Modeling Pipelined Application with Synchronous
Data Flow Graphs

Marco Lattuada, Fabrizio Ferrandi
Politecnico di Milano — Dipartimento di Elettronica, Informazione e Bioingegneria
Via Ponzio 34/5, Milan, Italy
{lattuada,ferrandi} @elet.polimi.it

Abstract—Streaming applications can efficiently exploit mul-
tiprocessors architectures by means of pipelined parallelism, but
designing this type of applications can be an hard task. Different
subproblems have indeed to be solved: partitioning, mapping,
scheduling and pipeline stage assignment. For this reason, high
level abstraction models are adopted during design flow since
they simplify this process by hiding most of the architectural
details. Synchronous Data Flow (SDF) graphs, widely adopted
to describe streaming applications, naturally model only their
partitioning, so they usually have to be integrated with other
types of representations.

In this paper Pipelined Application Modeling (PAM), a method-
ology to create a Synchronous Data Flow graph describing all the
aspects of a pipelined application, is presented. The methodology
starts from the SDF graph describing the partitioning of the
application and enriches it with new actors and channels detailing
the mapping, the scheduling and the pipeline stage assignment
of the considered solution. The obtained SDF graph, describing
all the aspects of the solution in a formal and compact way,
facilitates the evaluation of different solutions during design space
exploration.

I. INTRODUCTION

Multiprocessor Systems on Chip have become the de-facto
standard in embedded systems, but, in order to fully exploit
the computational power they provide, design of parallel
applications is required. Streaming applications (i.e., applica-
tions where a set of elaborations is applied in sequence on
an input data stream) usually can be easily parallelized by
means of pipelining. In this programming paradigm, the whole
functionality is divided into tasks, each of which elaborates in
parallel the result produced by the previous task in the previous
elaboration step. All the tasks start their execution at the same
time and wait for the end of all the other tasks before starting
a new iteration.

Despite the simplicity of the pipelining paradigm, de-
veloping this type of applications can be a very complex
activity, since several decisions have to be taken: how the
application is decomposed in tasks (partitioning), to which
processing element each task is assigned (mapping), in which
order tasks assigned to the same processing element are
executed (scheduling), and, in case of a pipelined application,
to which pipeline stage each task is assigned (stage assign-
ment). To speed-up the design process high abstraction level
representations have been introduced. Streaming applications
are in particular well described by Synchronous Data Flow

Research partially funded by the ESA’s Networking/Partnering Initiative
(NPI) under contract No. 4000100797.

(SDF) graphs [1]: vertices (actors) represent the different
functionalities in which the application is decomposed while
edges (channels) represent the data communications between
them. One of the main issues of adopting high abstraction
level descriptions is the distance between the abstract model
and the final implementation since the former cannot model
all the details of a system. Indeed, not only the filling of
this gap can require further and more complex analyses, but
if the high abstraction level representations hide too many
aspects of the final implementations, their analysis can produce
misleading results reducing the quality of the final solution.
The SDF graphs well model a partitioning solution and the
data exchanged among different tasks, but, even if they are a
good starting point for further analyses, they cannot describe
in a such immediate way the mapping, the scheduling and
the stage assignment. For this reason, several solutions to
formally describe this information by enriching SDF graphs
have been proposed. These solutions however include only
part of the missing information (e.g., [2]) or describe it by
means of new representations which have to be coupled with
application SDF graphs (e.g., [3], [4]). While these are a
well known representation used in several methodologies and
tools, none of the representations proposed to integrate them
has had the same success and has been commonly accepted,
potentially preventing integration of different analyses and
design algorithms in the same design flow.

In this paper Pipelined Application Modeling (PAM), a
methodology to fully integrate a design solution directly in
the SDF graph of an application, is proposed. With respect to
the Decision State Modeling presented in [2], the methodology
does not model only the partial scheduling of the application,
but also the mapping and the pipeline stage assignment. The
modeling is obtained by enriching the initial SDF graph with
new actors and channels representing the particular design
solution. Since the final representation of the design solution is
still a SDF graph, all the techniques developed for the analysis
and the manipulation of these graphs can be still adopted.
For example, it will be shown how existing SDF analysis
frameworks like SDF? [5] can be coupled with the proposed
methodology to fully evaluate all the different solutions during
design space exploration of a pipelined application.

This paper is organized as follows. Section II presents the
related works. Section III introduces some preliminary defi-
nitions used in Section IV where the proposed methodology
is described. Section V presents a case study showing how
the proposed methodology can be exploited while Section VI
draws the conclusions of this paper.

II. RELATED WORK

Several types of representations have been proposed to
formally describe a complete specification of a pipelined
application and so to allow its analysis, optimization and
synthesis. Navarro et al. [6] presented an analytical model to
describe such type of applications based on queueing theory.
The results of the analysis of these models are then used to
optimize the application through collapsing of pipeline stages
and dynamic scheduling.

SDF graphs [1] can be considered as a good candidate
to represent a pipelined application to be analyzed, in par-
ticular because they can be statically scheduled, reducing
the application runtime overhead [7]. For example, Chan et
al. [4] presented a methodology to minimize the size of the
buffers in pipelined applications. They formulated a two-level
heuristic which minimizes buffers by addressing at the same
time mapping and stage assignment problems. The produced
solution however has to be represented in an informal way,
since SDF graphs are not able to natively describe it. Some
techniques have been proposed to overcome these expressive-
ness limits by means of new types of data flow graphs or new
programming languages. Damavandpeyma et al. [2] proposed
to enrich a SDF graph with new actors and channels to include
the scheduling solution directly in the graph. The added actors
force the serialization of activation of actors which can run
in parallel but that have been assigned to the same processing
element. The enriched graph describes only periodic static-
order schedule, i.e., the scheduling is specified only for each
single processor and no information about inter processors
synchronization is added. Both scheduling and mapping are
instead described in the Interprocessor Communication SDF
Graphs (IPC graphs) proposed by Bambha et al. [8]. The
graphs are built starting from a design solution and describe the
sequence of actor activations for each processing element and
the communications among them. The graph is not an enriched
version of the application SDF graph, but it is built from
scratch: in this way some information (e.g., characteristics of
the channels connecting actors mapped on the same processing
element) of the analyzed application is lost. Moreover, initial
SDF graphs have to be transformed into Homogeneous ones,
so size of the graphs to be analyzed can potentially explode.

The mapping and the processors synchronization are also
described in the Dataflow Schedule Graphs proposed by Wu
et al. [3]. This type of model however, even if based on Data
Flow graphs has still to be coupled with SDF graphs in order
to provide a full representation of a design solution.

Examples of languages adopted to describe pipelined appli-
cations are Streamlt [9] and OpenMP, extended as proposed by
Pop et al. [10]. The former is a high level java-based language
proposed for the design of streaming applications that allows
only to describe the structure of a SDF graph without mapping
nor scheduling information. In a similar way, the latter can be
used to explicitly represent consumer-producer relationships
and tasks synchronization. The topology of a SDF graph can be
computed starting from these relationships, but this extension
does not allow to specify mapping and scheduling solutions.

The methodology proposed in this paper overcomes the
limits of the previous ones enriching the SDF graph not
only with scheduling information but also with mapping and

B3O
e

Fig. 1. Example of a SDF graph.

stage assignment solutions preserving at the same time all the
application information. Since the enriched graphs are still
compliant with the SDF model, all the methodologies and
frameworks available for SDF graphs can be used to analyze,
refine and implement the represented design solution.

III. PRELIMINARIES

In this section some notations about SDF graphs which will
be used in Section IV are introduced, then the Decision State
Modeling technique [2], which is extended in the first part of
the proposed methodology, is briefly described.

A SDF graph is defined as a directed graph G = (A,C)
where each node a; € A represents one of the processes
composing the application while each edge (a;,ar) € C
represents the communication channel between a producer
process a; and a consumer process a. A scheduling solution
for a SDF graph is composed of a periodic static-order
schedule (PSOS) s® for each processing element i. Each s
is a sequence specifying the order in which the actors mapped
on ¢ must be activated. The following functions will be used
to analyze and manipulate the SDF graphs:

e R(aj,ay): returns the number of tokens consumed by
ar, from channel (a;, ar) at each its activation;

e BEF (aj,t,si)_: returns the number of activations of
aj in PSOS s* before its ¢-th element;

e AFT (aj,t,si)_: returns the number of activations of
a; in PSOS s* after its ¢-th element;

e CNT (aj,s): returns the number of activations of a;
in PSOS s'; note that BEF (ay,t,s") + AFT (a;,t —
1,s") =CNT (a;,s");

e s'[t]: returns the ¢-th actor scheduled in PSOS s';

e P (a;):returns the pipeline stage to which a; has been
assigned;

e AA(aj): adds actor a; to the SDF graph;

e AC (aj,ak,w,r d): adds channel (a;, ay) to the SDF
graph and sets the number of produced, consumed and
initial tokens to w, r and d respectively;

e AT (aj,ar,n): adds n initial tokens to channel

(aj,ak).

The SDF graph which will be used as example to show
the application of the proposed methodology is presented in
Figure 1. The number of tokens produced and consumed on
each edge is one, when not differently specified by labels on
the edge itself.

CPU 2

CPU 3

Fig. 2. Example of a design solution to be represented.

An example of design solution for the application described
by SDF graph of Figure 1 is summarized in Figure 2: a9, as
and a4 have been assigned to the same pipeline stage, each of
the other actors to a different pipeline stage. Moreover, stage 3
and stage 5 have been assigned to the same processing element
and finally s? = (a4,as,as) and s* = (as,ar). Note that s*
sets the execution order of actors assigned to different pipeline
stages that have been mapped to the same processing element
and that for this reason have to be sequentially executed.

Decision State Modeling (DSM) [2] has been proposed to
include PSOSs directly in SDF graphs. Note that all the activa-
tions of an actor must be part of the same PSOS. A self-edge is
added to all the actors to prevent auto-concurrent activations
(i.e., overlapping activations of a same actor) and channels
are added to prevent overlapping of different executions of the
same PSOS. The evolution of the state of the SDF graph is then
analyzed to identify the states, reachable from the initial one
running the given PSOSs, where more than one actor assigned
to the same processing element can be activated (decision
states). Given a decision state w, where index ¢ identifies
the considered processing element and ¢ counts the number of
states from the initial, the set Afg of actors that can be activated
in that state are called opponent actors. The PSOS of the
processing element specifies which actor a; (actor of choice)
has to be executed in that state. DSM forces the execution of
a; by adding a new actor a,,;, a new channel (a;,a,;) and a
new channel (aw;, ay) for each a € A} —{a;} and by adding
the opportune initial tokens on the new channels. In this way,
DSM forces the serialization between a; and the other actors
that, even if ready, have to be executed only after the end of
a; activation. Finally DSM applies some optimizations to the
produced SDF graph to reduce the number of added actors
such as collapsing the actors that postpone the activation of a
same actor.

IV. PIPELINED APPLICATION MODELING

The proposed methodology aims at formally describing
a pipelined application by enriching the corresponding SDF
graph. There are not any particular limitations on the an-
alyzed application nor on the architecture running it. The
methodology is not limited to the analysis of Homogeneous
SDF graphs, so transformation in Homogeneous SDF graph
is not required. On the contrary some other preprocessing of
the analyzed SDF graph can be necessary if the analyzed

Algorithm 1: Pipelined Application Modeling (PAM).

Input : G(A,C), PSOSs {s',s%,...,s"}, P
Output: Modified G(A,C)
1 foreach auto-concurrent a; do

2 | AC(ai,ai1,1,1)

3 end

4 AA(p)

5 for : < 1 to n do

6 LastAct =s[|s"]

7 for j < 1 to |s*| do

8 if j # |s’| then

9 | An(d))

10 end

11 if j = 1 then

12 AA(d‘iS”)

13 AC (d}, s*[1],CNT (s*[1], s) , 1,CNT (s°[1], 8%))

14 AC (LastAct ,d¢, 1,cNT (LastAct , s*),0)

15 end

16 else

17 AC (d, s [j],CNT (s'[5],) , 1,
BEF (s'[4],4,5")) _ _

18 AC (s'[j —1],dj, 1,CNT (s'[j — 1],5"),
AFT (s'[j — 1], — 1,8%))

19 end

20 end

21 AC (p, s'[1],CNT (s°[1], s*) , 1,CNT (s[1], s%))

2 | Ac(LastAct,p,1,CNT (LastAct ,s"),0)

23 end

24 foreach (aj,ay) € C do

25 if P (a;) <P (ax) then

26 | AT (aj,ar, (P (ar) —P (a;))-CNT (ak,s') ‘R (a;, ax))

27 end

28 end

solution has some particular characteristics. In the solution
to be represented, all the activations of the same actor have
to be mapped on the same processing element: if they are
mapped on different processing elements, a replica of the
actor for each of them has to be created. In a similar way,
multicore processing elements and so multi-threaded solutions
can be described by considering each core as a different
processing element. Finally, differently from [4], the convexity
of the mapping solution is not required (i.e., two actors can
be mapped on the same processing element even if one of
the paths which connect them crosses an actor mapped on a
different processing element).

Algorithm 1 presents the proposed methodology which is
composed of two main parts:

e modeling of mapping and scheduling: models the
mapping of each actor to a processing element and the
PSOS of each processing element (see Section IV-A);

e modeling of stage assignment: models the synchro-
nization of different pipeline stages (see Section IV-B).

In the following each part will be detailed and finally com-
plexity of the proposed methodology will be discussed.
A. Modeling of mapping and scheduling

An approach similar to the one proposed in DSM technique
described in Section III is used to model part of the design

solution. However, differently from DSM, this part of the
proposed methodology includes in the analyzed SDF graph
also the description of the mapping solution. The SDF graph
produced by DSM indeed does not contain a complete mapping
solution, but only a part of it: all the pairs of actors, whose
serialization has been forced, are implicitly mapped on the
same processing element, while no information is provided
about mapping of two actors already connected through a path
in the original SDF graph. For this reason, an enriched SDF
graph produced by DSM can correspond to more than one
mapping solution; on the contrary, an enriched SDF graph
produced by PAM corresponds only to one particular mapping
solution. Inclusion of mapping information allows to refine
analysis of the design solution: for example, it is possible
to model the overhead due to context switching required
for executing two tasks in sequence on the same processing
element.

Scheduling and mapping solutions have to be included in
the SDF graph at the same time. Inclusion of only mapping
information indeed would require to force the mutual exclusion
between the activation of some actors, but mutual exclusion
cannot be modeled in a SDF graph. Boolean SDF graphs over-
come this limit, but giving up to statical schedulability [11]. On
the contrary, describing a mapping solution given a particular
schedule does not require use of mutual exclusions since actors
mapped on the same processing element are already forced to
be activated in sequence.

The modeling of mapping and scheduling in the SDF graph
is obtained by adding actors and channels which force the
serial execution of each pair of consecutively activated actors
of each PSOS. Given two activations of a PSOS, one of these
two conditions holds:

e the second actor can be activated before the first:
forcing serial execution is necessary to guarantee the
correct PSOS;

e the second actor cannot be activated before the first:
forcing serial execution would not be necessary to
guarantee the selected schedule, but it is still added
to model effects of mapping solution (e.g., context
switching overhead).

The DSM technique takes into account only the former
case, while this part of the proposed methodology covers also
the latter. In particular, while the DSM technique considers
only the decision states crossed during the execution of a PSOS
(i.e., the states where more than one actor mapped on the same
processing element can be activated), this part of the proposed
methodology considers all the crossed states. A new actor is
added (line 9) for each occurrence of an actor in PSOS to
model the control of its execution like in dataflow schedule
graphs [3], but adding the mapping information directly to the
SDF graph like in [2]. Each added actor is directly connected
through a channel with the actor it controls (line 17) and with
the actor which precedes it in the PSOS (line 18) to model the
passing of the control of the corresponding processing element
between actors mapped on it. The added actor can have a null
execution time or an execution time equal to context switching
overhead if its effect has to be modeled in the SDF graph. If
the controlled actor is the first in the schedule, the previous
actor to be considered is the last in the schedule (lines 11-14).

Fig. 3.

SDF graph enriched with mapping and scheduling information.

Although the main difference with DSM technique is
the application even in non-decision states, this part of the
proposed methodology produces different results also when
considering decision states where some redundant channels are
not added. Since the ordering of the actor activations which
compose a PSOS is absolute, this can be described by simply
specifying the order between each pair of activations: all the
other relative orderings will be implied by these. DSM forces
the actor of choice of a decision state to be executed before
all the other active actors, but to guarantee the satisfaction of
the required schedule it is sufficient to impose that in each
decision state the actor of choice is executed before the actor
which follows it in the schedule (lines 8-19). This optimization,
like the ones proposed in [2], aims at reducing the size of the
produced graph, but since they are not equivalent, they have
all to be applied in order to produce the smallest graph. In this
way, this part of the proposed methodology adds no more than
one actor and two channels for each occurrence of an actor in
the PSOS. Note that all these optimizations are optional since
the SDF graph produced without them would already correctly
model the analyzed pipelined application, but with a larger
number of actors and channels.

The last change with respect to DSM reduces the number
of added self-edges by limiting them to the actors which are
auto-concurrent in the given schedule (lines 1-3); these can be
easily identified during analysis of decision states: these actors
are activated two consecutive times in the schedule or they are
opponent actors in a state reached after their activation. Note
that other actors can be auto-concurrent, but the concurrent
activations can occur only in states not reached in the examined
schedule, so they can be ignored.

Figure 3 shows the effects of including mapping and
scheduling solution of Figure 2 in the SDF graph of Figure 1.
(i.e., when only this part of the methodology is applied). Note
that optimizations have been applied to reduce the number of
added actors and channels. d} ; and d? 5, controlling multiple
activations of an actor (3 activations of a; and 3 activations of
as respectively), are the result of the collapsing optimization

described in [2]. The actors, which control the activation of
actors mapped on the same processing element and so compose
the description of the mapping solution, are enclosed in dashed
boxes. Further simplifications of the produced graph have been
obtained thanks to the previously presented optimizations:

e channel (d3,az) is not added since the order to be
forced (i.e., az executed after a4) is already implied
by other partial orderings (i.e., a3 after a4 and a9 after
a3) through added channels (i.e., (a4, d3), (d3, a3) and
((l3, d%)a (dga (lg));

e auto-edges (as,a2), (as,as), (ag,a4), (as,as),
(a7, a7) are not added since these actors are not auto-
concurrent in the given schedule.

B. Modeling of stage assignment

To complete the modeling of a pipelined application, the
information about stage assignment has to be integrated in
the SDF graph. All the pipeline stages must be allowed to
start immediately their execution during a pipeline iteration
(pipeline is assumed to be fully filled), so supplementary initial
tokens have to be added to all the channels which connect two
actors assigned to different pipeline stages (line 26). Note that
tokens have to be added even if the target is not the first actor
of a pipeline stage. The number of initial tokens to be added
depends on three factors:

e CNT (ag,s'): how many times the target actor is
activated during a pipeline iteration;

e R(ay,a;): the number of tokens consumed by the
actor at each activation;

e P (ay)—P (a;): the stage distance between the source
and target actors.

The first two factors have to be taken into account to allow the
activation of the target actor the correct number of times. The
last factor models the delay between non-consecutive stages of
the pipeline and so the requirement of larger buffer for these
channels. Added tokens can create new decision states, but
since the previous step of the proposed methodology already
forces the serialization in non-decision states, no further mod-
ifications are required to guarantee the schedule solution. For
example as and a7 could now be executed at the same time,
but their serialization was already forced by d.

Finally, the synchronization among different stages of the
pipeline has to be forced: a new iteration may not start before
the ending of execution of all the pipeline stages. For this
reason, an actor p (line 4), whose activation identifies the
starting of a new pipeline iteration, is introduced. This actor
should be connected with all the actors of the application
(with the opportune initial tokens) and all the actors should be
connected with it so that all the actors would be activated the
correct number of times before the starting of a new iteration.
To reduce the size of the graph, these channels can be added
in a selective way: actor p is connected only to the first actor
of each PSOS (line 21). Since the activations of the actors
assigned to the same processing element have already been
sequentialized, adding these channels guarantee that all the
actors of the SDF graph have to wait the activation of p in
order to be activated. In the same way, channels incoming into

Fig. 4. SDF graph enriched with complete solution information.

p are added only from all the last scheduled actors (line 22):
this guarantees that p can be activated only after the execution
of all the actors of the SDF graph. On the contrary, adding only
the channel from p to the first actor of the first stage and from
the last actor of the last stage to p is not enough. In this case,
activation of all the actors of the graph would be guaranteed,
but not the synchronization of the different pipeline stages.

Figure 4 shows the SDF graph describing the design
solution of Figure 2 obtained by applying Algorithm 1. Sup-
plementary tokens have been added to all the channels of the
original SDF graph since all pairs of actors connected by a
channel are assigned to different pipeline stages. Note that two
tokens instead of one have been added to channel (a?,a%) to
correctly model the delay between non-consecutive stages of
the pipeline. The actor p, which controls the synchronization of
the pipeline stages, has been added and it has been connected
with all the first scheduled actors (i.e., a1, aq, as, ag) and all the
last scheduled actors (i.e., a1, as, ag, a7) have been connected
to it. Note that it is not necessary to connect p to a; to
synchronize the starting of the stage 4 of the pipeline, nor
it is necessary to connect as to p to synchronize the ending
of stage 2. Since these two stages are mapped on the same
processing element, they are indeed implicitly sequentialized.

C. Complexity of the Proposed Methodology

The complexity of PAM is (> ., |s'| 4+ |C|): the first
term is given by the loop body in lines 8-19 which is executed
i |s'| times, the second term is given by the loop in
lines 24-28. The number of added actors is > ;- |s*|+1, but it
can be reduced to Y. | App(s')+1 (where App(s’) sums the
appearances of each actor in PSOS s*). The maximum number
of added channels is |A,| +2- Y1 [App(s’) + 2 - n, where
A, is the set of auto-concurrent actors and n is the number of
processing elements.

V. CASE STUDY

In this section an application scenario of the proposed
methodology is presented: evaluation of pipelined application
design solutions during design space exploration. This can

Stage 2 mb_encoding CPU 2
CPU 3
Stage 3
CPU 4
Stage 4 @otion_compensatioa CPU 5

Fig. 5. SDF graph representing H263 decoder and pipelined solution to be
represented.
TABLE 1. RESULTS OF APPLICATION OF PROPOSED METHODOLOGY.
Starting SDF Produced SDF
Benchmark DS Size |A] |C| |A] IC|
modem 2.09 - 10" 16 36 33 68
sample-rate converter 7.20 - 102 6 11 13 23
satellite receiver 1.12-10%! 22 48 45 92
mp3 decoder 871 -10%° 14 19 25 58
mp3playback 2.40 - 10" 4 8 9 16
H263 decoder 2.40 - 102 4 6 9 22
H263 encoder 1.20 - 102 5 7 11 19

be easily obtained by combining a design space exploration
technique, the methodology proposed in this paper and a tool
for the analysis of SDF graphs like SDF3 [5]. In the design
of pipelined applications, design space exploration techniques
are usually required since the design solution space, even for
relatively small applications, can be very huge because of
the several elements which compose each solution (i.e., the
mapping and the pipeline stage assignment of each actor, the
schedule on each processing element). Left part of Table I re-
ports the size of the design solution space of stage assignment
problem for some common SDF benchmarks (modem [12],
sample-rate converter [12], satellite receiver [13], mp3playback
[14], H263 decoder [15], H263 encoder [16] and MP3 decoder
[15]). Note that, even considering only the pipeline stage as-
signment problem, the solution design space can be quite large
even on simple applications. For this reason, use of design
space exploration techniques coupled with high abstraction
level representations is mandatory to reduce the number of
solutions to be analyzed during the design process and to
reduce the complexity of the analysis of each solution. In
the following, no particular design space exploration technique
will be considered: the presented results do not depend on it
and evaluating a particular design space exploration technique
is out of the scope of this paper.

To be applied to solve a design problem, a design space
exploration technique usually requires: one or more figures of
merit, to quantify the goodness of a solution, and a method to
compute or estimate these quantities for each analyzed solu-
tion. The two typical metrics adopted to evaluate a pipelined

R . 'Y .
: d% P _p\motion_estimation

3 5"‘ . { 3 . N | K
fdy T motion_compensation

)
*

Fig. 6. SDF graph produced by PAM starting from SDF graph of Fig. 5.

solution are the maximum throughput [15] and the minimum
buffer size which guarantees it [17]. Both these quantities can
be easily computed analyzing a SDF graph, for example by
exploiting SDE? [5], but these analyses have to take into
account mapping, scheduling and pipeline stage assignment
in order to produce estimations enough accurate to correctly
evaluate a design solution.

The analysis of the throughput of the H263 encoder bench-
mark, whose SDF graph is shown in Fig. 5, highlights the
errors which can be introduced in estimating pipelined appli-
cations. Suppose that the design solution to be evaluated is the
one presented in Fig. 5: each actor has been mapped on a dif-
ferent processing element; vlc and mb_decoding have been as-
signed to the same pipeline stage, while motion_estimation,
mb_encoding and motion_compensation have been each
assigned to a different pipeline stage. The PSOSs of the
analyzed solution are: s' = (motion_estimation), s*> =
(mb_encoding®®), s> = (vic), s* = (mb_decoding®®),
s5 = (motion_compensation). The throughput computed
with SDF33 considering the SDF graph produced by DSM
technique is 20.28 frames per second while the computed
overall buffer size is 2.04 MB. According to this SDF graph,
each actor has to wait that all the others actors fire again
in sequence before being activated again, with the exception
of mb_encoding and mb_decoding which executions can be
overlapped.

The proposed methodology has been applied to include
the pipelined solution described in Fig. 5 in the SDF graph of
the H263 encoder. The obtained SDF graph, which is shown
in Fig. 6, has been written as an XML file compliant to
the SDF?3 XML syntax: in this way it has been possible to
compute its throughput and the minimum buffer sizes which
guarantee it by means of SDF? without reimplementing any
analysis techniques. The obtained throughput is almost 1.5x
better than the one computed ignoring pipeline assignment
information (30,03 frames per second) while overall buffer size
is 1.5x worse (3.02MB). Indeed, the proposed methodology
adds supplementary initial tokens to all the edges of the

produced SDF graph to correctly model that the activations of
all the actors are overlapped. For this reason, the throughput
of the whole application is determined by the slowest pipeline
stage of the analyzed solution that is the one composed of
actor motion_estimation. At the same time, because of the
added initial tokens, the computed overall buffer size is larger.

After having shown on a real application case study how
the proposed methodology can be easily integrated with ex-
isting framework and how much the added information can
impact on analysis results, some data about the runtime of the
methodology are reported. Indeed, in order to be suitable to
be integrated in a design space exploration methodology, an
evaluation technique must be fast: the faster it is, the larger
the number of evaluations that can be performed in a same
amount of time. In the considered scenario, the evaluation
technique is composed of the proposed methodology and of
the analyses performed by SDF?3. The time complexity and
so the execution time of PAM depend on the size of the initial
SDF graph while the execution time of the analyses performed
by SDF?3 depends on the size of the SDF graph produced
by PAM. Details about the size of the analyzed applications
and about the size of the enriched graphs are reported in
right part of Table 1. The size in terms of numbers of actors
and channels of the produced SDF graphs refers to single-
appearance solutions. Note that, as described in Section IV,
PAM can be applied to this type of solutions, which are usually
adopted in the design of streaming applications, but also to
non single-appearance solutions. Since throughput and buffer
size analyses integrated in the SDF? are very fast techniques
[18], their precise execution times cannot be collected because
of limited resolution of profiling mechanisms available on
the host machine. The analyses require for each one of the
considered enriched graphs less than 10 milliseconds; a non-
optimized C++ implementation of PAM requires less than 100
milliseconds to produce an enriched graph, but thanks to the
small complexity of the proposed methodology, much better
performances can be obtained with an efficient implementa-
tion. As a result, the combination of the proposed methodology
and of SDF graph analyses can be considered enough fast to be
fully suitable for exploitation in a fast design space exploration
methodology.

VI. CONCLUSIONS

In this paper a methodology to describe all the aspects of
a pipelined application by means of a SDF graph have been
presented. The methodology is composed of two main parts:
the former adds mapping and scheduling information, the
latter stage assignment information. The usage of SDF graphs
facilitates the portability of the design solutions allowing the
application of existing techniques for analysis and synthesis of
embedded systems based on SDF graphs and reduces the gap
between a high level description of the design solution and its
implementation.

(11

(21

(3]

[4]
(51
(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235 — 1245, 1987.

M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal,
“Modeling static-order schedules in synchronous dataflow graphs,” in
DATE 12, 2012, pp. 775-780.

H.-H. Wu, C.-C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya,
“A model-based schedule representation for heterogeneous mapping
of dataflow graphs,” in IPDPSW ’I11, 2011, pp. 70-81. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2011.128

Y. Chen and H. Zhou, “Buffer minimization in pipelined sdf scheduling
on multi-core platforms,” in ASP-DAC 12, 2012, pp. 127-132.

S. Stuijk, M. Geilen, and T. Basten, “Sdf3: Sdf for free,” in ACSD 06,
2006, pp. 276-278.

A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical modeling
of pipeline parallelism,” in PACT 09, 2009, pp. 281 —-290.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions
on Computers, vol. 36, no. 1, pp. 24-35, 1987. [Online]. Available:
http://dx.doi.org/10.1109/TC.1987.5009446

N. K. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharyya,
“Intermediate representations for design automation of multiprocessor
dsp systems,” Design Automation for Embedded Systems, vol. 7, no. 4,
pp. 307-323, 2002.

W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A
language for streaming applications,” in CC 02, 2002, pp. 179-196.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647478.727935

A. Pop and A. Cohen, “A stream-computing extension to
openmp,” in HIiPEAC ’11, 2011, pp. 5-14. [Online]. Available:
http://doi.acm.org/10.1145/1944862.1944867

S. S. Bhattacharyya, E. F. Deprettere, and J. Keinert, “Dynamic and
multidimensional dataflow graphs,” in Handbook of Signal Process-
ing Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and
J. Takala, Eds., 2010, pp. 899-930.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of
embedded software from synchronous dataflow specifications,” Journal
of VLSI Signal Processing Systems, vol. 21, no. 2, pp. 151-166, 1999.
[Online]. Available: http://dx.doi.org/10.1023/A:1008052406396

S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,” in
ICASSP ’95, vol. 4, 1995, pp. 2651-2654 vol.4.

M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit,
“Efficient computation of buffer capacities for cyclo-static dataflow
graphs,” in DAC ’07, 2007, pp. 658-663. [Online]. Available:
http://doi.acm.org/10.1145/1278480.1278647

A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.
Mousavi, A. J. M. Moonen, and M. Bekooij, “Throughput analysis of
synchronous data flow graphs,” in ACSD 06, 2006, pp. 25-36.

H. Oh and S. Ha, “Fractional rate dataflow model for
efficient code synthesis,” J. VLSI Signal Process. Syst.,
vol. 37, no. 1, 41-51, 2004. [Online]. Available:

http://dx.doi.org/10.1023/B:VLSI.0000017002.91721.0e

J. Park and W. J. Dally, “Buffer-space efficient and
deadlock-free scheduling of stream applications on multi-core
architectures,” in SPAA 10, 2010, pp. 1-10. [Online]. Available:
http://doi.acm.org/10.1145/1810479.1810481

A.-H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M.
Moonen, M. Bekooij, B. Theelen, and M. Mousavi, “Throughput

analysis of synchronous data flow graphs,” in ACSD 06, 2006, pp.
25-36.

