I. INTRODUCTION

On-field operation of Flash memory arrays typically involves arbitrary time sequences of program/erase (P/E) cycles and idle periods, with the possibility for temperature to change within a wide range of values. The high electrical stress determined by P/E cycles on the cell tunnel oxide gives rise to charge trapping therein, impacting the array P/E performance [2]–[9] and determining threshold-voltage (V_T) instabilities when cells should instead keep their V_T level, i.e., their datum, in time [7], [10]–[15]. V_T instabilities come from the neutralization of the charge trapped in the cell tunnel oxide, commonly referred to as charge detrapping, representing a sort of damage recovery process taking place when the cell is idle, improving its performance and reliability in the next operations. This process has been shown to be highly thermally activated, following an Arrhenius law with activation energy $E_A \simeq 1.1 \text{ eV}$ [7], [13], [16], [17]. As a consequence, V_T instabilities encountered during a data retention time stretch starting at a certain point of device lifetime depend not only on the number of P/E cycles (N_{cyc}) previously performed on the array, but also on how cycles have been distributed along the time axis and on the time-temperature profile of the device. Considering the effect of P/E cycles, idle periods, and temperature on V_T instabilities is, therefore, mandatory for their correct assessment during on-field operation and for the development of accelerated test schemes able to reproduce on-field results in much shorter experimental times [18].

In this paper, starting from the theoretical background on charge detrapping presented in the corresponding Part I [1] and extending the preliminary results presented in [19], we address the impact of idle periods, temperature, and P/E cycles on the spectral distribution of detrapping events, showing how the statistics of V_T displacements (ΔV_T) coming from detrapping can be directly obtained from this distribution. Our results allow, therefore, to deal with whatever on-field usage or testing scheme of the memory array, accounting both for damage recovery through detrapping and for damage creation through P/E cycles. The model is validated against a large number of experimental data, requiring a careful control of the experimental procedures commonly used to assess V_T instabilities and the inclusion of other physical phenomena affecting ΔV_T in the experiments. Results represent a milestone for the modeling and the predictive analysis of V_T instabilities in Flash memories.

II. SPECTRAL ANALYSIS OF DETRAPPING EVENTS

Referring to electron detrapping, two main results achieved in Part I of this paper [1] are that if the number of trapped electrons (N_T) in the tunnel oxide of the array cells is Poisson...
distributed then the number of detrapping events \((n_d)\) in a time \(t\) follows a Poisson statistics with average value \((n_d)\) and, in turn, the probability density function (pdf—\(f\)) of cell \(\Delta V_T\) is given by

\[
f(\Delta V_T) = \mathcal{F}^{-1}\{e^{(n_d)\{\mathcal{F}(\Delta V_T^0)\}-1}\}
\]

(1)

where \(\mathcal{F}\) and \(\mathcal{F}^{-1}\) represent, respectively, the Fourier and inverse Fourier transform operations and \(f(\Delta V_T^0)\) is the pdf of the \(\Delta V_T\) shift coming from a single detrapping event. Note that (1) does not involve any assumption on the spectral distribution of the single detrapping events, i.e., on the pdf of their time constant \(\tau_d\). The impact of this distribution on \(\Delta V_T\) is, in fact, accounted for via \((n_d)\), whose calculation as a function of array on-field use represents, therefore, the critical point for the reliability assessment of \(V_T\) instabilities due to charge detrapping.

To calculate \((n_d)\), we can start assuming that detrapping events are statistically distributed along the logarithmic time axis according to an arbitrary pdf \(f(\log_{10}(\tau_d))\). With \(N_t\) that is Poisson distributed among the cells, the number of trapped electrons in an infinitesimal interval \(d\log_{10}(\tau_d)\) follows then a Poisson statistics whose average is simply given by \((N_t) \cdot f(\log_{10}(\tau_d))\cdot d\log_{10}(\tau_d)\). The term \((N^*_t)(\tau_d)\) is given by \((N_t) \cdot f(\log_{10}(\tau_d))\) represents the average number of trapped electrons per unit log time, i.e., the average spectral density of trapped electrons (units: electrons/decade). This spectral density changes during array operation and the average number of detrapping events in the time stretch between \(t = 0\) and \(t\) can be straightforwardly calculated from its value at these times \((\langle N^*_t(\tau_d; 0)\rangle)\) and \((\langle N^*_t(\tau_d; t)\rangle)\) as

\[
\langle n_d(t)\rangle = \int_{-\infty}^{+\infty} \left[\langle N^*_t(\tau_d; 0)\rangle - \langle N^*_t(\tau_d; t)\rangle \right] d\log_{10}(\tau_d).
\]

(2)

In the following, the effect of idle periods, temperature, and P/E cycles on \((N^*_t(\tau_d))\) is addressed.

A. Impact of Idle Periods

Starting from an average spectral density of trapped electrons \((N^*_t(\tau_d; 0))\), the spectral density after an idle time stretch of duration \(t\) is given by

\[
\langle N^*_t(\tau_d; t)\rangle = \langle N^*_t(\tau_d; 0)\rangle \cdot e^{-t/\tau_d}.
\]

(3)

Note that the term \(e^{-t/\tau_d}\) represents the probability that a detrapping event with time constant \(\tau_d\) does not take place within the time \(t\). Assuming that \(\log_{10}(\tau_d)\) at \(t = 0\) is uniformly distributed between a minimum \((\tau_d^{\min} = 10^{-5}\ h)\) and a maximum \((\tau_d^{\max} = 10^9\ h)\) \(\tau_d\) value and that \((N_t) = 10\), Fig. 1 shows \((\langle N^*_t(\tau_d; 0)\rangle)\) and \((\langle N^*_t(\tau_d; t)\rangle)\) for \(t = 1\) min and \(1\) h. Results clearly highlight the existence of a detrapping front located about \(\tau_d = t\) and, therefore, moving from left to right in the figure as time elapses, emptying the spectrum from the shortest toward the longest time constants.

Results in Fig. 1 allow to easily explain what happens to the average \(\Delta V_T\) \((\langle \Delta V_T \rangle)\) transient when this is monitored taking a read operation after a delay \(t_0\) since the beginning of the detrapping process as reference, as usually done in experimental tests [14]. The case under study is schematically shown in the inset of Fig. 2: at \(t = 0\), the detrapping process is supposed to begin, with an initial spectral density of trapped electrons \((N^*_t(\tau_d; 0))\), but \(V_T\) starts to be monitored only after a delay \(t_0\) equal to \(1\) min or \(1\) h. \(\Delta V_T\) is reported as a function of \(t_B\), i.e., the time elapsed after the start of the first read operation on the array. \(\langle \Delta V_T \rangle = 50\) mV.

Fig. 1. Calculated spectral density of trapped electrons at \(t = 0\), assumed uniformly distributed along the logarithmic \(\tau_d\) axis between \(\tau_d^{\min} = 10^{-5}\) h and \(\tau_d^{\max} = 10^9\) h, and after an idle period of duration \(t = 1\) min and \(1\) h. \(\langle N_t \rangle = 10\).

Fig. 2. Calculated \((\langle \Delta V_T \rangle(\tau_B)\rangle)\) transient for the test schematically reported in the inset: at \(t = 0\) detrapping is assumed to begin, but \(V_T\) starts to be monitored only after a delay \(t_0\) equal to \(1\) min or \(1\) h. \(\Delta V_T\) is reported as a function of \(t_B\), i.e., the time elapsed since the first read operation on the array. \(\langle \Delta V_T \rangle = 50\) mV.

In the following, the effect of idle periods, temperature, and P/E cycles on \((N^*_t(\tau_d))\) is addressed.

A. Impact of Idle Periods

Starting from an average spectral density of trapped electrons \((N^*_t(\tau_d; 0))\), the spectral density after an idle time stretch of duration \(t\) is given by

\[
\langle N^*_t(\tau_d; t)\rangle = \langle N^*_t(\tau_d; 0)\rangle \cdot e^{-t/\tau_d}.
\]

(3)

Note that the term \(e^{-t/\tau_d}\) represents the probability that a detrapping event with time constant \(\tau_d\) does not take place within the time \(t\). Assuming that \(\log_{10}(\tau_d)\) at \(t = 0\) is uniformly distributed between a minimum \((\tau_d^{\min} = 10^{-5}\ h)\) and a maximum \((\tau_d^{\max} = 10^9\ h)\) \(\tau_d\) value and that \((N_t) = 10\), Fig. 1 shows \((\langle N^*_t(\tau_d; 0)\rangle)\) and \((\langle N^*_t(\tau_d; t)\rangle)\) for \(t = 1\) min and \(1\) h. Results clearly highlight the existence of a detrapping front located about \(\tau_d = t\) and, therefore, moving from left to right in the figure as time elapses, emptying the spectrum from the shortest toward the longest time constants.

Results in Fig. 1 allow to easily explain what happens to the average \(\Delta V_T\) \((\langle \Delta V_T \rangle)\) transient when this is monitored taking a read operation after a delay \(t_0\) since the beginning of the detrapping process as reference, as usually done in experimental tests [14]. The case under study is schematically shown in the inset of Fig. 2: at \(t = 0\), the detrapping process is supposed to begin, with an initial spectral density of trapped electrons \((N^*_t(\tau_d; 0))\), but \(V_T\) starts to be monitored only after a delay \(t_0\) referring both \(\Delta V_T\) and time to the first read operation, i.e., defining \(\Delta V_T\) as \(V_T(t_0 + t_B) - V_T(t_0)\) and considering it as a function of \(t_B\). Fig. 2 shows the \((\Delta V_T(\tau_B))\) transient in the case of \(t_0 = 1\) min and \(1\) h and assuming for \((\langle N^*_t(\tau_d; 0)\rangle)\) the uniform distribution at \(t = 0\) shown in Fig. 1. Results have been calculated using (2)-(3) and according to

\[
\langle \Delta V_T(\tau_B) \rangle = -\langle \Delta V_T^0 \rangle \cdot \left((n_d(0 + t_B) - n_d(0)) \right)
\]

(4)

where \(\langle \Delta V_T^0 \rangle\) is the average shift resulting from a single detrapping event. From Fig. 2, the \((\Delta V_T(\tau_B))\) transient detaches from \(0\) when \(t_B\) reaches \(t_0\), then showing a decreasing rate \(\alpha\) up \(\tau_B \geq \tau_d^{\max}\) and saturating from this time on. This behavior can be explained considering that during the delay period the spectral density of trapped electrons loses almost all of its electrons with \(\tau_d < t_0\) (see the detrapping front at \(1\) min and \(1\) h in Fig. 1), allowing further detrapping events and,
in turn, the decrease of \(\langle \Delta V_T(t_B) \rangle \), only when \(t_B \) becomes comparable with or longer than \(t_0 \). In addition to that, note that the spectrum of Fig. 1 is not modified for \(\tau_d \) much longer than 1 min or 1 h, i.e., the values of \(t_0 \) considered in Fig. 2, keeping the constant initial density \(\langle N^*_t(\tau_d; 0) \rangle \) up to \(\tau_d^{\max} \). This explains why both the \(\langle \Delta V_T(t_B) \rangle \) transients of Fig. 2 reach the same slope after \(t_0 \), corresponding to a decreasing rate \(\alpha \) [1]

\[
\alpha = \frac{\langle \Delta V_T^1 \rangle \cdot \langle N_t \rangle}{\ln (\tau_d^{\max}/\tau_d^{\min})} = \frac{\langle \Delta V_T^1 \rangle \cdot \langle N^*_t(\tau_d > t_0; 0) \rangle}{\ln 10}.
\]

This equation highlights a strong connection between the slope of the \(\langle \Delta V_T(t_B) \rangle \) transient and the spectral density of trapped electrons in the explored time range, allowing to easily explain the shape of the transient in more complex experimental schemes (see next sections). Finally, note that the saturation of \(\langle \Delta V_T(t_B) \rangle \) in Fig. 2 is just the result of the assumption that no detrapping event has a \(\tau_d \) longer than \(\tau_d^{\max} \) in Fig. 1, and the different saturation levels of the curves related to different \(t_0 \) come from the higher number of detrapping events taking place during \(t_0 \).

From the previous results, the \(\langle \Delta V_T(t_B) \rangle \) transients of Fig. 2 can be described for \(t_B \) shorter than \(\tau_d^{\max} \) by the following relation:

\[
\langle \Delta V_T(t_B) \rangle = -\alpha \cdot \ln \left(1 + \frac{t_B}{t_0} \right). \tag{6}
\]

This expression has been frequently used to fit experimental results coming from uniform cycling tests [14] and describes very accurately the transition from 0 to the slope \(\alpha \) of the \(\langle \Delta V_T(t_B) \rangle \) transient when \(\langle N^*_t(\tau_d; 0) \rangle \) is constant between \(\tau_d^{\min} \) and \(\tau_d^{\max} \) (a more rigorous validation of (6) can be derived starting from (10) in Part I of this paper [1]). In this case, the \(\langle \Delta V_T(t_B) \rangle \) curves resulting from different delay periods \(t_0 \) are just horizontally shifted along the logarithmic \(t_B \) axis, as clearly appears from Fig. 2. However, in the more general case where \(\langle N^*_t(\tau_d; 0) \rangle \) is not constant, more complex shapes may result for the \(\langle \Delta V_T(t_B) \rangle \) transient, as shown in Section III when dealing with distributed-cycling experiments. In these cases, (6) may not be suited to reproduce the \(\langle \Delta V_T(t_B) \rangle \) behavior and transients corresponding to different \(t_0 \) may not be just horizontally shifted along the logarithmic \(t_B \) axis.

Finally, note that the existence of delay periods between the beginning of the detrapping process and the first read operation on the array makes the \(\Delta V_T(t_B) \) results independent of \(\tau_d^{\min} \). \(\Delta V_T(t_B) \) depends, in fact, on the spectral density of trapped electrons at times \(t \geq t_0 \), i.e., when the detrapping front has already removed almost all of the electrons with \(\tau_d < t_0 \). Therefore, \(\tau_d^{\min} \) can be arbitrarily chosen provided that the spectral density of trapped electrons is not modified for \(\tau_d \) close or longer than \(t_0 \). Moreover, note also that even \(\tau_d^{\max} \) can be arbitrarily chosen in the absence of a clear saturation of the \(\langle \Delta V_T(t_B) \rangle \) transient measured in an experimental test, with the only constraint that this time constant is longer than the maximum experimental time and that, therefore, \(\langle N^*_t(\tau_d; 0) \rangle \) is not modified up to that time. This explains why we used a very high \(\tau_d^{\max} = 10^6 \) h in this and in the next section, leading to the saturation of the \(\langle \Delta V_T(t_B) \rangle \) transient only at extremely long, and experimentally unapproachable, times. Saturation in Figs. 2 and 4 should, therefore, be considered as proof that our model would be capable of reproducing, if experimental evidence were provided, this feature of the detrapping process also, but not as a theoretical prediction of any upper boundary to \(\tau_d \). From these considerations, \(\tau_d^{\min} \) and \(\tau_d^{\max} \) appear just as arbitrary parameters defined for mathematical convenience but without any meaningful physical role.

B. Impact of Temperature

A general agreement exists in that thermal activation of detrapping in mainstream Flash technologies can be described by an Arrhenius law with activation energy \(E_A \simeq 1.1 \) eV [7, 13, 16]-[18]. To consider this effect, we assumed that changing temperature from a value \(T_1 \) to a value \(T_2 \) modifies the time constant \(\tau_d \) of detrapping events according to

\[
\tau_d(T_2) = \tau_d(T_1) \cdot e^{-E_A(1/kT_1-1/kT_2)} \tag{7}
\]

then resulting in a horizontal shift of \(\langle N^*_t(\tau_d; t) \rangle \) along the logarithmic \(\tau_d \) axis.

The effect of temperature on the spectral density of trapped electrons is shown in Fig. 3 assuming that \(\langle N^*_t(\tau_d; 0) \rangle \) is
uniform between \(t_d^{\text{min}} = 10^{-5} \) h and \(t_d^{\text{max}} = 10^6 \) h and that after an idle period of duration \(t_0 = 1 \) h at RT temperature is increased to \(T_B = 85 \) °C (see the inset of Fig. 4 for the considered test scheme). Due to the temperature increase and the thermal activation of detrapping events, the spectral density at the end of the idle period (dashed line) is leftward shifted of an amount given by the exponential term in (7) (solid line). As a consequence, the resulting \(\langle \Delta V_T(t_B) \rangle \) transient during the data retention phase at \(T_B = 85 \) °C in Fig. 4 is just a leftward-shifted replica of the transient that would be obtained at \(T_B = RT \) (note that this would be true even if \(\langle N^0_d(t_d; 0) \rangle \) were not uniform), in agreement with experimental observations [14]. From these results, the duration \(t_B \) and the temperature \(T_B \) of idle periods can be arbitrarily modified provided that they follow the Arrhenius law with \(E_A \simeq 1.1 \) eV, giving the possibility to reproduce in reasonable experimental time stretches the same detrapping dynamics taking place over a much longer timescale by means of a higher temperature [7], [13], [18].

C. Impact of P/E Cycles

Charge trapping in mainstream Flash technologies has been shown to follow approximately a square root dependence on the number of P/E cycles [7], [13], leading to \(\langle \Delta V_T(t_B) \rangle \) transients of higher slope \(\alpha \) for increasing \(N_{\text{cyc}} \) [14], in agreement with the link between \(\alpha \) and \(\langle N^0_d(t_d; 0) \rangle \) given by (5). To reproduce the storage of new electrons in the cell tunnel oxide resulting from each P/E cycle, we assumed that \(\langle N^*_d(t_d) \rangle \) grows with \(N_{\text{cyc}} \) according to

\[
\langle N^*_d(t_d; N_{\text{cyc}}) \rangle = \langle N^*_d(t_d; N_{\text{cyc}} - 1) \rangle + \Delta \langle N^*_d(t_d) \rangle
\]

with

\[
\langle \Delta N^*_d(t_d) \rangle = \frac{\eta^2}{2 \cdot \langle N^*_d(t_d; N_{\text{cyc}} - 1) \rangle},
\]

\[
\langle \Delta N^*_d(t_d) \rangle > \eta
\]

\[
\langle \Delta N^*_d(t_d) \rangle = \eta - \frac{1}{2} \cdot \langle N^*_d(t_d; N_{\text{cyc}} - 1) \rangle,
\]

\[
\langle \Delta N^*_d(t_d) \rangle < \eta
\]

where \(\eta \) is a parameter (similar expressions could be obtained if charge trapping grew according to slightly different power laws of \(N_{\text{cyc}} \)). Note that (10) represents just an approximation of (9) used to deal with cases where the density of trapped electrons is very low and that the combination of these equations leads to \(\langle N^*_d(t_d; N_{\text{cyc}}) \rangle \simeq \eta \cdot (N_{\text{cyc}})^{1/2} \) as \(N_{\text{cyc}} \) grows, reproducing the experimental observations [7], [13].

An important remark is that, using (8)–(10), we completely avoid any microscopic investigation of the charge trapping process and we did not aim at looking for the physical origin of the square root dependence of the amount of trapped charge in the cell tunnel oxide on \(N_{\text{cyc}} \). Though these points can be considered to be of extreme importance for a comprehensive understanding of Flash memory reliability, their analysis is out of the scope of this paper, deserving dedicated microscopic studies on defects generation and carrier trapping in the oxide. We assumed, therefore, (8)–(10) as phenomenological and justified their validity in that they can well reproduce data obtained from a large variety of experimental tests (Section III).

The effect of cycling on the spectral density of trapped electrons is investigated in Fig. 5 considering the simple case of a uniform cycling scheme with constant pace of 1 P/E cycle per minute, in the case of \(N_{\text{cyc}} = 100, 1000, \) and \(10,000, \) and \(\eta = 0.01. \) The spectral density is shown after a delay period of duration \(t_0 = 1 \) h since the end of cycling and assuming zero initial trapped electrons. \(\eta = 0.01 \) and different \(N_{\text{cyc}}. \)

\[\text{Fig. 5. Calculated spectral density of trapped electrons after an RT delay period of duration } t_0 = 1 \text{ h since the end of cycling, as resulting from (8)–(10) assuming zero initial trapped electrons, } \eta = 0.01 \text{ and different } N_{\text{cyc}}.\]

\[\begin{align*}
\langle \Delta N^*_d(t) \rangle &= \frac{\eta^2}{2 \cdot \langle N^*_d(t; N_{\text{cyc}} - 1) \rangle}, \\
\langle \Delta N^*_d(t) \rangle &= \eta - \frac{1}{2} \cdot \langle N^*_d(t; N_{\text{cyc}} - 1) \rangle,
\end{align*}\]

\[\text{Fig. 6. Calculated } \langle \Delta V_T(t_B) \rangle \text{ transient for the test schematically reported in the inset: } N_{\text{cyc}} \text{ P/E cycles are first performed on the cells, and after an RT delay period of duration } t_0 = 1 \text{ h, } \Delta V_T \text{ starts being monitored, keeping } T_B = RT, \eta = 0.01 \text{ and } \Delta V_T^1 = 50 \text{ mV.} \]

\[\begin{align*}
\langle \Delta V_T(t) \rangle &= \frac{\eta^2}{2 \cdot \langle N^*_d(t; N_{\text{cyc}} - 1) \rangle}, \\
\langle \Delta V_T(t) \rangle &= \eta - \frac{1}{2} \cdot \langle N^*_d(t; N_{\text{cyc}} - 1) \rangle.
\end{align*}\]
Data retention is performed either considering or neglecting random telegraph noise (RTN). The array and after an RT delay of duration \(t_c\) and cycling duration \(t_{cyc}\) during data retention and in the case of \(t_B\) of detrapping events during \(t_B\) of level \(L_3\) during data retention.

In the next section, more complex cycling schemes than that considered in Figs. 5 and 6 will be addressed, leading to more complex behaviors of \(\langle N^e_d(t_d) \rangle\) and \(\langle \Delta V_T(t_B) \rangle\).

III. MODEL VALIDATION

We validated our statistical model for charge trapping/detrapping in nanoscale Flash memories on our 20-nm multilevel NAND technology [20]. We started considering the simple case of a uniform cycling experiment \((N_{cyc} = 10\) k, cycling duration \(t_{cyc} \approx 24\) h, cycling temperature \(T_{cyc} = \text{RT}\)) followed by a data retention phase at constant temperature \(T_B = 80\) °C, with a \(t_0 = 3\) h delay period at RT in between required by the experimental procedure (see the inset of Fig. 7). Cycling was performed with a random programming pattern, i.e., randomly moving the erased cells to one of the four possible \(V_T\) levels of the multilevel device, namely, from lowest to highest, \(E, L_1, L_2\), and \(L_3\). At \(t_0\), the reference read operation on the array was performed, gathering the \(V_T\) of all the cells in a block, and the sample was then warmed to \(T_B\) to accelerate charge detrapping. \(\Delta V_T\) was, finally, evaluated for each cell by periodically cooling the sample to RT and gathering again the block \(V_T\) map. The resulting experimental distribution of \(\Delta V_T\) is shown in Fig. 7, referring to cells being on level \(L_3\) during data retention and in the case of \(t_B = 1\) and 50 h.

To calculate the statistical distribution of \(\Delta V_T\) resulting from the experimental test considered in Fig. 7, we carefully reproduced the test sequence in our model, starting from zero trapped electrons and using (8)–(10) to increase \(\langle N^e_d(t_d) \rangle\) after each P/E cycle, (3) to account for electron detrapping during the idle time stretches in between the cycles and during \(t_0\) and (7) to manage the temperature increase during data retention. From the resulting spectral density of trapped electrons at \(t_0\) and \(t_0 + t_B\), we calculated the average number of detrapping events during \(t_B\) by means of (2) as \(\langle n_d \rangle = \langle n_d(t_0 + t_B) \rangle - \langle n_d(t_0) \rangle\) (note that \(t = 0\) is now the time corresponding to the end of the cycling phase) and used this number in (1) to find the statistical distribution of \(\Delta V_T\). Fig. 7 shows that modeling results (dashed green curves) can nicely reproduce the experimental data for \(\Delta V_T < 0\) after tailoring \(\eta\) and using the \(\Delta V_T\) distribution reported in Fig. 8 (continuous line). The functional form of this distribution was set equal to that of a Gamma function, introducing, therefore, two free parameters in the model besides \(\eta\). The good agreement between modeling and experimental data in Fig. 7 with such a low number of fitting parameters, namely, three, represents a first validation of our model for charge detrapping, which will be further challenged with other test schemes in the following. However, before considering different experimental schemes, in the next section, we address the possibility to extend our model to account also for positive \(\Delta V_T\) during data retention.

A. Additional Contributions to \(\Delta V_T\)

Despite our model proved itself able to reproduce the negative part of the \(\Delta V_T\) statistics in Fig. 7, there is no possibility for it to explain positive \(\Delta V_T\) including only electron detrapping (see the discussion at the end of Part I of this paper [1]). As a consequence, additional physical effects must be considered in the model, introducing the possibility that a cell increases its \(V_T\) during data retention. Hole detrapping and RTN can be considered two of the most relevant of these effects and can be straightforwardly introduced in our model under the assumption that all these contributions to \(\Delta V_T\) are independent. Under this assumption, in fact, the pdf of the total \(\Delta V_T\) \((f_{tot}(\Delta V_T))\) can be obtained from the convolution of the single contributions as

\[
f_{tot}(\Delta V_T) = f_{ED}(\Delta V_T) \otimes f_{HD}(\Delta V_T) \otimes f_{RTN}(\Delta V_T) \otimes f_{GN}(\Delta V_T)
\]

where \(f_{ED}(\Delta V_T)\) and \(f_{HD}(\Delta V_T)\) are the pdf of \(\Delta V_T\) coming from electron and hole detrapping, respectively, and can be calculated from (1) and the spectral analysis methodology given in Section II applied both to electrons and to holes; \(f_{RTN}(\Delta V_T)\) is, instead, the pdf of the RTN contribution to
ΔV_T and f_{GN}(ΔV_T) is that of a Gaussian noise (standard deviation σ_{GN}, zero average value) keeping into account the experimental setup noise.

From [21], a good functional shape for f_{RTN}(ΔV_T) is the following:

\[
f_{\text{RTN}}(\Delta V_T) = c \cdot \delta(\Delta V_T) + \frac{1 - c}{2 \sigma_{\text{RTN}}} e^{-|\Delta V_T|/\sigma_{\text{RTN}}} \tag{12}\]

where \(c\) represents the probability that RTN does not change cell \(V_T\) between the two read operations used to evaluate \(\Delta V_T\), i.e., that its \(\Delta V_T\) due to RTN equals 0. The second term on the right-hand side of (12) accounts, in turn, for the possibility that RTN modifies cell \(V_T\) between the two read operations. This term introduces two exponential tails departing toward positive and negative \(\Delta V_T\), with spread given by \(\sigma_{\text{RTN}}\), following the typical trend of the RTN amplitude statistics [22]–[26]. Note that \(c\), \(\sigma_{\text{RTN}}\), and \(\sigma_{\text{GN}}\) were extracted from the comparison of the \(\Delta V_T\) distribution coming from the convolution of \(f_{\text{RTN}}(\Delta V_T)\) and \(f_{\text{GN}}(\Delta V_T)\) with the \(\Delta V_T\) distribution experimentally obtained with two close read operations on the array at very long \(t_B\), preventing any possible contribution of charge detrapping on the results. These parameters, therefore, are not free when comparing our detrapping model with experimental data.

Despite some experimental evidence of hole detrapping has been reported in [15], including only the RTN contribution to \(\Delta V_T\) when modeling the experimental test of Fig. 7 turned out to be enough to achieve a good agreement between calculated (solid red lines) and experimental results, both for negative and for positive \(\Delta V_T\) values. In particular, RTN appears to introduce the high tail of the \(\Delta V_T\) distribution, while negligibly affecting its low tail. A higher impact of RTN on the low tail of the \(\Delta V_T\) distribution may be expected at very low \(t_B\) or for low \(N_{\text{cyc}}\), i.e., for small contributions of detrapping to \(V_T\) instabilities.

B. Further Validations

To further validate our model for charge detrapping, Fig. 9(a) shows the experimental and calculated \(\langle \Delta V_T(t_B) \rangle\) transient for the uniform cycling test considered in Fig. 7. Our model appears to correctly reproduce the experimental trend both for cells on level L3 and L1 during data retention. To catch the level dependence, we assumed that the detrapping dynamics is negligibly affected by the electric field in the cell tunnel oxide [7], [13], meaning that \(\langle N_e^{\text{f}}(t_d) \rangle\) and \(\langle n_d \rangle\) do not change with the programmed level set at the beginning of the idle periods. We assumed, instead, that charge is exchanged either with the substrate or with the floating gate depending on the cell \(V_T\) level, due to a different field direction in the tunnel oxide. This is schematically shown in the inset of Fig. 8 referring to electron detrapping from level L3 and L1: in the former case, we assumed that electron detrapping involves an interaction with cell channel, while with the floating gate in the latter. In so doing, the key difference between \(V_T\) instabilities on L3 and L1 is not in the detrapping dynamics but in the impact that each detrapping event has on cell \(V_T\), i.e., on \(\Delta V_T\). As a result of this physical picture, the \(\Delta V_T\) distribution for cells on L1 was assumed equal to that on L3 but for a leftward horizontal shift corresponding to the change of \(V_T\) following the storage of a single electron in the floating gate \(\langle \Delta V_T^{\text{f}}(t_B) \rangle\), as shown in Fig. 8. This latter parameter was extracted from measurements of the electron injection spread during incremental step pulse programming [27]–[29] and, therefore, does not represent an additional fitting parameter in our model. Fig. 10 shows that, following this approach, not only the average value, but also the entire \(\Delta V_T\) distribution coming from the detrapping experiment on level L1 can be nicely reproduced keeping all the parameters but \(\Delta V_T^{\text{f}}\) identical.

Figs. 11 and 9(b) prove that our model correctly catches the cycling dependence of \(V_T\) instabilities coming from detrapping, agreeing with data obtained from a uniform cycling experiment similar to that shown in the inset of Fig. 7 but with \(N_{\text{cyc}} = 1\) k. Both the \(\langle \Delta V_T(t_B) \rangle\) transient and the whole \(\Delta V_T\) distribution are well reproduced by our model, confirming that charge detrapping is the dominant source of \(V_T\) instabilities for the vast majority of cells in the investigated test conditions [30]. Note, however, that the mismatch between data and calculations appearing at very low probabilities for some of the cases dealt with in Figs. 11 and 10 may be
considered the evidence of additional physical mechanisms coming into play, which are currently under investigation.

C. Distributed-Cycling Schemes

To challenge our detrapping model with more complex experimental schemes than the uniform cycling test investigated in the previous section, we considered the distributed-cycling experiment shown in Fig. 12(a). A total number $N_{\text{cyc}} = 10 \text{ k}$ P/E cycles were performed on the array at RT in 23.4 h, with three delay periods $\simeq 30 \text{ h}$ long at 100 °C in between. At the end of this cycling phase, V_T starts being monitored after an RT idle period of duration $t_0 \simeq 20 \text{ h}$, then accelerating charge detrapping by increasing the temperature to $T_B = 125 \text{ °C}$. Fig. 12(b) shows that, after carefully reproducing the sequence of this new test in our model, this can correctly reproduce the experimental results with the same set of parameters extracted for the test of Fig. 10. Considering that the cycling scheme of Fig. 12(a) involves changes of temperature and idle periods during cycling, this represents a further strong proof of the validity of our detrapping model, which represents a powerful tool for the reliability analysis of nanoscale Flash memories. Note that the model allows, moreover, to easily explain the shape of the $\langle \Delta V_T(t_B) \rangle$ transient of Fig. 12(b), which do not appear to follow a simple logarithmic behavior like that predicted by (6). In particular, the slope of the transient seems to increase for t_B longer than 10 h, reaching a value that matches the one obtained from the uniform cycling test of Fig. 10. This can be explained considering the spectral distribution of trapped electrons at the first read operation for the test in Figs. 12(a) (shown at $T_B = 125 \text{ °C}$) and 7 (shown at $T_B = 80 \text{ °C}$).

At the end of cycling, the first read operation on the array was performed after an RT delay with duration $t_0 \simeq 20 \text{ h}$, then starting a bake at $T_B = 125 \text{ °C}$ during which V_T was periodically monitored. Fig. 12(b) shows that, after carefully reproducing the sequence of this new test in our model, this can correctly reproduce the experimental results with the same set of parameters extracted for the test of Fig. 10. Considering that the cycling scheme of Fig. 12(a) involves changes of temperature and idle periods during cycling, this represents a further strong proof of the validity of our detrapping model, which represents a powerful tool for the reliability analysis of nanoscale Flash memories. Note that the model allows, moreover, to easily explain the shape of the $\langle \Delta V_T(t_B) \rangle$ transient of Fig. 12(b), which do not appear to follow a simple logarithmic behavior like that predicted by (6). In particular, the slope of the transient seems to increase for t_B longer than 10 h, reaching a value that matches the one obtained from the uniform cycling test of Fig. 10. This can be explained considering the spectral distribution of trapped electrons at the first read operation for the test in Figs. 12(a) (shown at $T_B = 125 \text{ °C}$) and 7 (shown at $T_B = 80 \text{ °C}$).

considered the evidence of additional physical mechanisms coming into play, which are currently under investigation.

C. Distributed-Cycling Schemes

To challenge our detrapping model with more complex experimental schemes than the uniform cycling test investigated in the previous section, we considered the distributed-cycling experiment shown in Fig. 12(a). A total number $N_{\text{cyc}} = 10 \text{ k}$ P/E cycles were performed on the array at RT in 23.4 h, with three delay periods $\simeq 30 \text{ h}$ long at 100 °C in between. At the end of this cycling phase, V_T starts being monitored after an RT idle period of duration $t_0 \simeq 20 \text{ h}$, then accelerating charge detrapping by increasing the temperature to $T_B = 125 \text{ °C}$. Fig. 12(b) shows that, after carefully reproducing the sequence of this new test in our model, this can correctly reproduce the experimental results with the same set of parameters extracted for the test of Fig. 10. Considering that the cycling scheme of Fig. 12(a) involves changes of temperature and idle periods during cycling, this represents a further strong proof of the validity of our detrapping model, which represents a powerful tool for the reliability analysis of nanoscale Flash memories. Note that the model allows, moreover, to easily explain the shape of the $\langle \Delta V_T(t_B) \rangle$ transient of Fig. 12(b), which do not appear to follow a simple logarithmic behavior like that predicted by (6). In particular, the slope of the transient seems to increase for t_B longer than 10 h, reaching a value that matches the one obtained from the uniform cycling test of Fig. 10. This can be explained considering the spectral distribution of trapped electrons at the first read operation for the test in Figs. 12(a) (shown at $T_B = 125 \text{ °C}$) and 7 (shown at $T_B = 80 \text{ °C}$).

At the end of cycling, the first read operation on the array was performed after an RT delay with duration $t_0 \simeq 20 \text{ h}$, then starting a bake at $T_B = 125 \text{ °C}$ during which V_T was periodically monitored. Fig. 12(b) shows that, after carefully reproducing the sequence of this new test in our model, this can correctly reproduce the experimental results with the same set of parameters extracted for the test of Fig. 10. Considering that the cycling scheme of Fig. 12(a) involves changes of temperature and idle periods during cycling, this represents a further strong proof of the validity of our detrapping model, which represents a powerful tool for the reliability analysis of nanoscale Flash memories. Note that the model allows, moreover, to easily explain the shape of the $\langle \Delta V_T(t_B) \rangle$ transient of Fig. 12(b), which do not appear to follow a simple logarithmic behavior like that predicted by (6). In particular, the slope of the transient seems to increase for t_B longer than 10 h, reaching a value that matches the one obtained from the uniform cycling test of Fig. 10. This can be explained considering the spectral distribution of trapped electrons at the first read operation for the test in Figs. 12(a) (shown at $T_B = 125 \text{ °C}$) and 7 (shown at $T_B = 80 \text{ °C}$).
to $T_B = 125^\circ C$. As a result, $\langle N_i^T (t) \rangle$ grows from zero to the value corresponding to 2.5 k P/E cycles at $\simeq 10^{-3}$ h and then reaches the value corresponding to 10 k P/E cycles only above $\simeq 10$ h, i.e., for $t_f \ll$ 10 k to require much more time than the idle periods involved in Fig. 12(a) to achieve a detrapping event. From this spectral distribution of trapped electrons, $\langle \Delta V_T (t_f) \rangle$ in Fig. 12(b) is expected to start decreasing with a first slope α_1 at about $\simeq 10^{-3}$ h and to increase its slope to α_2 above $\simeq 10$ h, with α_1 and α_2 corresponding to 2.5 k and 10 k P/E cycles, respectively. This reveals that the effect of distributed cycling on the $\langle \Delta V_T(t_f) \rangle$ transient may be more complex than just a horizontal shift of the curve along the logarithmic t_B axis, as resulting, instead, when increasing T_{cyc} but keeping P/E cycles uniformly distributed in time [14], [17].

IV. CONCLUSION

This paper addressed the effect of idle periods, temperature, and P/E cycles on the spectral distribution of detrapping events and, in turn, on the consequent data retention V_T instabilities in nanoscale Flash memories. The resulting model represents a powerful tool for the investigation and predictive analysis of the impact of charge trapping/detrapping on the reliability of Flash technologies, being able to deal with whatever on-field usage or testing scheme of the memory array.

REFERENCES

[11] G. M. Paolucci, C. Monzio Compagnoni, S. Beltrami, A. S. Spinelli, and A. Visconti, “Thresh–value corresponding to 2 above $T_B = 125^\circ C$. As a result, $\langle N_i^T (t) \rangle$ grows from zero to the value corresponding to 2.5 k P/E cycles at $\simeq 10^{-3}$ h and then reaches the value corresponding to 10 k P/E cycles only above $\simeq 10$ h, i.e., for $t_f \ll$ 10 k to require much more time than the idle periods involved in Fig. 12(a) to achieve a detrapping event. From this spectral distribution of trapped electrons, $\langle \Delta V_T (t_f) \rangle$ in Fig. 12(b) is expected to start decreasing with a first slope α_1 at about $\simeq 10^{-3}$ h and to increase its slope to α_2 above $\simeq 10$ h, with α_1 and α_2 corresponding to 2.5 k and 10 k P/E cycles, respectively. This reveals that the effect of distributed cycling on the $\langle \Delta V_T(t_f) \rangle$ transient may be more complex than just a horizontal shift of the curve along the logarithmic t_B axis, as resulting, instead, when increasing T_{cyc} but keeping P/E cycles uniformly distributed in time [14], [17].

IV. CONCLUSION

This paper addressed the effect of idle periods, temperature, and P/E cycles on the spectral distribution of detrapping events and, in turn, on the consequent data retention V_T instabilities in nanoscale Flash memories. The resulting model represents a powerful tool for the investigation and predictive analysis of the impact of charge trapping/detrapping on the reliability of Flash technologies, being able to deal with whatever on-field usage or testing scheme of the memory array.

REFERENCES