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Abstract

Three methods for the computation of the probability of collision between
two space objects are presented. These methods are based on the high order
Taylor expansion of the time of closest approach (TCA) and distance of clos-
est approach (DCA) of the two orbiting objects with respect to their initial
conditions. The identification of close approaches is first addressed using the
nominal objects states. When a close approach is identified, the dependence
of the TCA and DCA on the uncertainties in the initial states is efficiently
computed with differential algebra (DA) techniques. In the first method the
collision probability is estimated via fast DA-based Monte Carlo simulation,
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in which, for each pair of virtual objects, the DCA is obtained via the fast
evaluation of its Taylor expansion. The second and the third methods are
the DA version of Line Sampling and Subset Simulation algorithms, respec-
tively. These are introduced to further improve the efficiency and accuracy of
Monte Carlo collision probability computation, in particular for cases of very
low collision probabilities. The performances of the methods are assessed
on orbital conjunctions occurring in different orbital regimes and dynamical
models. The probabilities obtained and the associated computational times
are compared against standard (i.e. not DA-based) version of the algorithms
and analytical methods. The dependence of the collision probability on the
initial orbital state covariance is investigated as well.

Keywords: Space Debris; Orbital conjunction; Collision probability;
Differential Algebra

1. Introduction

The risk of in-orbit collisions between operative satellites and space debris
is a crucial issue in satellite operation. When a close approach is identified,
it is necessary to define an indicator that can tell how risky the predicted
conjunction is. It is common practice for space agencies and satellite opera-
tors to consider, together with conjunction geometry and miss-distance, the
collision probability for this purpose (Klinkrad et al., 2005; Righetti et al.,
2011).

The collision probability is computed by means of a multi-variate integral.
*** The uncertainties in position and velocity coming from orbit determina-
tion can be translated into a probability density function (p.d.f.). *** The
probability density function is then integrated over the volume swept out by
the combined hard-body area of the satellite and colliding object, normal to
the velocity vector, to retrieve the collision probability.

Different methods exist for the computation of this multi-dimensional in-
tegral. Most of these approaches (Akella and Alfriend, 2000; Bèrend, 1999;
Patera, 2001; Klinkrad, 2006) have the following assumptions in common:

• Position uncertainties of the two objects are not correlated;

• Objects move along straight lines at constant velocity during the con-
junction;
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• The uncertainty in the velocities is neglected;

• Position uncertainty during the whole encounter is constant and equal
to the value *** during the conjunction; ***

• The uncertainties in the positions of the two objects are represented by
three-dimensional Gaussian distributions.

These assumptions produce accurate results when the relative motion be-
tween the satellite and the object is *** rectilinear and the conjunction oc-
curs close to the initial epoch so that the p.d.f. of the relative position of the
two objects remains Gaussian. *** The probability density function in the
proximity of the close approach, under the assumption that position error is
Gaussian, is expressed as

p (∆r) =
1

√

(2π)3 detC
e−

1

2
∆r

T
C

−1∆r, (1)

where ∆r is the objects relative position vector. Integrating over the volume
V swept out by the *** hard-body sphere with volume Vc ***, that is the
combined volume of the colliding objects, yields the collision probability

Pc =
1

√

(2π)3 detC

∫∫∫

V

e−
1

2
∆rTC

−1∆r dV. (2)

*** Because of the assumption of rectilinear motion of both conjuncting
objects ***, the volume V is a cylinder extending along the relative velocity
direction. By integrating the p.d.f. along the cylinder axis from -∞ to +∞,
the marginal two-dimensional p.d.f is obtained and the volume integral is
reduced to a two-dimensional integral on the collision cross sectional area
(Chan, 2008). Supposing that the combined covariance ***C *** is centered
on the primary object and that the combined hard-body is positioned on the
*** secondary object ***, the two-dimensional integral of the marginal p.d.f.
on the collision *** cross-sectional area in the (x,y) encounter plane can be
written as (Akella and Alfriend, 2000; Klinkrad, 2006; Bèrend, 1999): ***

Pc =
1

2π
√
detC

∫ Rc

−Rc

∫

√
R2

c−x2

−

√
R2

c−x2

e−A dy dx, (3)

where

A =
1

2
∆r

T
C

−1∆r, (4)
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where Rc is the combined radius of the two spherical objects and C now
denotes the covariance in the marginal two-dimensional pdf.*** The analyt-
ical methods available in the literature differ in the way the two-dimensional
integral is approximated. Chan transforms the two-dimensional p.d.f. into a
one-dimensional Rician p.d.f. and uses equivalent areas to develop an analyt-
ical approximation of the double integral (Chan, 1997). A series expression
to approximate Eq. (3) is derived by Alfano, using a combination of error
functions and exponential terms (Alfano, 2006b). In addition, Patera per-
forms an exact reduction of the two-dimensional integral of Eq. (3) to a
one-dimensional contour integral over a general-shaped body (Patera, 2001).
The method was then extended to use numerical quadrature for a simple
one-dimensional integral (Patera, 2005).

Methods that account for non-linearities, which are typical of GEO con-
junctions, were also developed (Chan, 2004; Patera, 2003, 2006). An ap-
proach that uses a set of small consecutive linear segments to compute col-
lision probability for non-linear conjunctions is presented in (Alfano, 2006a;
McKinley, 2006).

The conflict probability, used for air-traffic control by the aviation com-
munity (Paielli and Erzberger, 1997), was proposed as an alternative to col-
lision probability as a metric to quantify the collision risk even for space
objects (Patera, 2007a). The conflict probability is computed similarly to
collision probability, using a conflict volume instead of the combined hard-
body region. It corresponds to the probability that a single conflict volume,
centered on one space object, will be penetrated by the other space object.
The conflict volume is large compared to space vehicle size and, as a result,
conflict probability is higher than collision probability. In addition, no in-
formation on hard-body size, which is usually not available for space debris,
is required. The conflict probability was extended to the case of ellipsoidal
conflict volumes and tested against other metrics for the identification of
risky conjunctions, showing good performances for the analyzed test cases
(Patera, 2007b).

Besides the analytical methods, the collision probability integral can be
computed by means of Monte Carlo (MC) simulations (de Vries and Phillion,
2010; Sabol et al., 2011). Despite being a general and flexible way to com-
pute collision probability, the MC approach has the main drawback of re-
quiring intensive computation, as each virtual satellite/debris trajectory has
to be propagated. For this reason Monte Carlo methods are not suitable for
daily collision probability computation, since results can be obtained in a
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timely manner only with simple dynamics, such as two-body propagators or
SGP4/SDP4.

In recent times, techniques such as importance sampling (Dolado et al.,
2011) or adaptive splitting (Pastel, 2011) have been introduced to cope with
the high computational effort. Moreover, a method that couples Monte Carlo
with orbital dynamics approximation, obtained by means of polynomial chaos
expansion, was introduced to compute satellite collision probability with re-
duced computational effort (Jones and Doostan, 2013). Monte Carlo methods
were also used to study the impact of non-Gaussian *** probability density
functions *** on collision probability computation (Ghrist and Plakalovic,
2012).

New methods to reduce the computational effort related to collision prob-
ability computation are presented in this work. These methods are based on
the Taylor expansion of the TCA and the Distance of Close Approach (DCA)
of the two orbiting objects. The occurrence of close approaches is first iden-
tified using the nominal initial orbital states. Then, differential algebra (DA)
techniques are used to propagate sets of initial conditions by computing the
Taylor approximation of the final states at the nominal TCA. The polynomial
expansion of the TCA with respect to uncertainties in the initial states is ob-
tained by means of polynomial inversion tools and plugged into the DCA and
final state maps to retrieve their dependence on initial uncertainties (Morselli
et al., 2014). The methods for collision probability computation can now
take advantage of the availability of the resulting polynomial maps. More
in detail, the initial positions and velocities are sampled according to their
estimated uncertainties. For each pair of virtual objects, the associated DCA
is computed through the fast evaluation of its Taylor expansion rather than
running computationally intensive numerical integrations. The DCA is then
compared with the collision threshold, i.e. the diameter of the sphere that
envelopes the two objects. Three methods for the computation of collision
probability are presented in this paper: a DA-based Monte Carlo simulation
and the DA version of two advanced techniques, namely Line Sampling (LS)
and Subset Simulation (SS) (Au and Beck, 2001; Koutsourelakis et al., 2004).

The manuscript is organized as follows. First the description of MC, LS,
and SS methods in their standard version (i.e. not DA-based) is given in
Sections 2.1, 2.2, and 2.3. Then, their formulation taking advantage of DA
techniques is introduced in Section 3. Numerical examples and discussion of
results are provided in Section 4, which is followed by conclusions.
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2. Methods for collision probability computation

The two objects initial conditions are defined by the state vectors x1
0 and

x
2
0. Both vectors are uncertain due to the orbit determination process, and

their statistics can be represented by a pdf. Typically, the initial statistics is
assumed to be Gaussian, then the initial state is fully described by its mean
and covariance matrix.

The methods for collision probability computation described in this section
rely on the Performance Function (PF)

g
(

x
1
0,x

2
0

)

= D − d∗
(

x
1
0,x

2
0

)

, (5)

in which D is the collision threshold, and d∗ is the function that maps each
pair of initial conditions x

1
0,x

2
0 to the associated DCA. Note that, as D is

a constant and d∗ is the distance between the the objects centers of mass
it follows that exact collision probabilities are computed for spherical space
objects only. According to the definition of the PF, the following conditions
occur

g (x0)











< 0 ⇒ no collision

= 0 ⇒ at limit state

> 0 ⇒ collision,

(6)

where, for the sake of brevity, x0 = (x1
0,x

2
0).

The collision threshold D can be related to the dimensions of the two
objects. Let Li, for i = 1, 2, be the diameters of the spherical objects.
Then, according to Figure 1, D is given by the sum of the radius of the two
objects. In case of non-spherical objects without large appendages the same
performance function could be used, by selecting the sphere that envelopes
each object i. This is a conservative approach, which guarantees that the
resulting collision probability is larger than its correct value since the collision
condition will hold for a larger number of virtual objects.

2.1. Monte Carlo method

To compute the collision probability by means of MC simulation, the ini-
tial position and velocity of the two objects are sampled from their error
covariance matrices (thus generating what are called virtual objects or de-
bris). The initial orbital states, x1

0 and x
2
0, are then propagated till the time

derivative ḋ of the relative distance d is zero, which happens in the surround-
ing of the nominal TCA. In this way, the TCA and DCA are identified for
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L1

L2

2D

Figure 1: Collision threshold definition

each pair of virtual objects. If the relative distance is below the threshold D
a hit is counted. The number of samples Nc for which the collision condition
is verified, i.e. gx (x0) > 0, is divided by the total number of samples NT to
compute the collision probability

P (d∗ < D) =
Nc

NT

. (7)

The standard deviation of the computed probability is given by

σ =

√

P (1− P )

NT

, (8)

and is proportional to 1/
√
NT . For standard Monte Carlo methods the coef-

ficient of variation (c.o.v.), i.e. the ratio between the standard deviation and
the mean value, is thus defined as

δ (P ) =
σ

P
=

√

1− P

NT P
. (9)

The collision probability between two spacecraft is usually very low since
it exceeds 10−4 only for really close conjunctions. As a consequence, a large
number of samples is required to obtain a sufficiently accurate estimate of
its value. According to Dagum et al. (2000), the number of samples NT to
be used in a Monte Carlo simulation when σ2 > εPc should be at least

NT >
4 (e− 2) (1− Pc)

Pc ε2
log

(

2

β

)

, (10)

where Pc is the collision probability, (1− β) is the desired confidence level,
and ε is the relative error of the collision probability. The number of samples
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Figure 2: Number of Monte Carlo samples required to compute a probability Pc with a
95% confidence level and relative error ε

required to compute a given collision probability with a 95% confidence level
is illustrated in Figure 2, where the dashed and a solid lines are computed
with a relative error of 1% and 5%, respectively.

To compute a collision probability of 10−4 with a relative error of 5% at
least 4.24 × 107 samples are required, whereas for Pc = 10−6 the minimum
number of samples increases to 4.24× 109.

These considerations point out the main drawback of MC simulations, that
is the high computational effort which is magnified when dealing with very
low probabilities or when a computationally intensive simulation is required
for each sample, such as a numerical integration of the equation of motion.
Line Sampling and Subset Simulation algorithms, described in the next two
subsections, were developed to reduce the number of samples required to
compute low collision probabilities.

2.2. Line Sampling

The main idea behind LS is transforming a high dimensional problem into
a number of conditional one-dimensional problems solved along an “impor-
tant direction” α (Koutsourelakis et al., 2004). The key issue of the method
is identifying this direction, that should point toward the region of failure, i.e.
the hyper-volume of position and velocity deviations for which the collision
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criterion holds. The important direction tells which combination of states
variations is more efficient to reach the failure condition.

In the LS approach, the vector of uncertain parameters x0 ∈ R
n, where

n is the number of uncertain parameters, has first to be transformed into
the adjoint vector θ ∈ R

n. This vector belongs to the so-called “standard
normal space”, where each variable is represented by an independent central
unit Gaussian distribution. This is done using Rosenblatt’s transformation
(Rosenblatt, 1952)

θ = Tx,θ (x0)

x0 = Tθ,x (θ),
(11)

where the operator T.,. indicates the transformation, and applying it to the
performance function

g (x0) = gx (Tθ,x (θ)) = gθ (θ) . (12)

A natural choice for the important direction is the normalized gradient of
the PF at the nominal point in the standard normal space

α =
∇θ gθ (θ)

‖∇θ gθ (θ)‖2
. (13)

If not available analytically, this gradient can be numerically estimated. The
more the estimate of the important direction is close to its true value, the
lower will be the variance of the failure probability (Pradlwarter et al., 2005).
For high-dimensional problems where the numerical computation of gradients
can be time-demanding, it is possible to obtain an estimate by computing
the normalized “center of mass” of the failure domain. This is achieved by
Monte Carlo Markov Chain (MCMC), using as seed a point belonging to
the failure region or close to it and computing the mean of the Nα samples
generated in the failure region (Zio and Pedroni, 2009b).

Once the important direction is identified, the LS method proceeds as
follows

LS 1. Sample NT vectors θi from the normal multidimensional joint proba-
bility distribution.

LS 2. Estimate for each sample its conditional one-dimensional failure prob-
ability P̂ 1D,i performing the following operations
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(a) Project the vector θi onto the straight line passing through the
origin and perpendicular to α to obtain vector θi,⊥, as portrayed
in Figure 3(a).

(b) Write the parametric equation of samples along the important

direction, θ̃
i
= θ

i,⊥ + cα, as sketched in Figure 3(b).

(c) Compute the values of cij, j = 1, 2, for which the PF is equal to
zero. (Here and in the remainder of the paper a maximum num-
ber of two zeros is considered.) This step requires evaluations
of the PF, which involve numerical propagations or complex sys-
tem simulations when gθ is not known analytically. Note that
when the failure region is infinite only one real solution is found
whereas the other is +∞.

(d) If the two values coincide or no solution is found then the i-th
one-dimensional probability P̂ 1D,i is equal to zero; else, given the
two solutions ci1 and ci2, with ci1 > ci2, the probability is

P̂ 1D,i (F ) = P
[

ci2 ≤ N(0, 1) ≤ ci1
]

=

= Φ
(

ci1
)

− Φ
(

ci2
) (14)

where Φ
(

cij
)

is the standard normal cumulative distribution func-
tion, N(0, 1) is the standard normal distribution, with zero mean
and unit standard deviation, and F indicates the collision condi-
tion d ≤ D.

LS 3. Compute the unbiased estimator P̂NT (F ), which is the sample average
of the independent conditional one-dimensional probability estimate

P̂NT (F ) =
1

NT

NT
∑

i=1

P̂ 1D,i (F ) (15)

The variance of the collision probability in Eq. (15) is given by

σ2
(

P̂NT (F )
)

=
1

NT (NT − 1)

NT
∑

i=1

(

P̂ 1D,i (F )− P̂NT (F )
)2

(16)

The total number of system simulations is related to the number of PF
evaluations required to compute, for each sample θ

i, the values cij at step
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gθ (θ) = 0

gθ (θ) > 0

α

θ1

θ2

bc θi

θ
i,⊥

(a) Projection of the sample vector θ
i on

directions parallel and perpendicular to α

to obtain θ
i,⊥

gθ (θ) = 0

gθ (θ) > 0

α

θ1

θ2

bc
θ
i

θ
i,⊥

c

θ̃
i

bc

(b) Graphical representation of the line with

parametric equation θ̃
i
(c) used to identify

the values of c for which gθ(c) = 0

Figure 3: Illustration of the Line Sampling procedure in a bi-dimensional space (θ1, θ2).
The origin of the reference frame is in the nominal initial states and α points in the
direction of the gradient (i.e. greatest rate of decrease) of the relative distance. Failure
region is surrounded by the grey line.

LS 2(c). When the PF is smooth and does not present oscillations along
the important direction, the number of sample evaluations can be limited to
the one necessary to obtain an approximation of the function in the region
of interest (Zio and Pedroni, 2009b). For a short-term encounter between
two space objects, the PF along the direction α resembles a parabola. With
three evaluations of the PF, it is indeed possible to obtain a second-order ap-
proximation and compute an approximate value of the intersections ci1 and ci2
with the line gθ(c) = 0, if they exists. Although reducing the computational
effort when dealing with computationally demanding simulations, such an
approach strongly depends on the choice of the c grid required to compute
the approximation of the PF. A wrong spacing of the grid could result in
erroneous estimations of the intersections with the failure region boundary.
Thus, when this approach is selected, it is important to verify that the com-
puted intersections are close to the true values for different close encounter
geometries and relative velocities.

2.3. Subset Simulation

Subset Simulation (SS) is an adaptive stochastic simulation method to
compute efficiently small failure probabilities (Au and Beck, 2001). The
idea at the basis of the method is to compute the probability as a product
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of larger conditional probabilities. Thus, given a sequence of intermediate
failure regions F1 ⊃ F2 ⊃ · · · ⊃ Fm = F , the failure probability becomes

P (F ) = P (Fm) = P (F1)

m−1
∏

l=1

P (Fl+1|Fl) , (17)

where P (Fl+1|Fl) indicates the probability of Fl+1 conditional to Fl. The
method is initialized using a standard Monte Carlo simulation to generate
samples at conditional level 0. Once the failure region F1 is determined and
the probability P (F1) computed, a Monte Carlo Markov Chain (MCMC)
algorithm (Metropolis et al., 1953) is used to generate samples conditional
to the failure region F1. Another intermediate failure region F2 is then located
and other samples are generated with MCMC. The process can be repeated
till the failure region corresponding to objects collision is identified. The
approach was originally developed to address structural failure, but it was
also used in different research areas in reliability, e.g. to address the failure
probability of thermal-hydraulic passive system (Zio and Pedroni, 2009a).

The main issue of the algorithm is to identify the intermediate failure
regions. This can be achieved by choosing a constant probability value p0,
and searching a threshold value of the relative distance at every conditional
level for which P (Fl|Fl−1) = p0. The PF changes accordingly: being Dl the
collision threshold at conditional level l, it can be defined as

glx (x0) = Dl − d∗ (x0) . (18)

Similarly to Eq. (5), the following conditions occur

glx (x0)











< 0 ⇒ x0 is out of l-th conditional level

= 0 ⇒ x0 is at limit state

> 0 ⇒ x0 is in l-th conditional level.

(19)

Since the conditional probability is equal to p0 at each iteration, the collision
probability in Eq. (17) can be computed as

P (F ) = P (Fm) = P (Fm|Fm−1) p0
m−1 (20)

The resulting SS algorithm goes through the following steps (refer to Fig-
ure 4 for its schematic representation):
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(c) MCMC simulation: generation of new
samples belonging to conditional level 1.
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Figure 4: Illustration of the Subset Simulation algorithm for a bi-dimensional space
(x1, x2). The dots are the generated samples and the lines identify the conditional levels.
The grey dots are the samples belonging to the l-th conditional levels and the arrows
represent the MCMC path.

SS 1. Set l = 0 and generate N sample vectors x
0,k
0 , k = 1, . . . , N , by

standard MC simulation. The superscript 0 denotes that the samples
are at “conditional level 0”.

SS 2. Compute the values of the PF glx (x0) for the N samples xl,k
0 .

SS 3. Sort the N samples in ascending order, according to their associated
value of the performance function glx. The samples closer to the failure
region will be at the bottom of the list.

SS 4. Choose the intermediate threshold value Dl+1 from the (1 − p0)N -th
value of the sorted list. The (l + 1)-th conditional level is then de-
fined as Fl+1 = {d∗ < Dl+1}. By definition the associated conditional
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probability is P (Fl+1|Fl) = P (d∗ < Dl+1 | d∗ < Dl) = p0.

SS 5. If Dl+1 ≤ D go to last step otherwise identify the p0N samples x
l,u
0 ,

u = 1, 2, . . . , p0N , whose relative distance lies in Fl+1. All these sam-
ples belong to “conditional level l + 1”.

SS 6. Using MCMC, generate (1 − p0)N additional conditional samples
distributed as p (·|Fl+1), so that a total of N conditional samples
x
l+1,k
0 ∈ Fl+1, where k = 1, . . . , N . Eq. (19) can be used to estab-

lish whether each sample belongs to conditional level l + 1 or not.

SS 7. Set l = l + 1 and return to step 2 above

SS 8. Stop the algorithm

The total number of samples generated is

NT = N + (m− 1)(1− p0)N, (21)

where m is the number of conditional levels required to reach the failure
region. According to Eq. (20) the collision probability becomes

P (d∗ < D) = p0
m−1P (Fm |Fm−1) = p0

m−1 NF

N
, (22)

where N is the total number of samples at each conditional level and NF is
the number of samples at conditional level m, whose relative distance is less
than the collision threshold D.

The efficiency of the SS algorithm relies on the proper selection of its
parameters: the conditional failure probability p0, the number of samples
of each step N , and the shape of the proposal probability density function
for the generation of the Markov chain. A detailed analysis on the selection
of these parameters is given in (Zuev et al., 2012), where it is shown that
the optimal choice for p0 is 0.2 (although similar efficiency is obtained for
p0 ∈ [0.1; 0.3]). For what concerns the proposal p.d.f. of MCMC, a univariate
Gaussian distribution is used in this work. The variance σl of the proposal
p.d.f. is changed dynamically at each conditional level l so that the acceptance
rate of Markov Chain samples is kept between 30% and 50%. This solution
is nearly optimal, i.e. the chain converges to stationarity nearly as fast as
possible.
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Zuev et al. (2012) also suggest a Bayesian post-processor for Subset Simu-
lation, SS+, to refine the computed failure probability and determine higher
moments, allowing the computation of the failure probability variance. Defin-
ing

nl =

{

p0N if l < m

NF if l = m
(23)

the first moment of the distribution of the failure probability becomes

ESS+ [P (F )] =

m
∏

l=1

nl + 1

N + 2
, (24)

whereas the second moment is given by

ESS+

[

P (F )2
]

=

m
∏

l=1

(nl + 1) (nl + 2)

(N + 2) (N + 3)
. (25)

The variance of the collision probability P (F ) can then be obtained using
the definition

V ar(P ) = E[P 2]− (E[P ])2 . (26)

The number of samples N to be used depends on the problem dimension
and the expected failure probability. Furthermore, if the failure region is dis-
connected, the samples must be dense enough to lie in the proximity of each
subregion at conditional level zero and then reach them at the subsequent
conditional levels. The tests showed that a good choice is N = 2 × 103 for
collision probability computation.

To stress the advantages of the SS method over standard MC for low failure
probability computation, two experimental cumulative distribution functions
(c.d.f.) obtained with SS and MC for a close conjunction are compared in
Figure 5. The solid black line is the distribution obtained with SS using
14000 samples (p0 = 0.2, N = 2000 samples and 7 conditional levels), the
dashed line is the c.d.f. obtained with MC using the same number of samples,
and the solid grey line is the c.d.f. for a MC with 106 samples.

The three curves seem to agree over the entire set of relative distances.
However, the detail reported in Fig. 5(b) shows the lack of accuracy of the
MC simulation with fewer samples in the proximity of the failure region.
As the maximum cumulative probability in Fig. 5(b) is about 0.001, only
14 samples out of 14000 lie, on average, in the associated range of relative
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Figure 5: Cumulative probability comparison between SS and MC

distances in the MC simulation. In particular, only two samples have a
relative distance below 10 m and no samples are located under 5 m. In
contrast, SS generates nearly 5000 samples in the same region, which is five
times more than the ones generated by MC with 106 samples. The samples
generated by SS provide enough information to describe the c.d.f. accurately
even at lower conditional probability level, i.e. closer to the failure region.

3. DA-based methods for collision probability

The methods described in the previous section are here modified to take
advantage of the Taylor expansion of the DCA. The computation of the
polynomial approximation is achieved by means of the DA techniques im-
plemented in COSY INFINITY. Differential algebra supplies the tools to
compute the derivatives of functions within a computer environment. More
specifically, by substituting the classical implementation of real algebra with
the implementation of a new algebra of Taylor polynomials, any multivariate
function is expanded into its Taylor series up to an arbitrarily order with
limited computational effort. As a main consequence, the Taylor expansion
of the solution of any ordinary differential equation can be obtained by car-
rying out all the operations of any explicit integration scheme in the DA
framework. Thus, the dependence of the solution of the ordinary differential
equation on initial conditions and time is available in terms of high order
polynomial maps. For details on the DA mathematical foundation and on

16



its practical use the reader can refer to Berz (1999) and Berz and Makino
(2011). In the following, the key points for the computation of the high
order Taylor series expansion of the DCA and TCA are first given. Then,
Section 3.2 illustrates the DA implementation of the methods for collision
probability.

3.1. High order expansion of DCA and TCA

A DA algorithm has been developed by the authors to compute the arbi-
trary order Taylor expansions of TCA and DCA with respect to uncertain
initial conditions in a general dynamical model (Armellin et al., 2012). As
presented in detail in Morselli et al. (2014), the Taylor expansions of the
state vectors x

1
f and x

2
f of the two objects at the nominal TCA are first

obtained by propagating their initial conditions with a DA-based numerical
integrator. The resulting polynomials are functions of both the final time and
the initial uncertain state vectors x

1
0 and x

2
0. The polynomial map of the

relative distance between the two objects is then computed through simple
algebraic manipulations. By using partial polynomial inversion techniques
and imposing the stationarity condition of the relative distance with respect
to time, the Taylor expansion of TCA and DCA with respect to x

1
0 and x

2
0,

[t∗] = t∗ +Mt∗

(

δx1
0, δx

2
0

)

(27)

[d∗] = d∗ +Md∗
(

δx1
0, δx

2
0

)

, (28)

are computed. For any perturbed initial condition of the two objects (i.e., for
any pair of virtual debris), the evaluation of the Taylor polynomials in (27)
and (28) delivers the associated values of TCA and DCA. Consequently, the
main idea is to reduce the computational cost of standard methods for the
computation of collision probability by replacing multiple – computationally
intensive – numerical integrations with multiple – fast – evaluations of the
polynomial maps (27) and (28).

As a last remark note that two main factors affect the accuracy of the
results: the dynamical model used for the propagation of the states and the
accuracy of the Taylor expansion. For the first issue the DA-based numerical
propagator AIDA developed in Morselli et al. (2014) is used in this work.
The implemented dynamical model includes

• the gravitational model EGM2008 up to order 10,

• the atmosphere model NRLMSISE-00 to compute air density,
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• third body perturbations,

• and solar radiation pressure with a dual-cone model for Earth shadow.

The accuracy of the polynomial maps (27) and (28) depends on the expansion
order, the initial uncertainties, and the propagation window. In Morselli et al.
(2014) the accuracy of the maps was assessed by considering the 100 samples
with the largest displacement from the nominal initial conditions among a
larger set of 109 samples generated considering the full initial covariance
matrix. It was shown that, for typical values of initial uncertainties and for a
maximum propagation window of one week, the error of the Taylor expansion
of the DCA is less than 1 m for a third order expansion for both LEO and
GEO orbital regimes.

3.2. DA-based methods

Once the 12-variables kth order Taylor expansions of the TCA and DCA
are available, the methods for collision probability computation can be easily
modified to work on the resulting polynomials. It is worth observing that
the presented methods are applicable only for cases with a single DCA and
TCA. Nonlinear relative motion with multiple DCAs are not analyzed in
this paper and will be addressed in future works. In the following, the main
modifications to the three proposed methods are summarized.

DAMC. For what concerns the Monte Carlo method, its DA-based counter-
part is simply obtained by substituting each pair of numerical or analytical
propagations necessary to compute the DCA with a single evaluation of the
map in Eq. (28). In the following, the acronym DAMC-k is used to label the
resulting DA-based Monte Carlo method, where k is the order used for the
Taylor expansion of the TCA and DCA.

DALS. The availability of the DCA expansion is exploited for the computa-
tion of the important direction α in the LS method. Once the polynomial
map in Eq. (28) is available, the Taylor expansion of gθ (θ) in Eq. (12) is
obtained by evaluating Eq. (5) together with Eq. (11) in the DA framework.
Then, the gradient of gθ is readily obtained by extracting the twelve first
order coefficients of its Taylor expansion and is used to compute α using
Eq. (13). In addition, similarly to DAMC, each numerical propagation of the
standard algorithm is substituted by a polynomial evaluation of Eq. (28).
Moreover, accurate methods for the computation of the parameters ci1 and ci2
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can be developed since the evaluation of the polynomial approximation of gθ
is fast. More in detail, to further speed up the execution of a DA-based LS
simulation, the algorithm described in Section 2.2 is slightly modified. The
step LS 2(c) is divided in two parts. First, the maximum of the PF and the
associated value cimax for the i-th sample are identified. The two values ci1
and ci2 are then computed only if the maximum of the PF is positive. This is
done by applying a secant method using two initial guesses that are close to
cimax, one slightly larger and the other slightly smaller. If the maximum of
the PF is negative there is no need to compute intersections and P 1D,i = 0.
Although this approach increases the complexity of the method, it avoids un-
necessary polynomials evaluations increasing the robustness and efficiency of
the DA-based LS. The acronym DALS-k is used in the following to indicate
the DA-based Line Sampling with expansion order k.

DASS. Similarly to DAMC, in the DA-based Subset Simulation, the numer-
ical propagations at step SS 2 are replaced by the fast evaluation of the
polynomial map in Eq. (28). All other steps involve sorting and generation
of samples through MCMC and do not require any modification. Hereafter
this algorithm will be labelled as DASS-k, where k is again the order of the
expansion.

4. Numerical Examples

In this section, the performances of the proposed approaches are assessed
on the computation of collision probabilities for close encounters in LEO and
GEO. All computations are performed on a Intel Core i5 2500 @3.30GHz,
8Gb RAM processor running Sabayon Linux 10 (kernel version 3.5.0).

At first, the DA algorithms are compared against analytical methods and
standard Monte Carlo simulations, using test cases in which the relative mo-
tion can be considered linear, non-linear and almost-linear, respectively. The
test cases are taken from Alfano (2009), where simple Keplerian dynamics
is used to compare a set of different methods for collision probability com-
putation. The aim of this analysis is to validate the proposed methods and
assess their performances in terms of accuracy and efficiency.

Then, the methods are tested using the high fidelity numerical propagator
AIDA. The covariance matrices for each object are obtained after a pseudo
orbit determination process, where observed states are obtained with TLEs
propagation through SGP4/SDP4. The orbit determination is performed as
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a batch least-square optimization, yielding a full 6×6 covariance matrix. The
goal of this analysis is to test the methods in real scenarios and assess their
reliability.

Since the considered methods employs different number of samples, two
figures of merit are used for comparisons (Zio and Pedroni, 2009b). The first
figure of merit is the unitary coefficient of variation, ∆, and is defined as

∆ =
σ

P̂c

√

NT , (29)

where σ is the standard deviation of the collision probability from its esti-
mated value P̂c, and NT is the total number of samples used. The unitary
c.o.v. does not depend on the number of samples, since for Monte Carlo
methods σ ∝ 1/

√
NT . It is designed to enable the comparison of the differ-

ent methods in terms of accuracy and number of samples required to reach
that accuracy level. The lower is the value of ∆, the lower is the variability
of the corresponding failure probability and, as a consequence, the higher is
the efficiency of the method.

The second figure of merit, Ω, involves both variance and computational
time tc and does not depend on the number of samples NT as well. It is
defined as

Ω =
1

σ2 tc
. (30)

It is a measure of the computational efficiency and failure probability vari-
ability. The higher the value the higher is the efficiency of the method.

4.1. Validation of DA-based methods

In this section the methods for collision probability computation DAMC,
DALS, and DASS are validated against an analytical method and standard
Monte Carlo simulation. Three test cases are considered, one with linear rel-
ative motion between the two objects, one at the boundary of linear relative
motion, and one with nonlinear relative motion. These are respectively test
case 5, 6, and 7 of Alfano (2009). The same labelling is used in this paper
to ease comparison. The orbital state and covariance matrix are propagated
using Keplerian dynamics (Shepperd, 1985) for the standard Monte Carlo
method and Alfano’s method. In this example, the Taylor expansion of the
DCA given in Eq. (28) is then based on the propagation of Kepler’s dynamics
in DA environment.
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The three conjunctions analyzed are detailed in Table 1, where the time,
distance, and relative velocity at the closest approach, ∆vTCA, are listed. The
reference value for collision probability, computed using a standard Monte
Carlo simulation is given. For each trial, two sets of initial conditions are sam-
pled from each initial covariance matrix and the associated DCA is searched
in the proximity of the nominal TCA. The number of samples NT for the
computation of the reference Pc is selected to achieve a confidence level of
95% and 1% relative error according to Eq. (10). The collision probability
obtained using Alfano’s formula and its associated percentage relative error
with respect to the reference collision probability are given in the last two
columns.

Table 1: Time, distance, and velocity of closest approach for the Keplerian test cases and
reference value for collision probability, computed with a standard MC method using NT

samples. The collision probability computed with Alfano’s approach is given together with
the relative error with respect to the reference Pc.

Test TCA DCA ∆vTCA D Pc NT Pc % err
case [days] [m] [m/s] [m] (Monte Carlo) (Dagum) (Alfano) [-]
5 2.0 2.449 0.520 10 4.454E-02 2.30E+06 4.440E-02 -0.32%

6 2.0 2.449 0.173 10 4.340E-03 2.50E+07 4.324E-03 -0.36%

7 2.0 3.183 0.196 10 1.614E-04 6.71E+08 1.580E-04 -2.13%

The collision probability is then computed using the three DA-based meth-
ods and a standard Monte Carlo method. For DAMC and the standard
Monte Carlo computations the number of samples is now selected to guar-
antee a relative error of 5% and a confidence level of 95%. The results are
listed in Table 2, where for DAMC, DALS, and DASS the expansion order
was set to k = 3. The relative error with respect to the reference Pc, number
of samples used, computational time, coefficient of variation δ, and figures of
merit ∆ and Ω are also given.

The collision probability values are always in good accordance with the
reference value. In particular, the relative error for test case 7 is lower than
the one obtained with Alfano’s method, since nonlinear effects are captured
by using a third-order polynomial approximation. The computational time of
the DA-based methods is always lower than standard Monte Carlo. Among
all methods DALS is the one that has the lowest ∆ and the highest Ω, thus
resulting to be the most efficient method. A comparison of the different
methods is given in Figure 6. The collision probabilities are plotted as bars
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Table 2: Computed collision probability for the Keplerian test cases. For each simula-
tion the relative error with respect to the reference Pc, the number of samples used, the
computational time tc, coefficient of variation δ, and figures of merit ∆ and Ω are listed.

Test
Method

Pc % err
NT

tc δ ∆ Ω
case [-] [-] [s] [-] [-] [-]

5

MC 4.452E-2 -0.05% 1.0E+5 4.75 1.465E-2 4.63 4.949E+05

DAMC-3 4.459E-2 +0.11% 1.0E+5 0.67 1.464E-2 4.63 3.503E+06

DALS-3 4.451E-2 -0.07% 5.0E+3 2.53 7.662E-4 0.05 3.399E+08

DASS-3 4.450E-2 -0.09% 2.0E+4 0.13 2.738E-2 3.87 5.183E+06

6

MC 4.339E-3 -0.01% 1.0E+6 43.21 1.515E-2 15.14 5.357E+06

DAMC-3 4.350E-3 +0.24% 1.0E+6 6.67 1.513E-2 15.13 3.462E+07

DALS-3 4.341E-3 +0.03% 5.0E+3 2.58 1.484E-3 0.11 9.340E+09

DASS-3 4.328E-3 -0.27% 4.0E+4 0.27 3.586E-2 7.17 1.539E+08

7

MC 1.615E-4 +0.04% 2.7E+7 1155.36 1.514E-2 78.68 1.447E+08

DAMC-3 1.612E-4 -0.15% 2.7E+7 179.34 1.516E-2 78.76 9.341E+08

DALS-3 1.621E-4 +0.41% 5.0E+3 1.43 1.936E-2 1.37 7.103E+10

DASS-3 1.626E-4 +0.72% 6.0E+4 0.43 4.580E-2 11.22 4.193E+10

together with their 1-σ error. The reference probability value is represented
by a solid black line and the 5% relative error lines are reported as two solid
grey lines. For cases 5 and 6, DALS and DASS show the lowest and highest
standard deviations of the collision probability, respectively. Standard Monte
Carlo and DAMC provides similar results in terms of Pc and variance for all
three test cases. In Figure 6(c) it can be observed that Alfano’s method
underestimates the collision probability for test case 7, when nonlinearities
are relevant. The other methods instead are much more closer to the reference
probability.

The computational time for the three DA-based methods is plotted in
Figure 7, normalized by the tc obtained with the standard Monte Carlo
method to highlight the computational gain. For each of the three DA-based
methods a different marker is used: squares for DAMC, circles for DALS,
and triangles for DASS. The computational time is plotted for expansion
orders ranging from k = 1 to k = 4 and the markers are coloured accordingly
using a gray scale, where black is used for k = 1 and light gray for k =
4. The computational time is usually lower than the one of the standard
Monte Carlo method and increases with the expansion order for all methods.
Using DAMC, the computational time can be reduced by a factor of 10
with an expansion order up to k = 3. Note that the computational gain is
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Figure 6: Comparison of the collision probability obtained with the tested methods for
the Keplerian test cases. The DA expansion order is k = 3 for DAMC, DALS, and DASS.
The solid black line is the reference value for collision probability and the gray lines are
the 5% relative error bounds.

limited in this case as a simple dynamical model is used, thus there is only a
little advantage when pointwise propagations are substituted by polynomial
evaluations of Eq. (28).

For the higher probability value (test case 5) the computational time of
the three DA-based methods are comparable and the one of DALS is even a
bit higher than the one of DAMC and DASS, due to its higher complexity.
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In particular, it is worth noting that for order k = 4 it also exceeds the
computational time of pointwise MC, that for test case 5 requires a lower
number of samples. Nevertheless, the computational effort of DALS and
DASS decreases for lower collision probability, becoming nearly 103 times
lower than the one of a standard Monte Carlo method for test case 7.

Case 5 Case 6
Case 7
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Figure 7: Normalized computational time of DAMC, DALS, and DASS for the Keplerian
test cases vs. collision probability for different expansion orders. Markers are coloured
using a grayscale, where black is used for the expansion order k = 1 and lighter gray for
k = 4.

The figure of merit ∆, normalized for each test case with the value of the
standard Monte Carlo method, is plotted against the collision probability Pc

in Figure 8(a). The same criteria used in Figure 7 for markers colouring and
shape is used, i.e. different markers are used for each method and they are
coloured according to the expansion order using a gray scale. The normalized
unitary c.o.v. is equal to 1 for the DAMC since the same number of samples of
the standard Monte Carlo method is used. The lower value is achieved with
DALS, which is two order of magnitude lower than DAMC. The efficiency
of DASS increases for lower probabilities. The use of different expansion
orders does not affect the final value of the normalized ∆, since points are
overlapping and indistinguishable. The only exception is found for DALS in
cases 5 and 6, where the normalized ∆ is slightly higher when k = 1. This is
probably due to a slightly lower accuracy of the first-order DCA expansion

24



in those cases.
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Figure 8: Normalized figures of merit ∆ and Ω of DAMC, DALS, and DASS for the
Keplerian test cases vs. collision probability for different expansion orders. Markers are
colored using a gray scale, where black is used for the expansion order k = 1 and lighter
gray for k = 4.

The figure of merit Ω is plotted versus the collision probability in Figure
8(b), again normalized with respect to the value obtained with the standard
Monte Carlo method. Since the computational time increases with the ex-
pansion order as shown in Figure 7, the value of Ω decreases for higher order.
The best performing among the three methods for the considered test cases
is DALS, since the normalized figure of merit is at least 10 times larger than
the one of DASS and 102 times larger than DAMC. For test case 7, where
collision probability is lower, the efficiency of DASS in terms of Ω is higher
than the other cases. Note that the value of Ω for an expansion order k = 1
is lower than the one obtained with k = 2 for DALS for test case 5 and 6.
As stated before, the reason is the slightly lower accuracy of the map in this
case, that is not mitigated by the lower computational time.

To conclude this analysis, the collision probability computed with Alfano’s
formula and the DA-based methods with an expansion order k = 1 are
compared in Table 3. It can be observed that using a first-order DA expansion
the percentage relative error is similar to that obtained using Alfano’s method
for test case 7, where the relative motion is no more linear. The DA-methods
at first order are therefore equivalent to Alfano’s analytical approximation.
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Table 3: Comparison of the collision probability computed with Alfano’s method and the
DA-based methods for the Keplerian test cases with a DCA expansion of order k = 1

Test Pc % err Pc % err Pc % err Pc % err
case (Alfano) [-] (DAMC) [-] (DALS) [-] (DASS) [-]
5 4.440E-02 -0.32% 4.444E-02 -0.23% 4.448E-02 -0.14% 4.432E-02 -0.50%

6 4.324E-03 -0.36% 4.337E-03 -0.06% 4.332E-03 -0.18% 4.361E-03 +0.49%

7 1.580E-04 -2.13% 1.580E-04 -2.13% 1.568E-04 -2.87% 1.584E-04 -1.88%

4.2. Comparison of the methods on real conjunctions

In this section four test cases are considered to test the algorithms for
collision probability computation. The selected test cases include LEO and
GEO close encounters with different relative velocity at TCA. The selected
test cases are listed in Table 4: the satellites involved in each conjunction
case and the associated orbital regimes are listed in the second and third
column; the other columns report the TCA, DCA, the relative velocity at
TCA, and the collision threshold D used for the computation of Pc. On
the last column the collision probability computed using Alfano’s formula is
listed. The initial orbital states used for orbit propagation with AIDA are
listed in Appendix A.

Table 4: TCA and DCA computed for the real conjunctions used as test cases

Test
Sat. No. Orbit

TCA
TCA

DCA ∆vTCA D Pc

case [days] [m] [km/s] [m] (Alfano)

A
39152 LEO 2.831

2014 Feb 13 15:08:42 51.0 12.757 10 2.850E-3
27580 LEO 2.950

B
27453 LEO 1.820

2013 Nov 22 09:07:47 136.6 11.103 16 3.664E-5
33692 LEO 1.837

C
37838 LEO 2.707

2013 Nov 24 06:02:00 75.7 0.327 12 5.218E-3
37840 LEO 3.909

D
16199 GEO 1.535

2013 Nov 21 13:55:18 937.1 0.784 15 5.804E-4
29648 GEO 2.007

The collision probability is computed with DAMC, DALS, and DASS for
each test case, and the results are listed in Table 5. Uncertainties on both
position and velocity are considered in these simulations. The variance of
the initial positions and velocities are estimated from pseudo observations
generated using TLE and SGP4/SDP4 and are given in Appendix A. In
Morselli et al. (2014) it was shown that, for similar range of uncertainties,
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the error of a third order Taylor expansion of the DCA is lower than the
collision threshold for a maximum propagation time of one week.

The number of samples of the DAMC are estimated using Eq. (10) con-
sidering a relative error ε = 5%, whereas the number of samples for DALS
is fixed to 5× 103 and the samples for each conditional level of DASS is 104.
Although the number of samples is much lower than in DAMC, both DALS
and DASS can provide good estimates of the collision probability. Taking the
value obtained with DAMC as reference Pc, it is possible to compare the three
methods in terms of percentage relative difference. In all cases, the computed
collision probabilities differ at most 3% from the DAMC value. The largest
difference is obtained for test case B, where the collision probability is lower.

Table 5: Computed collision probability Pc, computational time tc, and figures of merit
∆ and Ω. Percentage relative error is obtained taking DAMC-3 collision probability as
reference.

Test
Method

Pc % err
NT

tc δ ∆ Ω
case [-] [-] [s] [-] [-] [-]

A
DAMC-3 2.869E-3 0.0% 1.5E+6 11.19 1.522E-2 18.64 4.686E+07

DALS-3 2.891E-3 0.8% 5.0E+3 0.71 2.260E-2 1.60 3.300E+08

DASS-3 2.875E-3 0.1% 4.0E+4 0.28 3.712E-2 7.42 3.141E+08

B
DAMC-3 3.597E-5 0.0% 1.2E+8 875.88 1.548E-2 166.73 3.682E+09

DALS-3 3.511E-5 -2.3% 5.0E+3 0.42 3.858E-1 27.28 1.298E+10

DASS-3 3.674E-5 2.1% 7.0E+4 0.54 4.975E-2 13.16 5.543E+11

C
DAMC-3 5.214E-3 0.0% 8.1E+5 6.06 1.535E-2 13.81 2.577E+07

DALS-3 5.205E-3 -0.2% 5.0E+3 1.06 1.499E-2 1.06 1.549E+08

DASS-3 5.190E-3 -0.5% 4.0E+4 0.28 3.541E-2 7.08 1.057E+08

D
DAMC-3 5.751E-4 0.0% 7.3E+6 55.16 1.543E-2 41.67 2.303E+08

DALS-3 5.783E-4 0.6% 5.0E+3 0.63 3.452E-2 2.44 3.982E+09

DASS-3 5.799E-4 0.8% 5.0E+4 0.36 4.215E-2 9.43 4.650E+09

The computational time tc required by DALS and DASS is lower than
the one of DAMC. The latter is in turn significantly lower than the one of a
standard Monte Carlo method, in which the trajectory of each virtual object
is numerically propagated up to the close encounter.

Let us consider the test case A for illustrative purposes. With our imple-
mentation of the dynamics, a standard MC simulation with 1.5×106 samples
would require 1.05 × 108 seconds, as approximately 35 seconds are required
to propagate each of the two objects to the TCA. The computational time
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of the DA methods is given by the time required to 1) perform the DA
integrations 2) compute map (28) and 3) run the algorithms based on poly-
nomial evaluations (labelled as tc in Table 5). Each of the two third order
propagations requires approximately 10 times a pointwise integration, and
the DA manipulations to compute the DCA expansion requires only fraction
of second (Morselli et al., 2014). Thus, the additional cost associated to
DA computations is equivalent to only 20 pointwise numerical propagations
and this is irrelevant with respect to the gain obtained by substituting nu-
merical integrations with polynomial evaluations. For test case A, the total
computational cost (i.e. including DA orbit propagation, map inversion, and
probability computation) of a DAMC-3 run is 492.38 s, which is 5 orders of
magnitude less than the time that would be required by a standard MC (note
that this value can be further reduced by a more efficient implementation of
AIDA propagator). This gain in computational time can be higher for cases
with lower computational probability (e.g., test case B) and when DALS and
DASS algorithms are used.

Figure 9 summarizes the tc of the three DA methods. Keeping in mind
that the computational time of all the DA methods is orders of magnitude
lower than that of standard MC, it can be noted that the computational
effort of DAMC increases exponentially for decreasing collision probability,
whereas the other two methods have drastically lower variations. The tc
of DASS slightly decreases for increasing collision probability, due to the
lower number of conditional levels required to converge. On the contrary,
the computational time of DALS increases with collision probability. This
is a consequence of the control on the maximum value of the PF on the
important direction: for test case B, that has the lowest probability, the
relative distance between the two objects is higher and the intersection of
the two ellipsoids is very small. As a result, most samples produce a one-
dimensional collision probability that is zero since the maximum of the PF
is negative and no computation of the intersections cij is required, with a
reduction of the computational time.

To conclude, it is worth observing that the computational time of the
methods can be further reduced as all methods can be classified as “embar-
rassingly parallel”.

The methods are compared in terms of accuracy and efficiency in Figure
10, where the figures of merit ∆ and Ω are plotted against collision probabil-
ity. For each test case the values of ∆ and Ω listed in Table 5 are normalized
with respect to the value obtained for the DAMC simulation.
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Figure 9: Computational time of DAMC, DALS, and DASS vs. collision probability.

According to Figure 10(a), both advanced methods lead to significant
improvements in terms of unitary c.o.v. with respect to DAMC. DALS out-
performs DASS for higher probability and its ∆ is one order of magnitude
lower than DAMC. The performance of DASS increases for lower probability,
where it performs better than DALS. The variance of DASS is indeed lower
than that of DALS. Nevertheless, DALS shows the lowest computational
time.

The figure of merit Ω is plotted against the collision probability in Figure
10(b). For probability higher than 10−3, DALS performs better than DASS
and DAMC. The value of Ω exponentially increases for decreasing probabil-
ity and DASS reaches the same performances of DALS for test case D and
outperforms DALS for test case B. The reason is mainly related to the lack
of accuracy of DALS for case B, due to the low number of samples for which
the one-dimensional probability is non-zero. An higher number of samples
should be used with DALS to achieve a more reliable estimate of the collision
probability in this case.

4.3. Covariance scaling analysis

The collision probability depends on the shape, size, and orientation of the
covariance matrix of the position and velocity at TCA. In this subsection a
validation of DALS and DASS for varying initial covariance size is performed,
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Figure 10: Performance comparison with normalized figures of merit

using as a reference the values obtained with DAMC. This approach requires
that the accuracy of the Taylor expansion of the DCA and TCA is high,
with error below 1 meter for all initial covariance sizes. For each test case
and covariance size, the accuracy of the Taylor expansion was verified by
selecting, from 109 samples generated from the full covariance matrix, the
100 with largest displacement from the reference initial state. As the error
on the DCA was below the selected threshold in all cases, the value obtained
from the DAMC computation corresponds to the one of a pointwise Monte
Carlo (for single DCA and TCA conjunctions). Thus, DAMC can be used
to validate DASS and DALS.

The principal components of the initial covariance matrices of the two
objects, accounting for both position and velocity, are scaled by a factor
l and the collision probability is computed. Note that by using principal
components it is guaranteed that all components are scaled by the same
factor and the correlations coming from the orbit determination process are
not altered. The collision probability computation is repeated for different
values of the scaling factor l and the results are plotted in Figure 11. A good
accordance between the values obtained with DALS and DASS (overlapping
solid lines) and the reference DAMC (indicated with squares) is found for all
test cases and scale factor l.

Note that all curves show the same behaviour: for smaller initial uncer-
tainties the collision probability is zero or very small, then it increases when
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the p.d.f. of the two objects at TCA start to overlap. After reaching its max-
imum value the collision probability decreases because the volume covered
by the p.d.f. continues to grow while the hard-body region (over which the
DALS and DASS ideally integrate the combined p.d.f.) remains constant.
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Figure 11: Covariance scaling analysis: collision probability versus scaling factor l. Solid
curves are obtained with DALS-3 and DASS-3, squares represent the reference values
computed with DAMC-3.
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4.4. Non-Gaussian distribution

Besides reducing computational time and managing nonlinearities by set-
ting the expansion order k > 1, the DA-based methods can be modified
to deal with non-Gaussian distributions. The DA-based propagation with
AIDA does not depend on the initial distribution and so are the Taylor ex-
pansions of the DCA and TCA. ***Thus, the only requirement for DA-based
methods to work with arbitrary initial distributions is to suitably change the
sampling procedure.***

The case of a uniform distribution for the initial states is here analyzed and
DAMC is used to compute the collision probability. Sampling is performed
in principal components, since they are independent. After assembling the
12×12 global covariance matrix, where no correlations between the two col-
liding objects are considered, the eigenvalues and eigenvectors are computed.
The range of each uniform distribution is selected so that its standard devi-
ation σi equals the one of the original Gaussian distribution, i.e.







√
3

6 σi

for x ∈
[

−σi

√
3;+σi

√
3
]

0 elsewhere .

(31)

The sampled 12-dimensional vector u is then transformed from principal
components to J2000 reference frame by

z = V u (32)

where z = {x1
0;x

2
0} and V is a 12×12 matrix, whose columns are the eigen-

vectors of the two covariance matrices. The obtained vector z is then used in
DAMC algorithm to evaluate the Taylor expansion of the DCA, whose value
is then compared with the collision threshold D.

A detail of the resulting p.d.f. throughout the above process is portrayed in
Figure 12. It can be observed how the principal component is uniformly dis-
tributed and the p.d.f. of the first component of r1

0 in J2000 has a trapezoidal
shape. After the propagation, the p.d.f. resembles a triangular distribution.

The computed collision probabilities are listed in Table 6, where the order
k = 3 is used for the DCA expansion. The collision probability decreases
significantly for test case B, whereas it increases by a factor of about 10 for
test case C. Smaller variations can be observed for the remaining test cases.

This example shows the importance of considering the proper uncertainty
distribution for the initial positions and velocity of the two objects. DAMC,
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(c) Relative distance component

Figure 12: Probability distribution function for non-Gaussian initial state uncertainties.
The p.d.f. are normalized by the current value of σ and a Gaussian distribution with the
same standard deviation is plotted for comparison.

DALS, and DASS have the maximum flexibility in these terms, as they can
manage any combination of initial distributions, which can also differ between
target and chaser. In addition, the high-order polynomial approximation
accounts for nonlinear effects on the p.d.f. resulting from orbital propagation.

5. Conclusion

Three algorithms, based on the high order Taylor expansion of the DCA
with respect to initial uncertainties, have been proposed for the computation
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Table 6: Collision probability using DAMC-3 and uniform distribution for initial orbital
states

Test case
DCA D Pc Pc NT

tc
[m] [m] (Gaussian) (Uniform) [s]

A 51.0 10 2.869E-3 2.591E-3 1.7E+6 12.86

B 136.6 16 3.597E-5 4.375E-6 1.2E+8 877.96

C 75.7 12 5.214E-4 4.783E-3 8.9E+5 6.74

D 937.1 15 5.751E-4 7.484E-4 7.5E+6 56.87

of collision probability. This approach enables significant savings in terms
of computational effort, since the numerical propagation of the orbital dy-
namics is replaced by polynomial evaluations. The propagations account
for the main sources of perturbation, using up-to-date models for spherical
harmonics and air density. The procedure described for the expansion of
the TCA and DCA ***, applicable to cases with a single TCA/DCA, ***
can be adapted to any set of initial states and using any arbitrary reference
frame, which widens the applicability of the method to data coming from any
special perturbation catalog. In addition, the probability distribution of the
uncertain initial position and velocity is not required to be Gaussian. The
algorithm for the identification of the TCA and DCA is insensitive to the
initial conditions probability density function. Thus, the only modification
to the method described here to work with non-Gaussian distributions is the
sampling procedure (as shown by the uniform distribution example).

Besides a DA version of a standard Monte Carlo algorithm, here labelled
DAMC, two advanced Monte Carlo methods for the computation of collision
probability have been presented and adapted to DA techniques: Line Sam-
pling and Subset Simulation. The resulting methods are named DALS and
DASS respectively and both have better performances in terms of compu-
tational time and accuracy with respect to DAMC. For collision probability
down to 10−4, the DALS outperforms the other two methods, whereas for
lower probabilities DASS turns out to be more accurate than the other meth-
ods. According to these results DASS is preferable when collision probability
is below 10−4, whereas DALS should be used for higher probabilities. The
selection of the method to use could be translated in terms of DCA, selecting
DALS when the relative distance is below a few hundreds metres and DASS
on the other case.
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Tests performed on both long-term and short-term encounters have shown
that the collision probabilities computed with the three methods are in good
accordance. Being based on the Taylor expansion of the TCA and DCA,
and since no assumptions are made on the dynamics of the encounter, the
presented methods are also suitable for close encounters with low relative
velocity, *** provided that a single TCA/DCA occurs in the considered time
window.*** It has been shown that, using an expansion order k > 1, the
methods can capture the effects of nonlinear relative motion on collision
probability.

Future studies will focus on further improving the computational perfor-
mances of the methods. In particular, all three methods can be parallelized
with small effort. The codes can be classified as embarrassingly parallel,
since the evaluation performed for each sample are independent one from the
other. The cases of multiple TCAs and DCAs in long-term encounters will
be investigated in future works to allow for the computation of the accumu-
lated nonlinear collision probability. *** In addition, the applicability of the
DA-based methods to the case of non-spherical objects will be studied. ***

The applicability of the proposed method to the computation of conflict
probability will be also investigated. The method could be directly applied
to the case of spherical conflict volumes, whereas the performance function
should be properly designed to manage elliptical conflict volumes.
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Appendix A. Initial states

Test case A

# Satellite ID
39152
# Reference UT
10/02/2014 19:12:35.0844445825
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−3.6439539563E + 03 +9.1878920823E − 01
+5.9878758060E + 03 +5.3316032714E − 01
+4.9808066441E + 00 +7.4730343033E + 00
# Covariance matrix (km2, km2/s, km2/s2)
+9.8237058494E − 04 +3.8915942674E − 04 +1.9571722596E − 04 +1.6609615808E − 07 −2.2559491098E − 07 +1.9015667113E − 07
+3.8915942674E − 04 +5.7555444198E − 04 +1.0303424759E − 04 +4.0954623941E − 08 −1.5338795992E − 07 −3.0843253026E − 07
+1.9571722596E − 04 +1.0303424759E − 04 +2.7558675605E − 03 +1.1746412424E − 06 −1.9215069558E − 06 +1.1861317840E − 08
+1.6609615808E − 07 +4.0954623941E − 08 +1.1746412424E − 06 +1.5490440293E − 09 −3.1617343607E − 10 −1.0891636943E − 10
−2.2559491098E − 07 −1.5338795992E − 07 −1.9215069558E − 06 −3.1617343607E − 10 +1.8659786917E − 09 −8.3430324021E − 11
+1.9015667113E − 07 −3.0843253026E − 07 +1.1861317840E − 08 −1.0891636943E − 10 −8.3430324021E − 11 +4.1396922057E − 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.2218479923E − 02
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.0694123476E − 02
# TLE used for nonlinear least square fit
1 39152U 13018C 14041.80040607 .00002412 00000-0 34810-3 0 8423
2 39152 98.0284 121.5048 0018766 38.9612 321.2977 14.77065112 42877

# Satellite ID
27580
# Reference UT
10/02/2014 16:21:14.1030737758
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−3.8922004631E + 03 −6.2512439849E + 00
−1.0438435353E + 03 +1.8465268478E − 01
+5.7962513479E + 03 −4.1358463997E + 00
# Covariance matrix (km2, km2/s, km2/s2)
+1.9547374453E − 03 −9.8049890402E − 05 +1.0580067225E − 03 −1.1794923458E − 06 −2.6119495220E − 07 +1.3789927232E − 06
−9.8049890402E − 05 +1.1188760540E − 03 +7.8137564847E − 05 −1.1565590860E − 08 +1.3391748522E − 08 −7.1596458005E − 08
+1.0580067225E − 03 +7.8137564847E − 05 +1.0336519655E − 03 −4.2647489665E − 07 −1.7889070361E − 07 +1.1193578612E − 06
−1.1794923458E − 06 −1.1565590860E − 08 −4.2647489665E − 07 +9.1252134319E − 10 +8.0369513444E − 11 −7.6890339138E − 10
−2.6119495220E − 07 +1.3391748522E − 08 −1.7889070361E − 07 +8.0369513444E − 11 +1.2941888854E − 09 −6.9242035260E − 11
+1.3789927232E − 06 −7.1596458005E − 08 +1.1193578612E − 06 −7.6890339138E − 10 −6.9242035260E − 11 +1.4620365188E − 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.7201681066E − 05
# SRP Area to mass ratio (m2/kg), eps = 0.31
+9.8460198665E − 02
# TLE used for nonlinear least square fit
1 27580U 01049MY 14041.68141323 .00001359 00000-0 22429-3 0 5945
2 27580 97.8555 3.7377 0047446 330.9850 152.8019 14.71277121622316
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Test case B

# Satellite ID
27453
# Reference UT
20/11/2013 13:26:25.8947440982
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−2.4979059959E + 03 −5.9504749387E + 00
+3.0653803366E + 02 +3.8129647668E + 00
+6.7181721934E + 03 −2.3755680897E + 00
# Covariance matrix (km2, km2/s, km2/s2)
+1.8615176132E − 03 −5.9371488217E − 04 +5.7527411082E − 04 −6.4855641668E − 07 +1.4422052340E − 07 +1.4063005261E − 06
−5.9371488217E − 04 +1.3880156120E − 03 −2.8152360401E − 04 +3.4638522095E − 07 −3.9996702959E − 08 −9.2455468978E − 07
+5.7527411082E − 04 −2.8152360401E − 04 +5.8855927117E − 04 +7.6250286311E − 08 −1.6871676008E − 07 +6.6170167678E − 07
−6.4855641668E − 07 +3.4638522095E − 07 +7.6250286311E − 08 +7.2731034077E − 10 +2.4744622174E − 10 −3.8539559873E − 10
+1.4422052340E − 07 −3.9996702959E − 08 −1.6871676008E − 07 +2.4744622174E − 10 +9.1680701357E − 10 +1.5038111950E − 10
+1.4063005261E − 06 −9.2455468978E − 07 +6.6170167678E − 07 −3.8539559873E − 10 +1.5038111950E − 10 +1.4968859391E − 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.0075588399E − 03
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.7067261334E − 02
# TLE used for nonlinear least square fit
1 27453U 02032A 13324.56002193 .00000354 00000-0 16975-3 0 3501
2 27453 98.3115 330.3370 0012692 70.4075 38.4024 14.24645909592980

# Satellite ID
33692
# Reference UT
20/11/2013 13:02:7.8791964054
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
+2.7072504230E + 03 +1.1053867194E + 00
+6.6185027866E + 03 −4.5872732420E − 01
+6.5408784620E + 00 +7.3812411350E + 00
# Covariance matrix (km2, km2/s, km2/s2)
+7.4456143946E − 04 −2.1033418661E − 04 +1.5630845774E − 04 −9.5245718864E − 08 −1.9436808166E − 07 −9.0622152364E − 08
−2.1033418661E − 04 +3.1772267900E − 04 −6.7843369616E − 05 +1.9817261436E − 09 +9.8865423604E − 08 −2.2049290292E − 07
+1.5630845774E − 04 −6.7843369616E − 05 +1.8524950529E − 03 −5.4832073914E − 07 −1.3392393107E − 06 −2.2891164616E − 09
−9.5245718864E − 08 +1.9817261436E − 09 −5.4832073914E − 07 +9.1837031296E − 10 +1.4156627714E − 10 −9.0630235032E − 11
−1.9436808166E − 07 +9.8865423604E − 08 −1.3392393107E − 06 +1.4156627714E − 10 +1.2051410084E − 09 +3.8737522574E − 11
−9.0622152364E − 08 −2.2049290292E − 07 −2.2891164616E − 09 −9.0630235032E − 11 +3.8737522574E − 11 +2.6817511423E − 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+6.1554384920E − 01
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.8921957815E − 05
# TLE used for nonlinear least square fit
1 33692U 99025DGD 13324.54314675 .00015012 00000-0 56966-2 0 3993
2 33692 99.1407 67.9439 0028402 336.9020 23.1694 14.30917181292566
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Test case C

# Satellite ID
37838
# Reference UT
21/11/2013 13:04:12.9898434877
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−2.7064133232E + 02 −6.9641618091E + 00
+7.2375327257E + 03 −2.6533008678E − 01
+8.8144484510E − 01 +2.5459684582E + 00
# Covariance matrix (km2, km2/s, km2/s2)
+1.4620065692E − 03 +1.5096126850E − 04 −3.4342152452E − 04 +3.2500902338E − 08 +1.1756166169E − 06 −1.8919723104E − 08
+1.5096126850E − 04 +2.1171590357E − 04 −5.6611199550E − 05 +1.8808430093E − 07 +1.5635248049E − 07 −6.8748866154E − 08
−3.4342152452E − 04 −5.6611199550E − 05 +7.3178022570E − 04 −1.8310062662E − 08 −4.5741482493E − 07 +8.8305361044E − 09
+3.2500902338E − 08 +1.8808430093E − 07 −1.8310062662E − 08 +2.4930955928E − 10 +5.3419271859E − 11 +1.3816886668E − 10
+1.1756166169E − 06 +1.5635248049E − 07 −4.5741482493E − 07 +5.3419271859E − 11 +1.0872884658E − 09 −1.6378238816E − 11
−1.8919723104E − 08 −6.8748866154E − 08 +8.8305361044E − 09 +1.3816886668E − 10 −1.6378238816E − 11 +5.7539188515E − 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.3696048019E − 03
# SRP Area to mass ratio (m2/kg), eps = 0.31
+1.1868850460E − 03
# TLE used for nonlinear least square fit
1 37838U 11058A 13325.54459479 .00000586 00000-0 18131-3 0 5302
2 37838 19.9787 92.3179 0009179 164.4307 195.6381 14.09686725108936

# Satellite ID
37840
# Reference UT
20/11/2013 08:13:18.4635964036
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−2.5924255453E + 02 −6.9640911370E + 00
+7.2375143678E + 03 −2.5310140058E − 01
+8.2501627159E − 01 +2.5436846038E + 00
# Covariance matrix (km2, km2/s, km2/s2)
+8.9908619704E − 04 +3.5482498530E − 05 −1.5690448148E − 04 −2.2950305574E − 08 +6.7406759066E − 07 −2.1839226852E − 09
+3.5482498530E − 05 +1.3622581555E − 04 −8.5489681255E − 06 +1.2828235413E − 07 +3.7833918148E − 08 −4.7743784534E − 08
−1.5690448148E − 04 −8.5489681255E − 06 +5.2397255801E − 04 +6.6104495832E − 09 −2.4509570267E − 07 +1.1577334597E − 09
−2.2950305574E − 08 +1.2828235413E − 07 +6.6104495832E − 09 +1.8248705329E − 10 −8.7155540637E − 12 +1.1263652901E − 10
+6.7406759066E − 07 +3.7833918148E − 08 −2.4509570267E − 07 −8.7155540637E − 12 +6.0575620993E − 10 −3.1320777230E − 13
−2.1839226852E − 09 −4.7743784534E − 08 +1.1577334597E − 09 +1.1263652901E − 10 −3.1320777230E − 13 +4.4991999269E − 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.6733308516E − 02
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.6790857074E − 02
# TLE used for nonlinear least square fit
1 37840U 11058C 13324.34257481 .00000265 00000-0 00000+0 0 5857
2 37840 19.9633 92.2212 0012886 173.2946 186.7632 14.10655180108878
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Test case D

# Satellite ID
16199
# Reference UT
20/11/2013 01:04:17.9371109605
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−4.0984596292E + 04 −7.1565317033E − 01
+9.3894851315E + 03 −2.8957835671E + 00
+2.7224571229E + 03 −7.5321799039E − 01
# Covariance matrix (km2, km2/s, km2/s2)
+2.0594892337E − 03 +1.8379005001E − 03 +4.7338792975E − 04 −1.1332545815E − 07 −9.2599726031E − 08 −2.3507445814E − 08
+1.8379005001E − 03 +8.7961151778E − 03 +8.4366722845E − 04 −3.5906104057E − 07 +9.8838124092E − 08 +2.8114925162E − 08
+4.7338792975E − 04 +8.4366722845E − 04 +5.4860265792E − 03 −9.5190527137E − 08 +2.7889672850E − 08 +8.1851469305E − 09
−1.1332545815E − 07 −3.5906104057E − 07 −9.5190527137E − 08 +2.2266514440E − 11 −3.2210326166E − 12 −8.0528400269E − 13
−9.2599726031E − 08 +9.8838124092E − 08 +2.7889672850E − 08 −3.2210326166E − 12 +1.1764972771E − 11 −4.2665830474E − 12
−2.3507445814E − 08 +2.8114925162E − 08 +8.1851469305E − 09 −8.0528400269E − 13 −4.2665830474E − 12 +2.7035786499E − 11
# SRP Area to mass ratio (m2/kg), eps = 0.31
+1.1223807797E − 06
# TLE used for nonlinear least square fit
1 16199U 85102A 13324.04465205 -.00000265 00000-0 10000-3 0 2554
2 16199 14.6620 1.3261 0008520 116.5622 48.8663 1.00297344105627

# Satellite ID
29648
# Reference UT
19/11/2013 13:45:33.4224164486
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
+4.2091373228E + 04 +1.8931804031E − 01
−2.5929194691E + 03 +3.0683059623E + 00
−9.2251747965E + 01 +6.6909152476E − 04
# Covariance matrix (km2, km2/s, km2/s2)
+1.4139689390E − 03 +5.7834535594E − 04 −5.2183084638E − 05 −2.1498800482E − 08 −1.0394009353E − 07 +1.3075451281E − 11
+5.7834535594E − 04 +7.9198371095E − 03 −1.5459818308E − 04 −3.3496996136E − 07 +1.2443268919E − 08 +7.3094127670E − 10
−5.2183084638E − 05 −1.5459818308E − 04 +4.5115226302E − 03 −4.8657365415E − 09 +4.6785900696E − 09 +4.9130205025E − 11
−2.1498800482E − 08 −3.3496996136E − 07 −4.8657365415E − 09 +1.9350129603E − 11 −1.1375786363E − 12 +9.1002280124E − 15
−1.0394009353E − 07 +1.2443268919E − 08 +4.6785900696E − 09 −1.1375786363E − 12 +8.6020208781E − 12 −3.4871343335E − 15
+1.3075451281E − 11 +7.3094127670E − 10 +4.9130205025E − 11 +9.1002280124E − 15 −3.4871343335E − 15 +2.3739652425E − 11
# SRP Area to mass ratio (m2/kg), eps = 0.31
+4.0010579635E − 06
# TLE used for nonlinear least square fit
1 29648U 06056A 13323.57330350 -.00000244 00000-0 10000-3 0 1373
2 29648 0.0702 90.3404 0001774 125.3902 140.9346 1.00270688 25513
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