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I. Introduction

Optimal control problems are solved with indirect or direct methods. The former stems

from the calculus of variations;1, 2 the latter use a nonlinear programming (NLP) optimiza-

tion.3, 4 Both methods require the solution of a complex set of equations (Euler–Lagrange

differential equations or Karush–Kuhn–Tucker algebraic equations, respectively) for which

iterative numerical methods are used. These iterative procedures implement some form of

Newton’s method to find the zeros of a nonlinear function. They are initiated by providing

an initial guess solution. Guessing an appropriate initial solution is not trivial, and requires

a deep knowledge of the problem at hand. In indirect methods, the initial value of the

Lagrange multiplier has to be provided, whose lack of physical meaning makes it difficult

to formulate a good guess. In direct methods, the initial trajectory and control have to be

guessed at discrete points over the whole time mesh.

Due to their inherent complexity, optimal control problems are often solved within sim-

plified schemes, where some form of approximation is carried out. These methods allow cir-

cumventing the original, nonlinear Euler–Lagrange equations, and thus they do not require

guessing the initial Lagrange multipliers. Nonetheless, the price to pay is the loss of opti-

mality, since suboptimal solutions are derived. State-dependent methods5, 6 belong to this

category. The state-dependent Riccati equations (SDRE)7–10 is likely the most known exam-

ple of approximated method due to its simplicity and effectiveness in many applications11–16.

This method treats the original infinite-horizon, nonlinear optimal control problem as an

infinite-horizon linear-quadratic regulator (LQR), pointwise. A number of LQR problems

are solved sequentially at each time instant in which the time domain is discretized. This

is done by using state-dependent matrices, which are evaluated pointwise at each time step.

With the SDRE the closed-loop control is treated, the control law being function of the

present state. The SDRE method can also be used to solve finite-horizon optimal control;10

one way consists in choosing the state-dependent matrices as functions of the time-to-go.17

An alternative approach for the finite-horizon optimal control is represented by the ap-

proximated sequence of Riccati equations (ASRE)18, 19. This method requires again repre-

senting the dynamics and the objective function through state-dependent coefficient (SDC)

matrices. A number of finite-horizon, time-varying linear-quadratic regulator (TVLQR)

problems are solved iteratively. The SDC matrices are evaluated with the solution at the

previous iteration. It is worth remarking the differences between SDRE and ASRE. With

ASRE, the open-loop optimal guidance problem is treated, and the end-to-end solution is

found iteratively. That is, as the SDRE solves a sequence of pointwise LQR at different

times labels (tk, tk+1, . . . ), the ASRE iterates on the solution defined over the whole time

domain [ti, tf ]; ti, tf are the initial, final times, respectively. In brief, i) the SDRE solves
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the infinite-horizon, closed-loop optimal control sequentially by using pointwise LQR; ii) the

ASRE solves the finite-horizon, open-loop optimal control iteratively by using TVLQR. The

TVLQR can be solved with a state transition matrix approach, so avoiding dealing with the

differential Riccati equation.

The ASRE method can be implemented to solve a variety of problems.20–22 To initiate

the algorithm, a certain state-dependent representation for the dynamics must be provided.

As such, the degree of freedom represented by the initial guess for the Lagrange multiplier

is replaced by the choice of the system factorization. Indeed, although one would expect

that different SDC matrices lead to the same result, this is not the case, as it is clearly

shown in this paper. Moreover, when different SDC matrices are provided, different results

in terms of system trajectory and cost function are found. In principle, one has to run the

algorithm a number of times, with different state-dependent representations, and choose the

best, feasible solution a posteriori.

In this paper the focus is, instead, on modifying the ASRE algorithm to allow managing

a set of SDC factorizations in a simultaneous way. Given a set of parent SDC matrices, these

are optimally combined to find the one that improves the algorithm convergence, the cost

function, and the system controllability. Indeed, it is shown that the latter feature can be

directly linked to the solution cost. The higher is the controllability, the less control effort the

system will use to enforce the boundary conditions and to minimize the cost function. This

is achieved by maximizing the controllability Gramian at each algorithm iteration, which

involves solving a NLP optimization problem. More specifically, the minimum singular value

of the Gramian is maximized. It is shown that this is the most suitable indicator for the

purposes of this paper. In [23], an approach to manage multiple SDC factorizations in the

SDRE is proposed, where the vector of weighting coefficients is found by minimising the

objective function at each time step.

The remainder of the paper is organized as follows. In Section II the background no-

tions are recalled and the motivations are given. The solution method employing the state

transition matrix is presented, and implementation issues are discussed. In Section III, the

controllability for state-dependent systems is treated, and the metric selected to measure

the controllability is discussed. In Section IV, the modified ASRE (MASRE from now on) is

formulated and implemented. Section V presents three application cases used to validate the

MASRE concept. The achieved results are discussed and final remarks are given in Section

VI.
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II. Background

An optimal control problem can be stated in a variety of forms, which differ in terms of

generality. The most general definition accommodates path constraints, variable final time,

control saturation, interior-point constraints, etc. The problems treated in this paper are

nonautonomous, nonlinear in the state, and affine (i.e., linear) in the control. The initial

state is supposed given, and the final state can be either (in part) specified or unknown.

The time span in which the problem is studied is fixed, and both the states and controls are

unconstrained.

II.A. Statement of the problem

Given a set of n first-order differential equations

ẋ = f(x, t) + g(x, t)u, (1)

with f : Rn+1 → R
n and g : Rn+1 → R

n×m, the m control functions u(t) must be determined

within initial, final time ti, tf , such that the performance index

J = ϕ(z(tf ), tf) +

∫ tf

ti

L(x,u, t) dt, (2)

is minimized; L : Rn+m+1 → R, z = (xq+1, . . . , xn) is the vector of state components not

specified at final time (0 ≤ q ≤ n), and ϕ : R(n−q)+1 → R. The initial condition is simply

x(ti) = xi, (3)

whereas the final condition is allowed to take three different forms. These specify the hard

constrained problem (HCP), the soft constrained problem (SCP), and the mixed constrained

problem (MCP), with the final state fully specified, not specified, and partly specified, re-

spectively. The final conditions for each problem, as well as the term ϕ in (2) are defined in

Table 1.

Table 1. Definition of final state and costate conditions for the three problems (in MCP j = 1, . . . , q < n and
k = q + 1, . . . , n).

Problem ϕ Final state Final costate

HCP not defined x(tf ) = xf λ(tf ) free

SCP ϕ(x(tf ), tf) x(tf ) free λ(tf ) = ∂ϕ/∂x

MCP ϕ(xk(tf), tf ) xj(tf ) = xj,f λk(tf) = ∂ϕ/∂xk

Given the Hamiltonian H(x,λ,u, t) = L(x,u, t) + λT [f(x, t) + g(x, t)u], the problem
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consists in finding a solution to the Euler–Lagrange equations,

ẋ =
∂H

∂λ
, λ̇ = −∂H

∂x
,

∂H

∂u
= 0, (4)

where λ is the vector of costates. The differential-algebraic system (4), together with the

initial conditions (3) and the final conditions (for both states and costates) in Table 1, defines

a differential-algebraic two-point boundary value problem (TPBVP) whose solution provides

the functions x(t), λ(t), u(t), t ∈ [ti, tf ].

II.B. The ASRE method

Suppose that f and g are at least continuous in an open set Ω ∈ Rn+1, and that f(0, t) =

0, ∀t ∈ R. Under these conditions,10 the dynamics (1) can be rewritten in the form

ẋ = A(x, t) x +B(x, t) u (5)

where where A : Rn+1 → Rn×n is found by mathematical factorization (it is not unique

when n > 1) and B : Rn+1 → Rn×m. Let also the objective function (2) be redefined in the

quadratic-like form

J =
1

2
zT (tf )S(z(tf), tf)z(tf) +

1

2

∫ tf

ti

[
xTQ(x, t)x + uTR(x,u, t)u

]
dt, (6)

where Q : Rn+1 → Rn×n and R : Rn+m+1 → Rm×m. In analogy with ϕ in Table 1, z and S

are not defined in HCP, z = (xq+1, . . . , xn)
T and S : R(n−q)×(n−q)+1 → R(n−q)×(n−q) in MCP,

and z = (x1, . . . , xn)
T and S : R(n×n)+1 → Rn×n in SCP. The nonlinear dynamics (5) and

the performance index (6), together with the initial condition (3) and the final conditions

in Table 1, define an optimal control problem, which is equivalent to that set up by (1)–

(2). Yet, this new problem is solved iteratively by reducing (5)–(6) to a series of TVLQR.

These are defined by evaluating the SDC matrices A, B, Q, R, and S using the solution

at the previous iteration. This method is known as the approximating sequence of Riccati

equations (or ASRE) method.18, 19

The initial step consists in solving Problem 0, defined by

ẋ(0) =A(0)(t)x(0) +B(0)(t)u(0), (7)

J =
1

2
(z(0)(tf))

TS(0) z(0)(tf ) +
1

2

∫ tf

ti

[
(x(0))T Q(0)(t)x(0) + (u(0))T R(0)(t)u(0)

]
dt, (8)
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where

A(0)(t) = A(xi, t), B
(0)(t) = B(xi, t), Q

(0)(t) = Q(xi, t), R
(0)(t) = R(xi, 0, t), S

(0) = S(zi, tf).

(9)

Problem 0 is a standard TVLQR as the arguments of the state-dependent matrices are all

given except for the time (it is a LQR if (5) is not time-dependent). This problem is solved

to yield x(0)(t) and u(0)(t), t ∈ [ti, tf ]. At a generic, subsequent iteration, Problem k is

defined by

ẋ(k)=A(k)(t)x(k) +B(k)(t)u(k), (10)

J =
1

2
(z(k)(tf))

TS(k)z(k)(tf) +
1

2

∫ tf

ti

[
(x(k))TQ(k)(t)x(k) + (u(k))TR(k)(t)u(k)

]
dt, (11)

where

A(k)(t) = A(x(k−1)(t), t), B(k)(t) = B(x(k−1)(t), t), Q(k)(t) = Q(x(k−1)(t), t),

R(k)(t) = R(x(k−1)(t),u(k−1)(t), t), S(k) = S(z(k−1)(tf), tf).
(12)

This is inherently a TVLQR regardless of the time-dependence in (5) (note that x(k−1) and

u(k−1) are the solutions of Problem k − 1). Solving Problem k yields x(k)(t) and u(k)(t),

t ∈ [ti, tf ]. Iterations continue until a certain convergence condition is satisfied. In the

present implementation of the algorithm, the convergence is reached when

ε = ‖x(k) − x(k−1)‖∞ = max
t∈[ti, tf ]

{|x(k)
j (t)− x

(k−1)
j (t)|, j = 1, . . . , n} ≤ tol (13)

where ‘tol’ is a prescribed tolerance; i.e., iterations terminate when the difference between

each component of the state, evaluated for all times, changes by less than ‘tol’ between

two consecutive iterations. The sequence of solutions x(k), u(k) is proven to converge to

the solution of the original problem (5)–(6) provided that A(x, t) and B(x, t) are Lipschitz

continuous with respect to their arguments.18

II.C. Solution of the TVLQR by the state transition matrix

The sequence of TVLQR is solved by exploiting the structure of their Euler–Lagrange equa-

tions, so avoiding dealing with the matrix differential Riccati equation. This approach, in

part, is described in [2], and differs from that implemented in [18,19]. Suppose the following

dynamics are given,

ẋ = A(t)x+B(t)u, (14)
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together with the quadratic objective function

J =
1

2
(z(tf ))

T S z(tf ) +
1

2

∫ tf

ti

[
xTQ(t)x + uTR(t)u

]
dt, (15)

where Q, S and R are positive semi-definite and positive definite time-varying matrices,

respectively. The necessary conditions (4) for this problem read

ẋ = A(t)x+B(t)u, (16)

λ̇ =−Q(t)x−AT (t)λ, (17)

0 = R(t)u+BT (t)λ. (18)

From equation (18) it is possible to get

u = −R−1(t)BT (t)λ, (19)

which can be substituted into (16)–(17) to yield




ẋ

λ̇



 =




A(t) −B(t)R−1(t)BT (t)

−Q(t) −AT (t)








x

λ



 . (20)

Since (20) is a system of linear differential equations, the solution can be written as

x(t) = φxx(ti, t)xi + φxλ(ti, t)λi, (21)

λ(t) = φλx(ti, t)xi + φλλ(ti, t)λi, (22)

where xi, λi are the initial state, costate, respectively, and the functions φxx, φxλ, φλx, and

φλλ are the components of the state transition matrix, which can be found by integrating

the following dynamics




φ̇xx φ̇xλ

φ̇λx φ̇λλ



 =




A(t) −B(t)R−1(t)BT (t)

−Q(t) −AT (t)








φxx φxλ

φλx φλλ



 , (23)

with initial conditions

φxx(ti, ti) = φλλ(ti, ti) = In×n, φxλ(ti, ti) = φλx(ti, ti) = 0n×n. (24)

If both xi and λi were given, it would be possible to compute x(t) and λ(t) through

(21)–(22), and therefore the optimal control function u(t) with (19). As only xi is given, the
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issue is computing λi for the three problems defined above.

II.C.1. Hard Constrained Problem

In a HCP (xf fully given, S not defined), the value of λi can be found by writing (21) at

final time

xf = φxx(ti, tf)xi + φxλ(ti, tf)λi, (25)

and solving for λi; i.e.,

λi(xi,xf , ti, tf ) = φ−1
xλ (ti, tf ) [xf − φxx(ti, tf )xi] . (26)

II.C.2. Soft Constrained Problem

In a SCP (xf not specified, S n × n positive definite matrix), the transversality condition

λ(tf) = ∂ϕ/∂x in Table 1 applied to (15) reads

λ(tf ) = S x(tf ), (27)

which can be used to find λi. This is done by writing (21)–(22) at final time and using (27),

x(tf ) = φxx(ti, tf )xi + φxλ(ti, tf)λi, (28)

S x(tf ) = φλx(ti, tf)xi + φλλ(ti, tf )λi. (29)

Equations (28)–(29) represent a linear algebraic system of 2n equations in the 2n unknowns

{x(tf ),λi}. The system can be solved by substitution to yield

λi(xi, ti, tf)=[φλλ(ti, tf)−S(tf)φxλ(ti, tf )]
−1 [S(tf)φxx(ti, tf)−φλx(ti, tf )]xi. (30)

II.C.3. Mixed Constrained Problem

Let the state be decomposed as x = (y, z), where y = (x1, . . . , xq) are the the q known

components at final time, whereas z = (xq+1, . . . , xn) are the remaining n−q free components

at final time. The costate is decomposed accordingly, i.e., λ = (ξ,η), and S is (n−q)×(n−q).

The MCP is solved by partitioning the state transition matrix in a suitable form such that,
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at final time, equations (21)–(22) read




y(tf)

z(tf)



 =




φyy φyz

φzy φzz








yi

zi



 +




φyξ φyη

φzξ φzη








ξi

ηi



 , (31)




ξ(tf )

η(tf )



 =




φξy φξz

φηy φηz








yi

zi



+




φξξ φξη

φηξ φηη








ξi

ηi



 , (32)

where the dependence on ti, tf is omitted for brevity. From the first row of (31) it is possible

to get

ξi = φ−1
yξ [yf − φyyyi − φyzzi]− φ−1

yξ φyηηi, (33)

which can be substituted in the second row of (31) to yield

z(tf) = [φzy − φzξφ
−1
yξ φyy]yi + [φzz − φzξφ

−1
yξ φyz]zi + φzξφ

−1
yξ yf + [φzη − φzξφ

−1
yξ φyη]ηi. (34)

Equations (33)–(34), together with the transversality condition η(tf) = S(tf )z(tf) (see Table

1), can be substituted in the second row of (32) to compute ηi; i.e.,

ηi(xi,yf , ti, tf) = [φ̃ηη]
−1w(xi,yf , ti, tf), (35)

where φ̃ηη = φηη − φηξφ
−1
yξ φyη − S(φzη − φzξφ

−1
yξ φyη) and

w(xi,yf , ti, tf ) = [S(φzy − φzξφ
−1
yξ φyy)− φηy + φηξφ

−1
yξ φyy]yi

+ [S(φzz − φzξφ
−1
yξ φyz) + φηz + φηξφ

−1
yξ φyz]zi + [S(φzξφ

−1
yξ )− φηξφ

−1
yξ ]yf .

(36)

Once ηi is known, the remaining part of the initial costate, ξi, is computed through (33), and

therefore the full initial costate is obtained as a function of the initial condition, given final

condition, initial, and final time; i.e, λi(xi,yf , ti, tf) = (ξi(xi,yf , ti, tf ),ηi(xi,yf , ti, tf)).

II.D. Implementation of the iterative scheme

The ASRE method illustrated in Section II.B has been coded into a numerical framework

by implementing the solution scheme shown in Section II.C. The overall flowchart of the

algorithm is shown in Figure 1. The original, fully nonlinear problem (1)–(2) is factorized

into the state-dependent form (5)–(6), and then solved iteratively with the three-step pro-

cedure in the ‘Solver’ box. At each iteration the convergence condition (13) is checked, and

either another iteration is performed or the solution is found. As the integration of (23)

requires evaluating the SDC matrices for different times, an uniform time grid of N points

is constructed, ti = t1, t2, . . . , tN = tf , and a cubic spline interpolation is used to evaluate
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these matrices within the N − 1 time intervals. The solution is then available only on this

grid, i.e., xj = x(tj), λj = λ(tj), uj = u(tj), j = 1, . . . , N , and a cubic spline may be again

used if the solution over an intermediate time has to be retrieved.
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

ẋ = f(x, t) + g(x, t)u

ẋ = A(x, t) x + B(x, t) u

k = 0 k > 0

[Eq. (9)] [Eq. (12)]

ε = ||x(k) − x
(k−1)||∞

ε < tol

x(t) = x
(k)(t),λ(t) = λ

(k)(t),u(t) = u
(k)(t)

Iter

[Eqs. (23)–(24)]

[Eqs. (21)–(22), (19)]

i) φxx, φxλ, φλx, φλλCompute:

ii) λi

Stop

iii) x
(k)(t),λ(k)(t),u(k)(t)

ε > tol

k = k + 1

.Problem Statement.

.Factorization.

.Problem 0. .Problem k.

.Solver.

.Error.

.Solution.

[Eq. (26)HCP/Eq. (30)SCP/Eq. (35)MCP]

Define A = A(0), B = B(0),

Q = Q(0), R = R(0)

Define A = A(k), B = B(k),

Q = Q(k), R = R(k)

J = ϕ(z(tf ), tf ) +
∫ tf

ti
L(x,u, t) dt

J =
1

2
z

T S z + 1

2

∫
tf

ti

[
x

T Q(x, t)x + u
T R(x,u, t)u

]
dt

Figure 1. Flowchart for the implementation of the ASRE scheme.

II.E. Dependence on Factorization

The ASRE algorithm, as coded in Figure 1, has been used to solve a number of nonlinear

optimal control problems.20–22 This algorithm requires factorizing the nonlinear dynamics

with a state-dependent matrix. Finding a good factorization can be non-trivial, mostly

because, for systems with at least two states, there exists an infinite number of factorizations.

Indeed, given a dynamical system

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2),
(37)
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it is possible, for instance, to use the SDC matrix A1(x),




ẋ1

ẋ2



 =




f1(x1, x2)/x1 0

0 f2(x1, x2)/x2





︸ ︷︷ ︸

A1(x)




x1

x2



 , (38)

or A2(x), 


ẋ1

ẋ2



 =




0 f1(x1, x2)/x2

f2(x1, x2)/x1 0





︸ ︷︷ ︸

A2(x)




x1

x2



 . (39)

Not only, as there exists a family of linear combinations,

A3(α,x) = (1− α)A1(x) + αA2(x), ∀α ∈ R, (40)

which produces infinite factorizations of (37). This procedure can be applied to any system

with n > 1 states. One could think that the factorization choice does not affect the final

solution, but actually this is not the general case, as shown by the following, simple example.

II.E.1. Example 1

The problem consists in minimizing

J =
1

2

∫ tf

ti

(
x2
1 + x2

2 + u2
)
dt, (41)

under the dynamics (taken from [24])

ẋ1 = x2,

ẋ2 = x1x2 + u,
(42)

with boundary conditions x(ti) = (2, 1)T , x(tf ) = (4, 1)T , and ti = 0, tf = 5.

Two possible parent factorizations of the nonlinear, uncontrolled dynamics (42) are

A1(x) =




0 1

0 x1



 , A2(x) =




0 1

x2 0



 . (43)

The remaining SDC matrices for this problem are B = [0, 1]T (in (5)) and Q = I2×2,

R = 1 (in (6)); S in (6) is not defined, since Example 1 is an HCP. This problem has been

solved with the ASRE scheme by using A1, A2 in (43) and also A3 in (40) with α = 0.5.
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The three different solutions are shown in Figure 2, and their features (cost and iterations)

are summarized in Table 2. The qualitative and, most importantly, quantitative difference

among these solutions makes it clear that the SDC factorization of the uncontrolled dynamics

plays a crucial role in the present, as well as any other, state-dependent methods.

Table 2. Features of the three solutions to Example 1 (tol = 10−6).

A(x) J Iter

A1 52.24 12

A2 64.91 56

A3 53.13 21
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Figure 2. Trajectories of the three solutions to Example 1.

III. Controllability of State-Dependent Dynamics

A property that ASRE requires is controllability of the pair {A(x, t), B(x, t)} in (5).

A system is controllable if and only if there always exists an admissible control that is

able to transfer the state from a condition to another in a finite time.25 When dealing

with state-dependent dynamics, the SDC matrices must be selected such that the state-

dependent system is controllable for all the possible trajectories. In [26], necessary and

sufficient conditions for the existence of SDC matrices are shown. It would be desirable

to choose the factorization that grants the maximum controllability of the state-dependent

dynamics, since the solution performance is strictly related to the controllability of the

system. An increased controllability leads to a reduction of the control effort and likely to

a reduced cost.27 In this way it could be possible to identify the optimal factorization.10
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However, the controllability of (5) does not lead to the controllability of (1), as there is no

trivial relation between the controllability of {A(x, t), B(x, t)} and that of {f(x, t), g(x, t)}.24
The controllability of the state-dependent dynamics is increased with the purpose of easing

the convergence of the ASRE method.

A linear system is controllable when the controllability matrix, Kc, is full-rank; i.e.,

rank (Kc) = rank
[

B AB A2B · · · An−1B
]

= n. (44)

Since A, B in (5) are in general state- and time-dependent, Kc is state- and time-dependent

as well, and thus the controllability check (44) must be done for all states and times. This

is deemed not viable. Another way to study the controllability of state-dependent systems

is based on evaluating their distance from being uncontrollable, which can be done by esti-

mating the amplitude of the controllability radius,28, 29

ρ (A,B) = min
λ∈C

σmin

([

A− λI B
])

, (45)

where σmin(·) returns the smallest singular value of its matrix argument.

In this paper, the notion of controllability Gramian is used.25 This is defined as

P (ti, tf) =

∫ tf

ti

Φ(ti, τ)B(τ)BT (τ)ΦT (ti, τ)dτ, (46)

where Φ(ti, τ) is the solution of

Φ̇(t, τ) = A(t)Φ(t, τ), Φ(t, t) = I, (47)

with A(t) as in (14). A system is controllable if P (ti, tf ) is nonsingular; i.e., if detP (ti, tf ) 6=
0. Notice that this condition for controllability is seeking controllability along the entire

trajectory of the system, and is not a combination of pointwise controllability for a given

set of values of the states. This is, however, a binary condition: it can be used to check

whether a system is controllable or not, but not to measure its controllability. As the higher

controllability provides the less control effort, the focus is to choose the factorization that

maximizes the controllability, and therefore a metric is introduced by defining a figure of

merit.

In [10, 30, 31], the SDC are chosen by maximizing the absolute value of the determinant

of KcK
T
c (note that Kc is not necessarily square. When P (ti, tf) is considered, it could seem

reasonable to adopt the absolute value of its determinant as a merit figure of controllability.

Actually, such a choice would be misleading since it is easy to prove that a nearly singular

matrix can show a determinant much greater than zero.28 Alternatively, the minimum
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eigenvalue of P may be used to measure the controllability: a matrix is close to singularity

when its smallest eigenvalue is close to zero, regardless of the determinant value. However,

the eigenvalues suffer of ill-conditioning as small perturbations of a matrix can lead to big

variations of its eigenvalues.28 To overcome these issues, in the remainder, the Gramian

singular values have been used. These are positive real numbers that can be used in place of

eigenvalues. More specifically, σmin(P ) is considered to measure the system controllability.

In Figure 3, the trend of σmin(P ) for the solutions to Example 1 is shown, at each iteration,

for the three SDC matrices considered. It can be noticed that the case requiring the lowest

number of iterations corresponds to A1, which presents also the highest σmin(P ). From the

other two cases (A2, A3) it can be inferred that the lower σmin(P ), the higher number of

iterations, and vice versa. Not only, as from Table 2 it can be seen that the highest σmin(P )

involves the best (i.e., lowest) value of cost function.

In summary, different SDC representations lead to different behaviors of the ASRE. The

factorizations resulting the most controllable are also those entailing the lowest cost functions

and numbers of iterations. Given a nonlinear dynamics, the selection of the state-dependent

matrix A(x) is a degree of freedom that can be exploited to enforce the best performances

in terms of algorithm convergence and control effort.
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Figure 3. Values of σmin(P ) during the iterations for the three factorization cases of Example 1.

IV. A Combined Method

It has been shown that the SDC of the uncontrolled dynamics affect the algorithm con-

vergence, the number of iterations, the solution trajectory, and the objective function value.

In principle, once a nonlinear problem is given, it would be possible to find a number of
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different SDC matrices and to run the algorithm in Figure 1 several times. Then, the best

solution in terms of cost function could be extracted among those feasible. This means using

the ASRE algorithm as a black-box tool, not relying on any notion of controllability.

In this paper the focus is instead on handling all the possible factorizations at once, and

to optimally combine them to increase the controllability of the resulting system. Given a

set of parent SDC matrices, the spirit is to treat them in the same fashion as A1, A2 are

combined to define A3 in (40). The aims are: 1) to increase the controllability, 2) to ease the

algorithm convergence, 3) to improve the solution cost. This is done by maximizing σmin(P )

at each iteration, which involves solving a nonlinear programming problem. If needed, the

approximate solution so found is used to tackle the TPBVP defined by the original dynamics.

It is shown that the approximate solution so found is a good initial guess, and it is only refined

to satisfy the Euler–Lagrange equations (4).

IV.A. Managing multiple factorizations

Given a set of nf parent factorizations of f(x, t) in (1) having the form f(x, t) = Ai(x, t)x,

i = 1, . . . , nf , the combination that grants the maximum controllability is looked for. The

family of SDC matrices (generated by the parents Ai) can be written as32

A(α,x, t) =

[ nf−1
∏

j=1

(1− αj)

]

A1(x, t) +

nf−1
∑

i=2

αi−1

[ nf−1
∏

j=i

(1− αj)

]

Ai(x, t) + αnf−1Anf
(x, t),

(48)

where α =
(
α1, . . . , αnf−1

)T
is a vector of weighting coefficients. The family (48) produces

the state-dependent form (5), i.e.,

ẋ = A (α,x, t)x+B(x, t)u, (49)

if the following inequalities are satisfied,

‖α‖1 ≤ 1, and αj ≥ 0, j = 1, . . . , nf − 1. (50)

Conditions (50) define the region of existence for α, which is required in order to ensure

a convex domain32 (see Figure 4). More precisely, the restrictions in (50) guarantee a one-

to-one correspondence between α and A(α,x, t) in (48). As α is a vector of bounded

coefficients, A(α,x, t) is Lipschitz continuous when so are the parent factorizations Ai(x, t).

Other relations can be formulated in place of (48). In [23], a linear combination is used to

define a family of factorizations in the SDRE method; in [10,30,31], such combination is done

at scalar level by treating each nonlinear element of the original dynamics independently

from the others. Equation (48) is preferred as it is more general. It allows considering
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families of nonlinearities in a unified way. This is done to maintain some physical insight

into the problem. Indeed, in typical problems dynamics and nonlinearities are related to

vector quantities that in the proposed approach would be treated as vectors and not as

independent scalar variables.
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Figure 4. Region of existence for α in one, two, and three dimensions (nf = 2, 3, 4, respectively).

IV.B. Optimal combination of state-dependent factorizations

The expression (48) allows us to handle a set of SDC matrices simultaneously. This is used

to modify the ASRE method to accommodate for nf factorizations. However, the iterative

method requires the dynamics to be written in the form (5), which can be achieved by spec-

ifying the value of α = (α1, . . . , αnf
)T in (49). It is important to recall that the parent

factorizations Ai have been introduced for the purpose of increasing the system controlla-

bility. Thus, the weights αj have to be chosen such that the minimum singular value of the

Gramian associated to (49) is maximized. This is done by solving, at each iteration, the

following Nonlinear Programming (NLP) problem

max
α

σmin (P (α)) subject to







‖α‖1 ≤ 1

αj ≥ 0, j = 1, . . . , nf − 1
(51)

where P (α) is the Gramian obtained by plugging (48) into (46)–(47). The degrees of freedom

αj are thus exploited optimally to improve the existing algorithm. This is the ultimate goal of

the MASRE. The price to pay is the solution of the algebraic problem (51) at each iteration.

This holds as the state-dependent matrices A, B in (46)–(47) are evaluated with the solution

at the previous step. Indeed, in analogy with Eqs. (9) and (12), the SDC matrices are

A(0)(α, t) = A(α,xi, t), in Problem 0; (52)

A(k)(α, t) = A(α,x(k−1), t), in Problem k. (53)
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IV.C. Implementation of the modified scheme

The ASRE scheme in Figure 1 has been modified to manage multiple factorizations and to

choose their optimal combination that yields the best controllability. Figure 5 reports the

flow chart of the MASRE algorithm. Once the problem is stated, a number of parent SDC

matrices for the uncontrolled dynamics are defined, which are then combined to generate

the whole family through (48). The general problem is then defined by (49) and (6). This

is treated in the same fashion as in Section II except that a value for α is needed this time.

In order to obtain the optimal value of α, the NLP is solved in the ‘Optimization’ box. The

first guess value for α is the value found at the previous iteration (an initial guess α(0) is

provided to run the NLP the first time). The approximate solution (x(t), λ(t), u(t)) is found

once the convergence condition is verified. This condition is the same as in the ASRE, where

a single SDC matrix is used.18 In the MASRE, where the SDC matrix may change at each

iteration, the conditions for the convergence of the sequence of Riccati equations may be

violated. However, numerical experiments suggest that algorithm convergence is achieved

once α in (48) stabilizes about an optimal value, such that the sequence of Riccati equations

approaches convergence with a fixed SDC matrix (see Section V).

IV.D. Refinement of the approximate solution

The approximate solution is expressed through functions evaluated at discrete locations

of a time grid made up of N points (see Section II.D). If needed, this solution can be

refined by solving the Euler–Lagrange equations (4). In particular, the approximate solutions

can be used as a first guess solutions for a TPBVP solver that deals with Eq. (4) and

the boundary conditions as in (3) and Table 1 (see Figure 5). This step is particularly

easy when the original problem (2) possesses a quadratic-control objective function. This

condition, together with the control affinity in (1), makes it possible to yield the control as

a function of the Lagrange multiplier from the third of (4). This makes the Euler–Lagrange

equations a purely differential TPBVP. In the present implementation of the method, this

step is accomplished through a symbolic manipulation of (1)–(2). (If a TPBVP solver

implementing a collocation method is used, the approximate solution discretized over the

time grid is already put in the proper form).

In next section it is shown through examples that the solution obtained with the MASRE

represents a good approximation of the optimal solution. The latter is labelled x(opt)(t),

λ(opt)(t), u(opt)(t), and the associated cost index J (opt). It is not straightforward to assert

whether J (opt) is better or worse than the state-dependent objective function J , as x(opt)(t)

verifies a “different” dynamics than those imposed by the MASRE algorithm.
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k = 0 k > 0

[Eq. (9)] [Eq. (12)]

ε = ||x(k) − x
(k−1)||∞

ε < tol

x(t) = x
(k)(t),λ(t) = λ

(k)(t),u(t) = u
(k)(t)

Iter

[Eqs. (23)–(24)]

[Eqs. (21)–(22), (19)]

i) φxx, φxλ, φλx, φλλCompute:

ii) λi

Stop

iii) x
(k)(t),λ(k)(t),u(k)(t)

ε > tol

k = k + 1

.Factorization.

.Problem 0. .Problem k.

.Solver.

.Error.

[Eq. (26)HCP/Eq. (30)SCP/Eq. (35)MCP]

A1(x, t), A2(x, t), . . . , Anf
(x, t)

.Parents.

Define A(α) = A(0)(α),

B = B(0), Q = Q(0), R = R(0)

Define A(α) = A(k)(α),

B = B(k), Q = Q(k), R = R(k)

α
(k) = arg max σmin(P (α)) [Eq. (51)]

.Optimization.

.Approximate Solution.

ẋ = Hλ, λ̇ = −Hx, 0 = Hu + b.c.

.Euler–Lagrange Eqs..

x
(opt)(t), λ

(opt)(t), u
(opt)(t), J

(opt)

.Optimal Solution.

.Refinement.

ẋ = f(x, t) + g(x, t)u

.Problem Statement.

J = ϕ(z(tf ), tf ) +
∫ tf

ti
L(x,u, t) dt

Define B(x, t), Q(x, t), R(x,u, t), S(z(tf ), tf )

[Eq. (48), (52)] [Eq. (48), (53)]

Figure 5. Flowchart for the implementation of the MASRE scheme.
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V. Application cases

In this section the MASRE scheme presented in Section IV is applied to three sample

problems. The properties of the solution method are discussed. It is shown that the ap-

proximate solutions reproduce well the optimal solution. The latter is found by solving the

Euler–Lagrange TPBVP using the approximate solutions as first guess (see Figure 5).

V.A. Problem 1

The problem set up is that of Section II.E.1. Beside A1 and A2 in (43), two additional SDC

matrices have been provided,

A3(x) =




x2 1− x1

0 x1



 , A4(x) =




x2 1− x1

x2 0



 . (54)

It is worth mentioning that the controllability matrices associated to the four factorizations

are

Kc1(x) =




0 1

1 x1



 , Kc2(x) =




0 1

1 0



 , Kc3(x) =




0 1− x1

1 x1



 , Kc4(x) =




0 1− x1

1 0



 ,

and it is clear that rank(Kc1(x)) = rank(Kc2(x)) = 2 ∀x, while both Kc3(x) and Kc4(x) be-

come singular at x1 = 1. It is interesting to notice that the factorizations that are not always

controllable, A3 and A4, are not “natural” representations of the uncontrolled dynamics, as

their derivation relies on some sort of addition and subtraction of the same term.

The MASRE algorithm has been initiated with A1, A2 in (43), A3, A4 in (54), and with

B, Q, R as in Section II.E.1. The iterations are summarized in Table 3 where the error, the

Gramian minimum singular value, and the objective function are reported for each iteration.

The last column in Table 3 reports the parent factorization which the family converges to

(through the weighting vector α, whose first guess is α(0) = (1−
√
2/2, 1−

√
2/2, 1−

√
2/2)T );

the termination tolerance is set to 10−6. Nine iterations are needed to converge to an

approximate solution. The algorithm is able to detect the non-controllability associated to

A3, A4 and to discard them. The optimal matrix turns out to be A1, and this, remembering

the results obtained in Section II.E.1, confirms that the algorithm is able to automatically

detect the best factorization in terms of controllability and thus cost function.

Figures 6(a) and 6(b) show the first, second, and last iterations in terms of solution

trajectory (x1, x2) and control profile u(t). The algorithm is able to converge to the final

approximate solution (k = 9) although the first iteration lies quite far from it. The approx-

imate solution is then refined by enforcing the Euler–Lagrange TPBVP, and the results are
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Table 3. MASRE iterations for Problem 1, CPU time 39.9 s (Intel Core2 Quad CPU 2.50GHz).

k Error σmin(P ) J Parent

1 2.000 2.082 2.436× 101 A1

2 7.173× 10−1 1.578× 106 2.505× 101 A1

3 1.412× 10−1 1.130× 107 2.606× 101 A1

4 1.294× 10−2 1.960× 107 2.613× 101 A1

5 1.648× 10−3 2.009× 107 2.612× 101 A1

6 1.767× 10−4 1.997× 107 2.612× 101 A1

7 1.893× 10−5 1.996× 107 2.612× 101 A1

8 2.259× 10−6 1.996× 107 2.612× 101 A1

9 2.083× 10−7 1.996× 107 2.612× 101 A1

shown in Figures 6(c) and 6(d). From this step it can be inferred that the developed scheme

approximates well the final, optimal solution. The cost of the latter is J (opt) = 2.606× 101,

which means a 0.2% difference with respect to J in Table 3, k = 9. This refinement makes

it clear that the approximate solution is not optimal, but rather suboptimal.
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(a) Phase space iterations.
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Figure 6. Problem 1: iterated, approximate, and optimal solution.
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V.B. Problem 2

This problem consists in minimizing the same performance index of Problem 1 (Eq. (41);

i.e., B, Q, R as in Section II.E.1) subject to

ẋ1 = x2
1x2 + x2,

ẋ2 = x1x2 + u,
(55)

with the same boundary conditions and initial, final time. The algorithm has been fed with

four different SDC matrices of the uncontrolled dynamics

A1(x)=




x1x2 1

0 x1



 , A2(x)=




0 x2

1 + 1

0 x1



 , A3(x)=




x1x2 1

x2 0



 , A4(x)=




0 x2

1 + 1

x2 0



 ,

(56)

all of which are always controllable; i.e., det (Kci) 6= 0, i = 1, . . . , 4. Differently from the

previous problem, where two factorizations were evidently not “natural” representations of

the uncontrolled dynamics, this problem is expressed naturally with four factorizations, so

that one would not know a priori which SDC matrix should be used to approximate the

optimal solution with the ASRE algorithm. MASRE is initiated with the same settings of

Problem 1.

The summary of iterations is reported in Table 4, where not all the steps are reported

for brevity sake (the algorithm converges in 21 iterations). It can be seen that the algorithm

automatically converges toward the parent A2 factorization, but uses A4 in the first two

iterations. In particular, σmin(P ) is on the order of 107 in the first iteration, but then it drops

to 103 in the second; here the algorithm is able to detect a better controllability associated to

A2, and therefore it adjusts α to underweight A4 in favor of A2. As before, the first, second,

and last iterations in terms of solution trajectory and control profile are shown in Figures

7(a) and 7(b). In order to assess the quality of this solution, the problem has been solved

with the original algorithm, employing the four different factorizations separately, and it has

been confirmed that the the best solution is the one related to A2. Moreover, the original

ASRE solver is not able to provide a solution using A1 or A3: the former yields a sequence of

iterations whose error stably oscillates without converging to any solution, while the latter

stops as the transition matrix becomes ill-conditioned after a number of iterations. This

implies that controllability is at most a necessary conditions for a converging factorization,

but the above discussion also stresses the fact that optimizing the controllability allows us

to dodge those factorizations that would not lead to any solution.

The approximate solution has been refined by solving the TPBVP associated to (55) and

(41). The results are shown in Figure 7(c) and 7(d). Again, this step makes it clear that
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the approximate solution represents well the final, optimal solution. The objective function

associated to the latter is J (opt) = 9.413, which is 2.9% less than that in Table 4, k = 21, so

showing once again that the approximate solution is not optimal but only sub-optimal.

Table 4. MASRE iterations for Problem 2, CPU time 231.9 s.

k Error σmin(P ) J Parent

1 2.000 1.739× 107 14.442 A4

2 1.376 2.978× 103 7.876 A4

3 1.121 1.355× 104 10.858 A2

4 7.010× 10−1 1.615× 104 9.327 A2

5 2.423× 10−1 1.313× 104 9.798 A2

6 9.391× 10−2 1.480× 104 9.767 A2

7 6.236× 10−2 1.495× 104 9.643 A2

8 2.657× 10−2 1.434× 104 9.708 A2

9 9.479× 10−3 1.443× 104 9.710 A2

10 6.504× 10−3 1.452× 104 9.696 A2

11 2.838× 10−3 1.449× 104 9.701 A2

21 9.011× 10−7 1.449× 104 9.701 A2

V.C. Problem 3

In this problem the controlled, planar Keplerian motion of a spacecraft in polar coordinates

is studied. The dynamics are

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = x1x
2
4 − 1/x2

1 + u1,

ẋ4 =−2x3x4/x1 + u2/x1,

(57)

where x1 is the radial distance from the attractor, x2 the phase angle, x3 the radial velocity,

and x4 the transversal velocity; u1, u2 are the radial and transversal components of the

control acceleration (Eqs. (57) are written in canonical units). The objective function is

J =
1

2

∫ tf

ti

(u2
1 + u2

2) dt. (58)

The initial state is xi = (1, 0, 0, 1), and ti = 0, tf = π. Two different problems are solved,

according to the definition of xf . In the HCP, xf = (1.52, π, 0, 1.52−3/2), while in the MCP

x2,f is unspecified; i.e., the final phase angle is left free. (This set up mimics an Earth–
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(a) Phase space iterations.
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(c) Approximate and optimal orbit.
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Figure 7. Problem 2: iterated, approximate, and optimal solution.

Mars transfer with the planets moving in circular, coplanar orbits.33, 34) Eqs. (57) have been

factorized by using

A1(x) =












0 0 1 0

0 0 0 1

− 1

x3
1

0 0 x1x4

0 0 −2
x4

x1
0




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


, A2(x) =









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0 0 1 0

0 0 0 1

x2
4 −

1

x3
1

0 0 0

0 0 −2
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x1
0


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

,

A3(x) =












0 0 1 0

0 0 0 1

0 0 0 x4x1 −
1

x4x2
1
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x1
0





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, B(x) =





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

0 0

0 0

1 0

0
1

x1











.

(59)

It can be noticed that all the Ai (i = 1, 2, 3) as well as B are not Lipschitz continuous when

x1 → 0 (and x4 → 0 in A3 only). These conditions are however never expected to occur
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along the solutions of the present problem, and therefore the MASRE is run with the input

as in (59). Moreover, the origin is not an equilibrium point of the system, and the conditions

for writing (57) into a state-dependent form as per [18] are violated. The objective function

(58) is written in the form (6) with Q = 04×4, R = I2×2, and, S = 0 (in the MCP only).

The HCP is solved with 15 iterations, and its most relevant figures are reported in Table

5 (in the first iteration it is not possible to ascertain the closest parent factorization). It

is interesting to notice that the factorization associated to A1 is discarded because of its

non-controllability, although the associated ASRE is able to converge (when fed with A1)

to a cost higher than that in Table 5, k = 15. This means that the MASRE algorithm

prunes away the less performing SDC matrices, and uses the ones that likely produce the

best solution. The approximate solutions for some sample iterations are shown in Figures

8(a), 8(c), and 8(e). When refined, the approximate solution leads to the optimal solution

in Figures 8(b), 8(d), 8(f). The optimal cost is J (opt) = 1.830× 10−1, which is 18% less than

J in Table 5, k = 15. This is mostly due to the difference in the u2 profiles (see Figure 8(f)).

Table 5. MASRE iterations for Problem 3 (HCP), CPU time 60.0 s.

k Error σmin(P ) J Parent

1 3.142 4.058× 10−1 1.674× 10−1 −
2 1.760× 10−1 3.519× 10−1 3.956× 10−1 A2

3 5.618× 10−2 3.095× 10−1 1.940× 10−1 A2

4 3.565× 10−2 3.082× 10−1 2.423× 10−1 A2

5 1.179× 10−2 3.040× 10−1 2.184× 10−1 A2

6 5.335× 10−3 3.049× 10−1 2.279× 10−1 A2

7 1.939× 10−3 3.046× 10−1 2.244× 10−1 A2

8 6.792× 10−4 3.048× 10−1 2.258× 10−1 A2

9 2.533× 10−4 3.047× 10−1 2.253× 10−1 A2

10 8.548× 10−5 3.047× 10−1 2.255× 10−1 A2

11 3.057× 10−5 3.047× 10−1 2.254× 10−1 A2

12 1.074× 10−5 3.047× 10−1 2.254× 10−1 A2

13 3.699× 10−6 3.047× 10−1 2.254× 10−1 A2

14 1.320× 10−6 3.047× 10−1 2.254× 10−1 A2

15 4.567× 10−7 3.047× 10−1 2.254× 10−1 A2

The sequence of iterations for the MCP is reported in Table 6. In this case, the algorithm

converges in 13 iterations and uses again A2 as parent factorization. The cost of the refined,

optimal solution is J (opt) = 3.694× 10−2, which is 23% less than that in Table 6, k = 13. A

set of iterated solutions, as well as the final approximated and the optimal solution are shown

in Figure 9. As it would have been expected, by letting the algorithm to determine the final

angle, the MCP cost function is lower than that of the HCP, and even the convergence is
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(b) Approximate and optimal transfers
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(c) Control u1 iterations.
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(d) Approximate and optimal control u1.
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(e) Control u2 iterations.
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(f) Approximate and optimal control u2.

Figure 8. Problem 3 (HCP): iterated, approximate, and optimal solution.

faster, since the additional degree of freedom represented by the unspecified final phase is

exploited. The optimal solution in Figure 9 can be compared with that in [2], where the

minimum-time problem is solved for the same set up. Albeit with proper differences, transfer

orbit and the thrust profile are similar.
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(b) Approximate and optimal transfers
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(c) Control u1 iterations.
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(d) Approximate and optimal control u1.
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(e) Control u2 iterations.
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Figure 9. Problem 3 (MCP): iterated, approximate, and optimal solution.
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Table 6. MASRE iterations for Problem 3 (MCP), CPU time 19.9 s.

Error σmin J Matrix

1 2.409 4.058× 10−1 1.047× 10−1 −
2 5.237× 10−2 3.434× 10−1 3.297× 10−2 A2

3 4.522× 10−2 3.146× 10−1 4.924× 10−2 A2

4 8.627× 10−3 3.126× 10−1 4.652× 10−2 A2

5 2.728× 10−3 3.127× 10−1 4.801× 10−2 A2

6 5.133× 10−4 3.129× 10−1 4.839× 10−2 A2

7 3.166× 10−4 3.131× 10−1 4.845× 10−2 A2

8 1.568× 10−4 3.132× 10−1 4.846× 10−2 A2

9 5.434× 10−5 3.132× 10−1 4.845× 10−2 A2

10 1.475× 10−5 3.132× 10−1 4.845× 10−2 A2

11 3.045× 10−6 3.132× 10−1 4.845× 10−2 A2

12 1.325× 10−6 3.132× 10−1 4.845× 10−2 A2

13 7.700× 10−7 3.132× 10−1 4.845× 10−2 A2

VI. Conclusion

Approximate methods for solving nonlinear optimal control problems aim to circumvent

the classic Euler–Lagrange equations by using ad hoc, simpler schemes. As this eases the

search for a feasible solution, it does not guarantee optimality, as in general these methods

lead to sub-optimal solutions. This is the case of the approximating sequence of Riccati equa-

tions, which solves the optimal control problem as a sequence of time-varying linear quadratic

regulators. This method depends upon the factorization chosen for the uncontrolled dynam-

ics. It has been shown that even for a simple problem, two different factorizations lead

to two different solutions, in terms of system trajectory, objective function, and algorithm

iterations. This work makes it possible to automatically select the best factorization, from a

set of candidate ones, during the solution process. This is done by maximizing, at each iter-

ation, the controllability Gramian associated to a family of factorizations. The augmented

effort consists in solving a nonlinear programming problem at each iteration. The developed

method can be used also in other state dependent control schemes. Examples show that the

method is effective, and approximates well the true optimal solution, though it would be

useful to extend it to accommodate further features (e.g., control saturation, variable final

time, non-affinity of control, etc.).
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