still prevent using the ballistic
capture in a real, applied context. This involves, in primis, the model in which the ballistic capture orbits
are found. If, on the one hand, the restricted three- and four-body models are much more accurate than the
classic two-body problem, on the other hand, they still embed some forms of approximation, which cause
their orbits to deviate from those arising in the real solar system dynamics. Moreover, a planar analysis is
only adequate to infer qualitative information, but fails in providing practical solutions in the real model.

This paper revisits the methodology used to construct the stable sets in a way that attempts to fill the
gap between theory and practice. The aim is to bring the concept of ballistic capture to a level of maturity
to enable a systematic derivation of practical orbits in applied contexts. This is done in a high-fidelity
framework where the three-dimensional, restricted n-body problem with accurate planetary ephemeris is
modeled. The main contributions of the paper are: 1) The formulation of a spatial stability condition in a
target-centered inertial frame that tracks the “true” number of revolutions, which prevents discrepancies in
the number of revolutions between the rotating and the inertial frame (Hyeraci and Topputo 2010), does not
require integrating two dynamics (centered at both primaries) to detect instability (Topputo and Belbruno
2009), and avoids changing the reference frame to compute the Kepler energy (Garćıa and Gómez 2007;
Makó et al. 2010); 2) The design of an algorithm able to extract solutions with a prescribed behavior
(capture, escape, impact) from the characterized sets of initial conditions; 3) The introduction of a post-
capture stability index to filter ideal orbits from the capture set (Hyeraci and Topputo 2013).

The paper is organized as follows. Section 2 provides background notions, including reference frames
and equations of motion. Section 3 introduces the concept of spatial stability along with the methodology
developed. Study cases are treated in Section 4, which involve ballistic capture orbits about Mercury, Europa,
and the Earth. Final remarks are given in Section 5.

2 Dynamical Model

For the analysis below it is convenient to define the ‘target’ and the ‘primary’. The target, of mass mt, is
the body around which the ballistic capture is studied. The primary, of mass mp, is the main body around
which the target revolves. The mass ratio of the system is µ = mt/(mt +mp). The list of targets and their
primaries considered in this work can be found in Table 2.
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Fig. 1 Geometry of reference frames. (left) Inertial frames; (right) Rotating frame.

2.1 Reference Frames

In this work, the precise states of the Sun, planets, and other bodies in the Solar System are extracted
from the JPL planetary ephemerides DE430 (Folkner et al. 2014). This model is defined in the Earth mean
equator and equinox of J2000 (EME2000 from now on) reference frame (Archinal 2011) 1. The EME2000
can be centered either at the Earth or at any target body; its axes are labelled (xe, ye, ze), see Fig. 1(a).

In order to control the post-capture orbital parameters, a body mean equator at epoch (BME@Epoch)
frame is defined. This reference frame is centered at the target. It is labelled (xb, yb, zb). With reference to
Fig. 1(a), the zb-axis is aligned with the target spin axis, the xb-axis points to the ascending node of the
Earth mean equator, and the yb-axis completes the dextral orthonormal triad. The target spin axis direction
is given in the EME2000 through the right ascension α and declination δ. Accurate values of α(t), δ(t) as
function of the epoch t have been obtained through the model in Archinal (2011). The transformation from
the BME@Epoch to EME2000 is





xe
ye
ze



 =





− sinα(t) − cosα(t) sin δ(t) cosα(t) cos δ(t)
cosα(t) − sinα(t) sin δ(t) cos δ(t) sinα(t)

0 cos δ(t) sin δ(t)









xb
yb
zb



 = Qb→e(t)





xb
yb
zb



 . (1)

The trajectories can also be shown in a barycentric pulsating rotating (BPR) frame, where both the
primary and the target are at rest on the x-axis. With reference to Fig. 1(b), the x-axis is directed from the
primary to the target, the z-axis is aligned with their orbital angular momentum, and the y-axis completes
the triad. The origin of the BPR frame is at the primary–target barycenter. The primary and target are
located at (−µ, 0, 0) and (1−µ,0, 0), respectively, and their mutual distance is always set to unity, regardless
of their motion. The transformation from EME2000 to BPR involves a change of origin, a rotation, and a
scaling. Details can be found in Gómez et al. (1993).

2.2 Equations of Motion

The ephemerides of the target, the primary, and the other perturbing bodies are provided by the DE430,
jup310, sat360, ura111, nep081, and plu043 packages, which are publicly available 2. More precisely, the
positions and velocities vectors are extracted via the toolkit SPICE 3. Only the main moons (i.e., the Moon,
Jupiter’s Galilean moons, Saturn’s Titan, Uranus’s Titania, Neptune’s Triton, and Pluto’s Charon) are
considered.

1 The ephemerides are defined in the International Celestial Reference Frame (ICRF), which has an infinitesimal discrep-
ancy with respect to the EME2000 (Archinal 2011).

2 Data available at http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp,

~/satellites/jup310.bsp, ~/sat360.bsp, ~/ura111.bsp, ~/nep081.bsp, and ~/plu043.bsp [retrieved 5 May 2014].
3 Data available at http://naif.jpl.nasa.gov/naif/toolkit.html [retrieved 5 May 2014].

http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp
~/satellites/jup310.bsp
~/sat360.bsp
~/ura111.bsp
~/nep081.bsp
~/plu043.bsp
http://naif.jpl.nasa.gov/naif/toolkit.html
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Table 1 Normalization units.

Symbol Remark Unit Comment

MU Gravity parameter unit km3/s2 Target’s gravity parameter
LU Length unit km Target’s mean radius
TU Time unit s

√ (

LU3/MU
)

VU Velocity unit km/s LU/TU

Table 2 Physical parameters of target bodies in the solar system. (†) NAIF: Navigation and Ancillary Information Facility
(NASA/JPL). The offset between Mars barycenter (ID 4) and Mars mass center (ID 499) is extremely small and is neglected.

See http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430-431.cmt [retrieved 5 May 2014]. (‡) SOI:

sphere-of-influence, whose radius is Rs = ρ (mt/mp)
2/5, where ρ is the mean distance between the target and the primary.

(∗) The Hill radius is a different definition of SOI; its magnitude is in concordance with the L1 and L2 distances in the
CRTBP model (Szebehely 1967; Russell 2012).

Body ID(†) Gravity par. Radius Primary Semi-major Eccentr. Period Mass ratio SOI(‡) Hill(∗)

NAIF µt, km
3/s2 R, km axis, km days µ Rs,×R ×R

Mercury 199 2.203E+04 2,439.7 Sun 5.791E+07 0.2056 88.0 1.660E-07 45.92 90.58
Venus 299 3.249E+05 6,051.8 Sun 1.082E+08 0.0068 224.7 2.448E-06 101.80 166.91
Earth 399 3.986E+05 6,371.0 Sun 1.496E+08 0.0167 365.3 3.003E-06 145.03 235.18
Mars 4 4.283E+04 3,389.5 Sun 2.279E+08 0.0934 687.0 3.227E-07 170.00 318.21
Jupiter 599 1.267E+08 69,911 Sun 7.784E+08 0.0484 4,333 9.537E-04 674.20 759.53
Saturn 699 3.794E+07 58,232 Sun 1.427E+09 0.0542 10,759 2.857E-04 908.34 1,117
Uranus 799 5.795E+06 25,362 Sun 2.871E+09 0.0472 30,685 4.366E-05 2,022 2,764
Neptune 899 6.837E+06 24,622 Sun 4.498E+09 0.0086 60,189 5.151E-05 3,437 4,711
Pluto 999 8.696E+02 1,195.0 Sun 5.906E+09 0.2488 90,465 6.553E-09 2,633 6,666
Moon 301 4.903E+03 1,737.4 Earth 3.844E+05 0.0549 27.32 1.215E-02 38.03 35.41
Io 501 5.960E+03 1,821.5 Jupiter 4.218E+05 0.0040 1.77 4.704E-05 4.28 5.79
Europa 502 3.203E+03 1,560.8 Jupiter 6.711E+05 0.0101 3.55 2.528E-05 6.22 8.75
Ganymede503 9.888E+03 2,631.2 Jupiter 1.070E+06 0.0015 7.15 7.804E-05 9.25 12.05
Callisto 504 7.179E+03 2,410.3 Jupiter 1.883E+06 0.0070 16.69 5.667E-05 15.63 20.81
Titan 606 8.978E+03 2,574.7 Saturn 1.222E+06 0.0292 15.94 2.366E-04 16.82 20.35
Titania 703 2.269E+02 788.9 Uranus 4.363E+05 0.0011 8.71 3.917E-05 9.54 12.35
Triton 801 1.428E+03 1,352.6 Neptune 3.548E+05 0.0000 5.88 2.088E-04 8.85 10.79
Charon 901 1.058E+02 605.0 Pluto 1.959E+04 0.0002 6.39 1.085E-01 12.48 9.96

The equations of motion for a particle are those of the restricted n-body problem

r̈+
µt

r3
r = −

∑

i∈P

µi

(

ri

r3i
+

r− ri

‖r− ri‖3
)

, (2)

where P is a set containing the perturbing bodies (all bodies except for the target), r and ri are the position
vectors of the spacecraft and perturbing bodies, respectively, r and ri are their magnitudes, and µt and µi

are the gravity parameters of the target and perturbed bodies, respectively. Equation (2) is written in the
EME2000 frame centered at the target. This is done to avoid precision loss (Russell 2012). Although Eq.
(2) recalls a perturbed two-body problem, it will be shown that the right-hand side plays a key role in the
ballistic capture dynamics.

Numerical Integration. The dynamics (2) are integrated with a 7th/8th order Runge–Kutta–Felhberg scheme,
with automatic step-size control and integration tolerance set to 10−12. To avoid ill-conditioning, Eq. (2)
has been normalized by using the units in Table 1 and the physical parameters in Table 2, where a list of
candidate target bodies is reported.

http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430-431.cmt
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3 Methodology

The adimensional Kepler energy of the spacecraft with respect to the target is given by

Ht =
v2

2
− 1

r
, (3)

where v is the speed. Computing (3) does not require changing the reference frame (as in Garćıa and Gómez
(2007); Topputo and Belbruno (2009); Belbruno et al. (2010, 2013); Hyeraci and Topputo (2010); Makó et al.
(2010); Sousa Silva and Terra (2012a,b)) since the equations of motion (2) are already integrated in a target-
centered frame. The Kepler energy is far from being constant in the strong perturbed environment in which
the motion is studied.

3.1 Definition of the Initial Conditions

In three-dimensions, an initial condition is specified through six scalars. In order to control the geometry
of the post-capture orbits, the spacecraft is initially placed at the periapsis of an osculating ellipse around
the target (Garćıa and Gómez 2007; Topputo and Belbruno 2009; Hyeraci and Topputo 2010), so reducing
the choice to the periapsis radius r0, the eccentricity e0, the inclination i0, the right ascension of the
ascending node (RAAN) Ω0, and the argument of periapsis ω0; the semi-major axis of the osculating ellipse
is a0 = r0/(1− e0).

In principle, the initial conditions are found by sampling the five-dimensional space in which the osculat-
ing orbital parameters are defined. In practice, the orbital plane of the post-capture orbit can be defined by
missions constraints, and therefore i0 and Ω0 are given. Moreover, it is convenient to specialize the analysis
to a fixed e0, with e0 ∈ [0.9, 1) as suggested by numerical experiments (Hyeraci and Topputo 2010). Thus,
only r0 and ω0 are sampled to account for different periapsis radii and orbital orientations.

The osculating orbital elements are defined in the BME@t0 frame, where t0 is the initial epoch. They are
converted in position, velocity vectors through the standard transformation (Battin 1987, p. 125), and then
to the EME2000 through (1). Let x0 = (r0,v0) be the initial condition in the EME2000. Equations (2) are
integrated to yield x(t) = (r(t),v(t)), t ∈ [t0, t0 ± T ], where T is a maximum duration, and the plus/minus
sign accounts for forward/backward integration.

3.2 Definition of Spatial Stability

In the planar case, the particle stability can be inferred by studying its intersections with a radial line
emanating from the target body (Belbruno 2004; Garćıa and Gómez 2007; Topputo and Belbruno 2009).
In a spatial framework, a plane must be used (Belbruno and Miller 1993; Makó et al. 2010). In the present
analysis, the intersection plane is defined by the position vectors r = (x, y, z) that satisfy

r · (h0 × r0) = 0, (4)

where h0 = r0 × v0. In practice, the intersection plane is the plane spanned by the initial position vector
and angular momentum.

Remark 1 The particle performs a complete revolution around the target at time t1 if the following conditions

are all simultaneously satisfied,

r
(k)(t1) · (h0 × r0) = 0, r

(k)(t1) · r0 > 0, (v(k)(t1) · v0) (v
(k−1) · v0) > 0, (5)

where the superscript (k) counts the number of intersections between the plane and the orbit (r(0) = r0, v
(0) = v0).

The first of (5) states that the particle has returned to the intersection plane at t1; the second restricts
the analysis to the semi-plane of interest, to avoid counting semi-revolutions (see Figure 2(a)); the third
kinematic condition is used to prune out multiple intersections associated to incomplete revolutions (see

Figure 2(b) where the orbit from v0 to v(3) is a complete revolution, while the portion from v0 to v(2) is
not a revolution, although the first two conditions in (5) are satisfied in both v(1) and v(2)).
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Remark 2 The particle escapes from the target at time te if the following conditions are simultaneously satisfied

Ht(te) > 0, r(te) > Rs, (6)

where Ht is the Kepler energy (as defined in (3) ) and Rs is the target sphere of influence (see Table 2 ).

Escape occurs when the particle is physically located outside of the target sphere of influence and, at the
same time, it possesses positive Kepler energy with respect to the target. This is a conservative condition,
which avoids pruning out some weakly stable orbits, deemed of interest, that verify only one of the two
inequalities (6) .

Remark 3 The particle impacts with the target at time ti if

r(ti) < R (7)

where R is the target mean equatorial radius (see Table 2 ).

Starting from the periapsis conditions, orbits are integrated forward and their initial conditions are
collected into four different sets (see Figure 2(c)). An orbit is said to be 1) weakly stable (subset W1) if the
infinitesimal mass performs a complete revolution about the target without escaping from or impacting with
it; 2) unstable (subset X1) if the particle escapes from the target; 3) crash (subset K1) if the particle impacts
with the target; 4) acrobatic (subset D1) if none of the three previous conditions occurs in the integration
time span.

A number of observations arise from the definitions above. 1) The concept of weak stability relies on a ge-
ometrical condition only, not requiring checking the energy upon revolution completion (Garćıa and Gómez
2007; Topputo and Belbruno 2009; Belbruno et al. 2010, 2013). 2) Instability occurs when conditions (6)
hold; this avoids checking for primary interchange escape (Garćıa and Gómez 2007; Topputo and Belbruno
2009; Sousa Silva and Terra 2012a,b). 3) Beside colliding with the target, the particle may also collide with
one of its natural moons (when the target is the Earth, Jupiter, Saturn, Uranus, Neptune); these initial
conditions are ignored, unless otherwise specified. 4) The maximum time duration for the integration is set
to T = 8π(Rs)

3/2, which corresponds to four periods of a circular orbit at the SOI; numerical experiments
indicated that this interval is sufficiently long to properly categorize the orbits. A group of sample orbits
about Mercury (perturbed by the Sun, Jupiter, etc.) is presented in Figure 3.

The definitions above can be applied in backward time as well. In this case, the sets W−1, X−1, K−1,
and D−1 are constructed. Multi-revolution sets can also be defined. Let x1 = (r1,v1) (with r1 = r(k)(t1) and
v1 = v(k)(t1) satisfying (5)) be the terminal point of a one-stable orbit; i.e., an orbit whose initial condition
falls in W1. The state x1 can then be allocated into one of the four sets W2, X2, K2, and D2, according to the
orbit generated by its forward integration. In general, the set Wn contains orbits that perform n revolutions
about the target without escaping or impacting from it, whereas the sets Xn, Kn, Dn contain orbits that
perform n−1 revolutions around the target and then escape, impact, do not return to the semi-plane during
the n-th revolution, respectively. If I is the set of initial conditions, the following relations hold

I = W1 ∪ X1 ∪ K1 ∪ D1 = W−1 ∪ X−1 ∪ K−1 ∪ D−1 and Wn−1 = Wn ∪ Xn ∪ Kn ∪ Dn. (8)
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Fig. 3 Sample orbits around Mercury in the EME2000 frame. From left to right the orbits are viewed from positive z-axis,
negative y-axis, positive x-axis, and azimuth = 150 deg and elevation = 60 deg. The gray spot is Mercury (not to scale).

3.3 Construction of Ballistic Capture Orbits

Let us now derive practical ballistic capture orbits. Once the sets Wn (orbits that perform n revolutions
about the target body in forward time) and X−1 (orbits that escape the target body in backward time) are
computed, the capture set, Cn−1, can be derived through

Cn−1 = X−1 ∩Wn. (9)

The initial conditions in Cn−1 generate orbits that: 1) escape the target when integrated backward, or
equivalently approach the target in forward time coming from outside of its sphere of influence, and 2)
perform n revolutions around it without impacting or escaping. This is desirable in preliminary mission
analysis, as orbits with this behavior may be good candidates to design a ballistic capture upon arrival.
Unlike previous studies in which the capture set is constructed in a three-body context (Hyeraci and Topputo
2010, 2013), in this work Cn−1 is derived in a full-ephemeris, three-dimensional, n-body model, and therefore
there is no need to refine the orbits it generates. However, to assure the continuity of the solutions, it is of
paramount importance that both X−1 and Wn in (9) are computed at same initial time t0 and osculating
orbital parameters e0, i0, Ω0.

Escape and Impact Sets. The following two sets can also be achieved as by-product of the computation. The
escape set, E1

−n = W−n ∩ X1, and the impact set, In
−1 = X−1 ∩ Kn. By definition, the escape set contains

orbits that perform n revolutions about the primary before escaping from it. Such ballistic escape has been
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Fig. 4 Stability index for solutions in W1 and C6
−1 about Mercury; e0 = 0.95 (other parameters are given in Section 4.1).

The trend of Sk is superimposed for comparison.

observed in resonant orbits (Belbruno et al. 2008; Topputo et al. 2008). The impact set contains orbits that
approach the target from outside of its sphere of influence, perform n− 1 revolutions around it, and impact
with it during the n-th loop; this may be useful in landing missions (Parker 2014). Although they can be
useful in many applications, exploiting these two sets is out of the scopes of the present paper.

3.4 Ideal Orbits and Stability Index

In principle, all the orbits in Cn−1 have to be considered when searching for ballistic capture solutions. In
practice, most of them are not useful as they give rise to spurious solutions, corresponding to highly unstable
trajectories. To discern the useful solutions in Cn−1, the concept of ideal orbit is introduced. Ideal orbits are
regular, quasi-stable post-capture orbits. For these solutions the particle approaches the target and describes
n closed orbits around it with similar shape and orientation. This is desirable in applicative scenarios as it
permits to better plan the post-capture phase (Hyeraci and Topputo 2013). The focus is then on filtering
the set Cn−1 to extract ideal orbits. In Hyeraci and Topputo (2010), two filters were introduced to identify
the incoming branch. In this work, the focus is on the quality of the capture solutions, and therefore the
analysis is performed on the post-capture orbit (solid line in Figure 1(b)).

Numerical experiments show that the stability index,

S =
tn − t0

n
, (10)

embeds sufficient information on the goodness of the post-capture orbits. In (10), t0 is the initial integration
time and tn is the time at which the n-th revolution is completed. In practice, S is simply the ratio between
the time interval (to complete n revolutions) and the number of revolutions; it is measured in TU (see

Table 1 ). For Keplerian orbits, Sk = 2π[r0/(1 − e0)]
3/2, where r0 and e0 are the periapsis radius and

the eccentricity, respectively. Thus, for any pair (r0, e0) in Cn−1, the distance from S to Sk measures how
much a post-capture orbit is far from being Keplerian. Moreover, for given eccentricity, lower values of S
correspond to orbits with lower periapsis altitudes, which are likely the one sought in practice. It is worth
mentioning that S incorporates the physics of the target-centered motion (target’s gravitational parameter
and osculating semimajor axis; see the definition of TU in Table 1 ), and therefore the stability index cannot
be compared across different systems. In the remainder, the focus is on ballistic capture solutions with low
value of S and close to Sk.

In Figure 4, the stability index is presented versus the periapsis radius for solutions about Mercury in W1

and C6
−1. In Figure 5, a sample ballistic capture solution (indicated with the arrow in Figure 4(b)) with low

value of S and close to Sk is presented. It can be seen that the post-capture revolutions have similar shape
and orientation (see Figure 5(a)). A summary of the developed algorithm to construct the sets, manipulate
them, and extract the practical solutions is sketched in Figure 6.
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1) Initialization

Select initial epoch t0 (JD) and ID of target (Table 2)
Set forward stability number (n) and backward stability number (−1)
Get transformation matrix from BME@t0 to EME2000 (Qb→e(t0), Eq. (1))
Set initial eccentricity (e0 ∈ [0.9, 1)), inclination (i0 ∈ [0, π]), and RAAN (Ω0 ∈ [0, 2π])
Discretize periapsis distance, r0 ∈ [R+ ǫ,Rs] (Table 2)
Discretize argument of periapsis, ω0 ∈ [0, 2π]
Set maximum integration time T
Normalize variables (Table 1)
Select IDs of perturbing bodies (Table 2)

2) Computation

Assign j = current stability number
IF j = 1 OR j = −1

a) Extract current value of r0 and ω0

b) Transform (t0, r0, e0, i0, Ω0, ω0, f0 = 0) to Cartesian state in BME@t0
c) Transform the initial state from BME@t0 to (r0,v0) in EME2000 with Qb→e(t0), Eq. (1)
d) Forward/backward integrate (t0, r0, v0) until (5)/(6)/(7) is verified or t0 ± T is reached
e) Classify the initial conditions and assign it to Wj , Xj , Kj , Dj

ELSEIF 1 < j ≤ n
a) Forward integrate the terminal state in Wj−1 until (5) is verified or tj ± T is reached
b) Classify the initial conditions and assign it to Wj , Xj , Kj , Dj

END
3) Manipulation

Extract Cn
−1 by intersecting Wn and X−1 as per (9)

Eventually construct the escape set E1
−n and the impact set In

−1

4) Analysis

Calculate S for the points in Cn
−1 (Eq. (10))

Draw the Sk trend and find points nearby with low S

Reconstruct the ballistic capture solution within [t−1, tn] by backward and forward integration
Compute Kepler energy (Ht in (3)) and altitude profiles
Check approaching direction and overall orbit geometry (osculating plane, close passages, etc.)
Select desired ballistic capture trajectories according to mission requirements

Fig. 6 Algorithm to derive practical ballistic capture solutions.
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Fig. 7 Stable and capture sets at Mercury. The number of points in W1, W−1, W6, and C6
−1 is 25,534, 19,686, 2,801, and

986, respectively.

4 Study Cases

The methodology developed has been applied to compute ballistic capture solutions at Mercury, Europa,
and the Earth. These three targets have been chosen as they are of interest in BepiColombo (Jehn et al.
2004), for a tour of the Jovian moons (Campagnola et al. 2014), and in the context of asteroid retrieval
missions (Urrutxua et al. 2014).

4.1 Ballistic Capture at Mercury

The settings for this case are: 1) t0 = 2458891.70 JD (12 February 2020), when Mercury is at the pe-
riapsis of its orbit around the Sun (this condition maximizes the chances of finding ideal orbits, see
Hyeraci and Topputo (2013)); 2) e0 = 0.95, which is in agreement with the arguments in Hyeraci and Topputo
(2010); Circi (2012); 3) i0 = 45.04 deg, Ω0 = 202.50, which fix the plane of the post-capture orbit; 4)
r0 ∈ [R + ǫ, Rs] and ω0 ∈ [0,2π] are uniformly discretized with 548 and 360 points, respectively, so sam-
pling the search space with 197,280 points (ǫ = 1 km); n = 6, to be consistent with the analysis in
Hyeraci and Topputo (2010). To limit the computational burden while still preserving the high-fidelity of
the solutions, the gravitational attractions of the Sun, Venus, Jupiter, and Saturn are considered, besides
that of Mercury.
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Table 3 Initial conditions in EME2000 for sample solutions with lowest stability index

Target
Position (km) Velocity (km/s) t−1 − t0 tn − t0

x0 y0 z0 vx0 vy0 vz0 days days

Mercury 3,370.969 1,654.084 803.846 -1.218 2.958 -0.975 -49.08 67.83
Europa 1,270.563 -8,042.341 1,822.657 0.700 0.215 0.460 -0.09 7.32
Earth -149,771.922 173,040.222 185,160.818 -1.398 -0.608 -0.563 -38.26 59.89
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Fig. 8 Kepler energy, distance, and inclination profiles of the sample solution in Figure 5 (backward integration dashed,
forward integration solid).
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S=1,952 S=2,287 S=2,547 S=2,881 S=3,266 S=3,488

Fig. 9 Ballistic capture orbits about Mercury and their stability index in TU.

Figure 7 shows some stable sets (W−1, W1, W6) as well as the capture set C6
−1 at Mercury. It can

be noticed that, qualitatively, the structure of the stable sets in the real model recalls that typical of
three-/four-body models (Garćıa and Gómez 2007; Topputo and Belbruno 2009; Belbruno et al. 2010, 2013;
Hyeraci and Topputo 2010, 2013; Makó et al. 2010; Sousa Silva and Terra 2012a,b; Romagnoli and Circi
2009). The set C6

−1 is made up of one third of the points in W6; most of the difference in these two sets
occurs in proximity of Mercury, where orbits tend to be stable, regardless of the direction of integration. The
orbit in C6

−1 with the lowest stability index is reported in Figure 5. To allow independent reproduction of the
results, the initial condition of this orbit (and for the samples in the other two cases as well) is reported in
Table 3. The Kepler energy, distance, and inclination profiles are shown in Figure 8. It can be seen that the
algorithm was able to find a solution with regular altitude and energy profiles (Figures 8(a) and 8(b)). The
inclination (Figure 8(c)) has instead large variations due to the out-of-plane perturbation from the Sun (see
Figure 5(b)). This is acceptable as the present algorithm controls the shape of the post-capture orbit, not its
inclination. A number of other solutions are shown in Figure 9 in the BPR frame along with their stability
index. It can be seen that the capture orbits are more irregular for increasing S, which demonstrates the
validity of this index.
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Fig. 10 Stable and capture sets at Mercury. The number of points in W1, W−1, W6, and C6
−1 is 5,601, 5,410, 190, and

173, respectively.

4.2 Ballistic Capture at Europa

The ballistic capture dynamics at a moon is characterized by the presence of the Sun, a planet and the
moon itself (Jupiter and Europa in this case). This is different from planetary capture (e.g., capture at
Mercury), where only the Sun and a planet play a major role. Capture trajectories at moons are derived by
coupling two restricted three-body problems (with Sun-planet and planet-moon as primaries, see Koon et al.
(2001, 2002); Mingotti et al. (2009, 2012)), with consequent increase in complexity. In this work, since the
developed algorithm relies on a simple definition of stability, which can be applied about any target body,
ballistic capture orbits at Europa are derived in a straightforward way, regardless of their dynamics.

The problem parameters are: t0 = 2458852.19 JD (3 January 2020, when the Sun and Jupiter are in
opposition with respect to Europa), e0 = 0.95, i0 = 45.00 deg, Ω0 = 233.82 deg, n = 6. The search space
r0 × ω0 is made up of 408× 360 = 146,880 points. The set P in (2) is made up of the Sun, Jupiter, Saturn,
Io, Ganymede, and Callisto. Figure 10 presents the sets W1, W−1, and C6

−1.
As in the previous case, a sample solution in C6

−1 with the lowest stability index is presented (Figure
11, initial condition in Table 3). The orbit is shown in the BPR frame along with the zero-velocity curves
(at t0). Some features of this solution are shown in Figure 12. Comparing Figure 12 with Figure 8, it can
be seen that the escape is here triggered by the distance condition, not by the sign of Keplerian energy as
in Figure 8(a) ; see (6) . Also, the backward integration from the first close approach to the escape point is
very short (less than 0.1 days, see Table 3). Other ballistic capture orbits with increasing S are plotted in
Figure 13.
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Fig. 14 Stable and capture sets at the Earth. The number of points in W1, W−1, W6, and C6
−1 is 55,522, 56,770, 15,363,

and 4,498, respectively.

4.3 Ballistic Capture at the Earth

The problem parameters for this case are: t0 = 2458888.82 JD (9 February 2020, when the Sun and the
Earth are in opposition with respect to the Moon), e0 = 0.95, i0 = 45.89 deg, Ω0 = 272.54 deg, n = 6. The
search space is made up of 919 point for r0 and 720 points for ω0 (661,680 initial condition). A finer grid is
used in this case to resolve the presence of the Moon (orbits colliding with the Moon are discarded). The
gravitational vector field is made up of the Earth, the Sun, the Moon, Jupiter, and Saturn. The stable set
W1 and the capture set C6

−1 are shown in Figure 14. The apparent anomalies in the two sets (upper branch)
are due to the presence of the Moon.

The sample trajectory with lowest S is shown in Figure 15 in both the BME@t0 and BPR frames (initial
conditions in Table 3). It can be seen that a surprisingly regular, ideal post-capture orbit is found thanks to
a lunar gravity assist (altitude of 415 km). Figure 16 shows the Kepler energy, the inclination, and distances
(to the Earth and the Moon). The influence of the lunar gravity assist can be appreciated in the energy
profile (Figure 16(a)). Other solutions with increasing stability indices are shown in Figure 17. These show
the major role played by the Moon in stabilizing a particle about the Earth. This mechanism can be used
in asteroid retrieval missions.



16 Z.-F. Luo et al.

−200 −100 0 100

−200

0

 

x
b
 [LU]

 

y b [L
U

]

t>t
0

t<t
0

t
n

t
−1

SOI

To Sun
at t

0

Moon

(a) (x, y) plane, BME@t0 frame

−200 −100 0 100
−200

0

 

x
b
 [LU]

 

z b [L
U

]

Moon’s orbital
plane

Sun’s orbital
plane

(b) (x, z) plane, BME@t0 frame

0.995 1 1.005 1.01

−10

−5

0

x 10
−3

 

L
2

x [adim]

L
1

 

y 
[a

di
m

]

t>t
0

t<t
0

1st periapsis

Lunar swingby

(c) (x, y) plane, BPR frame

0.995 1 1.005 1.01

−5

0

5

x 10
−3

 

x [adim]

 

z 
[a

di
m

]

(d) (x, z) plane, BPR frame

Fig. 15 Ballistic capture orbit at the Earth with lowest stability index (S =1,069 TU).
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5 Conclusions

A systematic method to generate ballistic capture orbits in a three-dimensional, n-body, full ephemeris
model is presented in this work. This model is known as the real model due to its adherence to the real
solar system dynamics. A novel definition of spatial stability is introduced, which is based on geometric,
kinematic arguments. This definition, together with the escape and impact conditions, allows us to cate-
gorize the orbits into four sets. Ballistic capture orbits with prescribed behavior are extracted from these
sets by simple manipulation. A stability index is formulated and used to detect the ideal orbits. These are
regular, quasi-stable post-capture orbits, and therefore they match application requirements. The usefulness
of this index is demonstrated through examples. Capture dynamics at Mercury, Europa, and the Earth have
been considered as study cases. Numerical results indicate that ideal orbits can be acquired at zeros cost,
and the presence of a moon can be profitably exploited to further improve the quality of the post-capture
trajectories. This demonstrates the inherent potential possessed by these orbits, for which a future utilization
is desirable.
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