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A high order method for orbital conjunctions analysis:
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Abstract

A high order method to quickly assess the effect that uncertainties pro-
duce on orbital conjunctions through a numerical high-fidelity propagator
is presented. In particular, the dependency of time and distance of closest
approach to initial uncertainties on position and velocity of both objects
involved in a conjunction is studied. The approach relies on a numerical
integration based on differential algebraic techniques and a high-order algo-
rithm that expands the time and distance of closest approach in Taylor series
with respect to relevant uncertainties. The modeled perturbations are atmo-
spheric drag, using NRLMSISE-00 air density model, solar radiation pressure
with shadow, third body perturbation using JPL’s DE405 ephemeris, and
EGM2008 gravity model. The polynomial approximation of the final posi-
tion is used as an input to compute analytically the expansion of time and
distance of closest approach. As a result, the analysis of a close encounter
can be performed through fast, multiple evaluations of Taylor polynomials.
Test cases with objects ranging from LEO to GEO regimes are considered to
assess the performances and the accuracy of the proposed method.
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1. Introduction

The detection of orbital conjunctions between spacecraft and space debris
is of fundamental importance in space situational awareness (SSA) programs.
Once a potentially dangerous closest approach is identified, for instance by
looking at the minimum distance between the objects, all information re-
quired to analyse the conjunction is provided to satellite operators that will
compute the collision probability and evaluate the collision risk.

The collision risk depends on the geometry of the encounter and is consid-
erably affected by the uncertainties of the orbital states at the time of closest
approach (TCA). These uncertainties, in turn, depend on the uncertainties
on initial state and their evolution along the orbit. When the TCA is far
away from the reference epoch of the initial state, nonlinearities can play an
important role in the computation of collision probability, since the initial
covariance ellipsoid stretches and deforms after each revolution.

In the past, the conjunction assessment procedures relied on the catalog
of unclassified objects orbiting the Earth, maintained by the United States
Strategic Command (USSTRATCOM). The catalog is still available nowa-
days and contains all up-to-date two-line elements (TLE), that are intended
for the use with the SGP4/SDP4 orbital model (Hoots et al., 2004). The
Center for Space Standards and Innovation (CSSI) produces daily reports
of closest conjunctions for the upcoming week using the program Satellite
Orbital Conjunction Reports Assessing Threatening Encounters in Space
(SOCRATES) (Kelso and Alfano, 2005). The information is publicly posted
at www.celestrak.com/SOCRATES/. The conjunctions are identified using
TLEs and SGP4/SDP4 and the tool also computes the maximum conjunc-
tion probability (Alfano, 2005), which represents the upper bound of collision
probability and is obtained assuming the worst-case orientation and size of
the covariance matrices.

When using TLEs and the SGP4/SGP4 analytical propagator, it has to
be taken into account that the time of closest approach (TCA) can vary
up to tens of seconds and the distance of closest approach (DCA) up to a
few kilometers if more recent TLEs are considered for conjunction detection.
Propagation accuracy of SGP4/SDP4 is indeed object dependent, and after
a few days of propagation the errors can easily exceed tens of kilometres. In
addition, potentially significant biases exist in TLE data (Kelso, 2007).
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Nevertheless, when precise ephemeris of the chasers are not available,
TLEs can represent a significant source of information. It is possible to
estimate covariance information for TLEs by comparing states derived di-
rectly from the TLE data with states resulting from an orbit determination
using pseudo-observations derived from TLE data (Alarcon-Rodriguez et al.,
2004). Alternatively, it is possible to derive a covariance matrix differencing
a set of TLEs propagated up to a common time (La Porte and Sasot, 2008;
Vallado and Cefola, 2012).

Besides the publicly available TLE catalog, the Joint Space Operation
Center (JSpOC) maintains an High-Accuracy Special Perturbation Catalog
(Coffey et al., 1998) and releases Conjunction Summary Messages (CSM) to
warn satellite operators of incoming close conjunctions (Aida and Kirschner,
2012). The CSM also provides the chaser covariance matrices at the TCA
which can be used, together with satellite ephemeris, for accurate collision
risk assessment.

The operational service for the assessment of collision risks of ESA satel-
lites is based on the collision risk assessment software CRASS and the orbit
determination software ODIN (Flohrer et al., 2009a). A daily automated
screening is performed to identify close approached between covered mis-
sions and TLE from USSTRATCOM. When the estimated collision proba-
bility for an encounter exceeds a given threshold further data are acquired by
the operator and processed by ODIN to improve orbit and covariance infor-
mation. Methods were developed to estimate uncertainties associated with
TLEs (Flohrer et al., 2009b). The process was adapted to take into account
the CSM and analysis were performed to verify CSM against conjunction
event analysis based on radar measurements (Flohrer et al., 2013).

In this work, a method for the computation of the DCA and TCA for
all the objects compatible with the initial orbital uncertainties (referred to
as virtual debris in the remainder of the paper) with a single numerical
integration is presented. The method is based on the high order Taylor
expansion of the flow of the dynamics enabled by differential algebraic (DA)
techniques. In particular, a DA-based integrator and a polynomial inversion
algorithm are used to express the dependence of TCA and DCA on orbital
uncertainties in terms of high order Taylor polynomials (Armellin et al.,
2010). As a result, the multiple integrations required by a Monte Carlo based
approach for the computation of TCA and DCA for all the virtual debris
are substituted by fast polynomial evaluations. The computation of these
polynomials and the study of their accuracy is the main focus of the paper.
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Their use for the fast and accurate computation of collision probability will
be addressed in future work.

The paper is organized as follows. Firstly, some notes on DA techniques
and the method for the high order expansion of the flow are introduced.
A description of the dynamical model used follows. Then, the algorithm
developed for the Taylor expansion of the TCA and DCA is presented. The
performances of the numerical propagator in terms of computational time
and expansion accuracy are first illustrated. Subsequently, the attention is
focused on the accuracy analysis of TCA and DCA expansions.

2. Notes on Differential Algebra

DA techniques, exploited here to obtain k-th order Taylor expansions of
the flow of a set of ODE’s with respect to the initial conditions, were de-
vised to attempt solving analytical problems through an algebraic approach
(Berz, 1999b). Historically, the treatment of functions in numerics has been
based on the treatment of numbers, and the classical numerical algorithms
are based on the mere evaluation of functions at specific points. DA tech-
niques rely on the observation that it is possible to extract more information
on a function rather than its mere values. The basic idea is to bring the
treatment of functions and the operations on them to a computer environ-
ment in a similar manner as the treatment of real numbers. Referring to
Figure 1, consider two real numbers a and b. Their transformation into the
floating point representation, a and b respectively, is performed to operate
on them in a computer environment. Then, given any operation ∗ in the set
of real numbers, an adjoint operation ⊛ is defined in the set of floating point
(FP) numbers so that the diagram in Figure 1 commutes. (The diagram
commutes only approximately in practice due to truncation errors.) This
means , transforming the real numbers a and b into their FP representation
and operating on them in the set of FP numbers returns the same result as
carrying out the operation in the set of real numbers and then transforming
the achieved result in its FP representation.

In a similar way, let us suppose two k differentiable functions f and g
in n variables are given. In the DA framework, the computer operates on
them using their k-th order Taylor expansions, F and G respectively. There-
fore, the transformation of real numbers in their FP representation is now
substituted by the extraction of the k-th order Taylor expansions of f and
g. For each operation in the space of k times differentiable functions, an
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Figure 1: Analogy between the floating point representation of real numbers in a computer
environment (left figure) and the introduction of the algebra of Taylor polynomials in the
differential algebraic framework (right figure).

adjoint operation in the space of Taylor polynomials is defined so that the
corresponding diagram commutes; i.e., extracting the Taylor expansions of f
and g and operating on them in the space of Taylor polynomials (labeled as

kDn ) returns the same result as operating on f and g in the original space
and then extracting the Taylor expansion of the resulting function.

The straightforward implementation of differential algebra in a computer
enables the computation of the Taylor coefficients of a function up to a speci-
fied order k, along with the function evaluation, with a fixed amount of effort.
The Taylor coefficients of order n for sums and products of functions, as well
as scalar products with reals, can be computed from those of summands and
factors; therefore, the set of equivalence classes of functions can be endowed
with well-defined operations, leading to the so-called truncated power series
algebra (Berz, 1986, 1987). Similarly to the algorithms for floating point
arithmetic, the algorithms for functions followed, including methods to per-
form composition of functions, to invert them, to solve nonlinear systems
explicitly, and to treat common elementary functions (Berz, 1999a,b). In
addition to these algebraic operations, the DA framework is endowed with
differentiation and integration operators, therefore finalizing the definition of
the DA structure.

Some useful notes to get familiar with DA techniques are given hereafter,
taking advantage of its detailed introduction by Berz (1999b). In particular,
the minimal differential algebra for 1-dimensional functions and their first
order expansion is illustrated in Sect. 2.1. Section 2.2 provides a clue of
its extension to functions of n variables and k-th order expansions. Finally,
the use of DA techniques to compute high order expansions of the flow of a
general ODE is reported in Sect. 2.3, based on the description by Valli et al.
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(2013).

2.1. The Minimal Differential Algebra

Consider all ordered pairs (q0, q1), with q0 and q1 real numbers. Define
addition, scalar multiplication, and vector multiplication as follows:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)

t · (q0, q1) = (t · q0, t · q1)

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0),

(1)

where t ∈ R. The ordered pairs with the above arithmetic are called 1D1.
The multiplication of vectors is seen to have (1, 0) as the unity element. The
multiplication is commutative, associative, and distributive with respect to
addition. Together, the three operations defined in Eq. (1) form an algebra.
Furthermore, they form an extension of real numbers, as (r, 0) + (s, 0) =
(r + s, 0) and (r, 0) · (s, 0) = (r · s, 0), so that the reals are included.

The multiplicative inverse of the pair (q0, q1) in 1D1 is

(q0, q1)
−1 =

(

1

q0
,−

q1
q20

)

, (2)

which is defined for any q0 6= 0.
One important property of this algebra is that it has an order compatible

with its algebraic operations. Given two elements (q0, q1) and (r0, r1) in 1D1,
the following is defined

(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1)

(q0, q1) > (r0, r1) if (r0, r1) < (q0, q1)

(q0, q1) = (r0, r1) if q0 = r0 and q1 = r1.

(3)

As for any two elements (q0, q1) and (r0, r1) only one of the three relation
holds, 1D1 is said totally ordered. The order is compatible with the addition
and multiplication; for all (q0, q1), (r0, r1), (s0, s1) ∈ 1D1, it follows (q0, q1) <
(r0, r1) ⇒ (q0, q1) + (s0, s1) < (r0, r1) + (s0, s1); and (s0, s1) > (0, 0) = 0 ⇒
(q0, q1) · (s0, s1) < (r0, r1) · (s0, s1).

The number d = (0, 1) has the interesting property of being positive but
smaller than any positive real number; indeed (0, 0) < (0, 1) < (r, 0) = r.
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For this reason d is called an infinitesimal or a differential. In fact, d is so
small that its square vanishes. Since for any (q0, q1) ∈ 1D1

(q0, q1) = (q0, 0) + (0, q1) = q0 + d · q1, (4)

the first component is called the real part and the second component the
differential part.

The algebra in 1D1 becomes a differential algebra by introducing a map
∂ from 1D1 to itself, and proving that the map is a derivation. Define ∂ :

1D1 → 1D1 by
∂(q0, q1) = (0, q1). (5)

Note that

∂{(q0, q1) + (r0, r1)} = ∂(q0 + r0, q1 + r1) = (0, q1 + r1)

= (0, q1) + (0, r1) = ∂(q0, q1) + ∂(r0, r1),
(6)

∂{t · (q0, q1)} = ∂(t · q0, t · q1) = (0, t · q1)

= t · (0, q1) = t · ∂{(q0, q1)},
(7)

and

∂{(q0, q1) · (r0, r1)} = ∂(q0 · r0, q0 · r1 + r0 · q1) = (0, q0 · r1 + r0 · q1)

= (0, q1) · (r0, r1) + (0, r1) · (q0, q1)

= ∂{(q0, q1)} · (r0, r1) + (q0, q1) · ∂{(r0, r1)}
(8)

This holds for all (q0, q1), (r0, r1) ∈ 1D1. Therefore ∂ is a derivation and
(1D1, ∂) is a differential algebra.

The most important aspect of 1D1 is that it allows the automatic computa-
tion of derivatives. Assume to have two functions f, g ∈ C1(D), with D ⊆ R.
Put their values and their derivatives at x ∈ D in the form (f(x), f ′(x)) and
(g(x), g′(x)) as two vectors in 1D1. If the derivative of the product f · g is
of interest, it has just to be looked at the second component of the product
(f(x), f ′(x))·(g(x), g′(x)) as defined in (1); whereas the first component gives
the value of the product of the functions. Therefore, if two vectors contain
the values and the derivatives of two functions, their product contains the
values and the derivatives of the product function. Defining the operator [ ]
from the space of differentiable functions to 1D1 via

[f ] = (f(x), f ′(x)), (9)
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and using (2), it holds
[f + g] = [f ] + [g]

[t · f ] = t · [f ]

[f · g] = [f ] · [g],

(10)

where t ∈ R, and
[1/g] = [1]/[g] = 1/[g] (11)

for all g with g(x) 6= 0. This observation can be used to compute derivatives
of many kinds of functions algebraically by merely applying arithmetic rules
on 1D1, starting from the value and the derivative of the identity function
f(x) = x, i.e., [f ] = [x] = (x, 1). Consider the example

f(x) =
1

x+ (1/x)
(12)

and its derivative

f ′(x) =
(1/x2)− 1

(x+ (1/x))2
. (13)

The function value and its derivative at the point x = 3 are

f(3) =
3

10
, f ′(3) = −

2

25
. (14)

The same result can be obtained by replacing x with [x] evaluated at x = 3,
i.e., (3, 1). Performing all the operations of (12) in the algebraic framework
defined in (1) and (2) yields

f([x]) =
1

[x] + 1/[x]
=

1

(3, 1) + 1/(3, 1)
=

1

(3, 1) + (1/3,−1/9)

=
1

(10/3, 8/9)
=

(

3

10
, −

8

9

/ 100

9

)

=

(

3

10
,−

2

25

)

.

(15)
Thus, the real part of the result is the value of the function at x = 3, whereas
the differential part is the value of the derivative of the function at x = 3.
This is expected as, by applying the relations (10) and (11) to compute the
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1D1 representative of f ,

[f ] =

[

1

x+ 1/x

]

=
1

[x+ 1/x]

=
1

[x] + [1/x]
=

1

[x] + 1/[x]

= f([x]).

(16)

It is worth highlighting that DA circumvents the analytical derivation of
f ′(x) as performed in (13) to compute the derivative of f at x = 3.

2.2. The Differential Algebra kDn

This section extends the algebra 1D1 to the general kDn case, which en-
ables the computation of the derivatives of functions in n variables up to
order k. Similarly as before, it is based on taking the space Ck(D), the col-
lections of k times continuously differentiable functions onD, where D ⊆ Rn.
On this space an equivalence relation is introduced. For f and g ∈ Ck(D),
f =k g if and only if f(x) = g(x) with x ∈ D and all the partial derivatives
of f and g agree at x up to order k. The relation =k satisfies

f =k f for all f ∈ Ck(D),

f =k g ⇒ g =k f for all f, g ∈ Ck(D), and

f =k g and g =k h ⇒ f =k h for all f, g, h, ∈ Ck(D).

(17)

Thus, =k is an equivalence relation. All the elements that are related to f
can be grouped together in one set, the equivalence class [f ] of the function f .
The resulting equivalence classes are often referred to as DA vectors or DA
numbers. Intuitively, each of these classes is then specified by a particular
collection of partial derivatives in all n variables up to order k. The set of
these classes is called kDn.

If the values and the derivatives of two functions f and g are known,
the corresponding values and derivatives of f + g and f · g can be inferred.
Therefore, the arithmetics on the classes in kDn can be introduced via

[f + g] = [f ] + [g]

[t · f ] = t · [f ]

[f · g] = [f ] · [g],

(18)

9



where t ∈ R. Under this operations, kDn becomes an algebra. Note that the
algebra 1D1 is a particular case of kDn. This is justified by the fact that the
equivalence relation in (17) holds for the special case k = n = 1; moreover,
the algebra in (18) is identical to the 1D1 counterpart in (10). Thus, the
definition of 1D1 in Sect. 2.1 is compatible with its kDn extension; therefore,
no difference in notation is made.

For each v ∈ 1, . . . , n, define now the map ∂v from kDn to kDn for f via

∂v[f ] =

[

pv ·
∂f

∂xv

]

, (19)

where
pv(x1, . . . , xn) = xv (20)

projects out the v-th component of the identity function. It is easy to show
that for all v = 1, . . . , n and for all [f ], [g] ∈ kDn

∂v([f ] + [g]) = ∂v[f ] + ∂v[g]

∂v(t · [f ]) = t · ∂v[f ]

∂v([f ] · [g]) = [f ] · (∂v[g]) + (∂v[f ]) · [g],

(21)

where t ∈ R. Therefore, ∂v is a derivation for all v, and hence ( kDn, ∂1, . . . , ∂v)
is a differential algebra.

Observe that f lies in the same class as its Taylor polynomial Tf of order
k around the origin; they have the same function values and derivatives up
to order n. Therefore,

[f ] = [Tf ] (22)

and the introduced differential algebra is referred to as Taylor polynomial
algebra.

The structure kDn can be endowed with the composition of functions and
the treatment of common elementary functions such as exp, sin, and log.
Consequently, the derivatives of any function f ∈ Ck(D), where D ⊆ Rn,
and composed of the elementary functions can be computed up to order k in
fixed amount of effort. The DA sketched in this section was implemented by
M. Berz and K. Makino in the software COSY-Infinity (Berz and Makino,
2006).
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2.3. High Order Expansion of the Flow

Differential algebra allows the derivatives of any function f of n variables
to be computed up to an arbitrary order k, along with the function evalu-
ation. This has an important consequence when the numerical integration
of an ODE is performed by means of an arbitrary integration scheme. Any
integration scheme is based on algebraic operations, involving the evaluation
of the ODE right hand side at several integration points. Therefore, carrying
out all the evaluations in the DA framework allows differential algebra to
compute the arbitrary order expansion of the flow of a general ODE with
respect to the initial condition.

Without loss of generality, consider the scalar initial value problem

{

ẋ = f(x, t)
x(t0) = x0

(23)

and the associated phase flow ϕ(t; x0). We now want to show that, starting
from the DA representation of the initial condition x0, differential algebra
allows us to propagate the Taylor expansion of the flow in x0 forward in
time, up to the final time tf .

To this aim, replace the point initial condition x0 by the DA represen-
tative of its identity function up to order k, which is a (k + 1)-tuple of
Taylor coefficients. (Note that x0 is the flow evaluated at the initial time; i.e,
x0 = ϕ(t0; x0).) As for the identity function only the first two coefficients,
corresponding to the constant part and the first derivative respectively, are
non zeros, we can write [x0] as x0 + δx0, where x0 is the reference point for
the expansion. If all the operations of the numerical integration scheme are
carried out in the DA framework, the phase flow ϕ(t; x0) is approximated, at
each fixed time step ti, as a Taylor expansion in x0.

For the sake of clarity, consider the forward Euler’s scheme

xi = xi−1 + f(xi−1)∆t (24)

and substitute the initial value with the DA identity [x0] = x0 + δx0. At the
first time step we have

[x1] = [x0] + f([x0]) ·∆t. (25)

If the function f is evaluated in the DA framework, the output of the first
step, [x1], is the k-th order Taylor expansion of the flow ϕ(t; x0) with respect
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to x0 at t = t1. Note that, as a result of the DA evaluation of f([x0]), the
(k + 1)-tuple [x1] may include several non zero coefficients corresponding to
high order terms in δx0. The previous procedure can be inferred through
the subsequent steps. The result of the final step is the k-th order Taylor
expansion of ϕ(t; x0) in x0 at the final time tf . Thus, the flow of a dynamical
system can be approximated, at each time step ti, as a k-th order Taylor
expansion in x0 in a fixed amount of effort. In addition, the high order
expansion of the flow with respect to the final time is obtained when the
final time is initialized as DA variable. Consider the last step of the forward
Euler’s scheme where the initial value [x0] is a DA variable and f is evaluated
in a DA environment:

[xN ] = [xN−1] + f([xN−1])∆t. (26)

Since the final time is initialized as a DA variable, i.e.

[tf ] = tf + δtf , (27)

the last time step ∆t will be a DA variable as well, yielding

[xN ] = [xN−1] + f([xN−1])[∆t] = [xN−1] + f([xN−1]) ([tf ]− tn−1) . (28)

As a result, the high order expansion of the flow with respect to final time
variation is obtained. This plays a crucial role in the computation of the
Taylor expansion of the TCA, as illustrated in Sec. 4.2.

The conversion of standard integration schemes to their DA counterparts
is straightforward both for explicit and implicit solvers. This is essentially
based on the substitution of the operations on real numbers with those on DA
numbers. In addition, whenever the integration scheme involves iterations
(e.g. iterations required in implicit and predictor-corrector methods), step
size control, and order selection, a measure of the accuracy of the Taylor
expansion of the flow needs to be included.

Integration schemes based on DA pave the way to the algorithms presented
in this paper. A first example is given hereafter about the propagation of
uncertainties on initial conditions. The Taylor polynomials resulting from
the use of DA-based numerical integrators expand the solution of the initial
value problem presented in Eq. (23) with respect to the initial condition.
Thus, the dependence of the solution x(t) on the initial condition is available,
at a time ti, in terms of a k-th order polynomial map Mx0

(δx0), where
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δx0 is the displacement from the reference initial condition. The evaluation
of the map Mx0

(δx0) for a selected value of δx0 supplies the k-th order
Taylor approximation of the solution at ti corresponding to the perturbed
initial condition. The accuracy of the result depends on the function f , the
expansion order k, and the value of the displacement δx0.

The main advantage of the DA-based approach is that there is no need
to write and integrate variational equations in order to obtain high order
expansions of the flow. This result is basically obtained by the substitution
of operations between real numbers with those on DA numbers, and therefore
the method is ODE independent. Furthermore, the efficient implementation
of the differential algebra in COSY-Infinity allows us to obtain high order
expansions with limited computational time.

3. Numerical propagator

The numerical propagator AIDA (Accurate Integrator for Debris Analysis)
is implemented to perform the expansions of TCA and DCA. The perturba-
tions included in AIDA are the geopotential acceleration, atmospheric drag,
solar radiation pressure, and third body gravity . Details on the modeling of
these sources of perturbation are given in the following. For the numerical
integrations presented in this paper, a DA version of the Dormand-Prince
(8-th order solution for propagation, 7-th order solution for step size control)
implementation of the Runge-Kutta scheme is used. A weighted norm of the
resulting Taylor polynomials is computed within the step size control proce-
dure, where the weights are selected to scale the polynomial variables by the
size of their initial uncertainty.

3.1. Geopotential acceleration

The acceleration due to Earth’s gravity potential can be written as

aHarm = ∇
GME

r

∞
∑

n=0

n
∑

m=0

RE
n

rn
P nm (sinφ)

(

Cnm cos (mλ) + Snm sin (mλ)
)

,

(29)
where GME is Earth’s gravitational constant, RE is Earth’s radius, Cnm and
Snm are the normalized geopotential coefficients, P nm are the normalized
associated Legendre functions, r is the object distance from the centre of the
Earth, and φ and λ are the geocentric latitude and longitude.
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The gravitational model selected for the numerical propagator is EGM2008
(Pavlis et al., 2012). The model combines gravitational information from
GRACE with surface data and is complete to spherical harmonic degree and
order 2160. The field model was downloaded from the International Centre
for Global Earth Models (ICGEM) website 4.

In EGM2008, Earth’s gravity constant is equal to 3.986004415×1014 m3/s2

and the Earth radius is 6.3781363×106 m. Earth angular velocity, ωE, is set
to 7.292115×10−5 rad/s and flattening parameter is f = 1/298.257.

The default degree n and order m in Eq. (29) are set to 10 for the simu-
lations performed in this paper.

3.2. Atmospheric drag

The perturbing acceleration due to atmospheric drag on a satellite is

aDrag = −
1

2
CD

A

M
ρvrvr, (30)

where CD is the drag coefficient, A is the satellite’s cross-sectional area and
M its mass, vr is the satellite velocity relative to the atmosphere , and ρ is
the atmospheric density at satellite’s position.

The drag coefficient and area to mass ratio are often grouped in a param-
eter known as ballistic coefficient, B, defined as

B = CD

A

M
. (31)

The Naval Research Laboratory’s Mass Spectrometer and Incoherent Scat-
ter Radar of year 2000 (NRLMSISE-00) model (Picone et al., 2002) was se-
lected to compute the atmospheric density. This model includes the anoma-
lous oxygen component together with Helium, atomic and molecular Oxygen,
atomic and molecular Nitrogen, Argon, and Hydrogen. The model requires
as inputs the solar and geomagnetic activity, geodetic altitude and latitude,
longitude, year, day, and time of day in UT. Solar and geomagnetic data are
read from up-to-date space weather files that are automatically downloaded
from CelesTrack 5.

4http://icgem.gfz-potsdam.de/ICGEM/
5http://celestrak.com/SpaceData/SpaceWx-format.asp
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3.3. Third body perturbations

The gravitational attraction of the Sun and the Moon is the main source
of perturbation among all third bodies. The perturbing acceleration acting
on the orbiting object is given by

a3rdB = GM3rdB

(

s

s3
−

r3rdB

r3rdB3

)

, (32)

where the relative position of the satellite, s, is defined as

s = r3rdB − robj, (33)

where r3rdB and robj are the position vectors of the third body and the object,
respectively. The position of the third bodies, i.e. the Sun and the Moon,
are computed using NASA JPL’s DE405 ephemeris (Standish, 1998).

3.4. Solar radiation pressure

The absorption or reflection of photons exerts a small force on the satellite.
This perturbing acceleration depends on object area and mass as well as on
the intensity of the solar flux Φ, that is approximately 1367 W/m2 at 1 AU.
The solar radiation pressure, PS, is given, assuming full absorption, by

PS =
Φ

c
=

LS

4πr2c
, (34)

where the speed of light is indicated as c, the distance from the Sun as r,
and LS is the solar luminosity.

The information regarding shape and attitude of operative satellites are
usually available, at least for satellite owners and operators. Unfortunately,
in general, this is not the case for space debris. Therefore, the debris is
modeled as a sphere in this work, removing the need for attitude informa-
tion. The resulting acceleration, which is in the direction of the Sun-satellite
vector, is equal to

aSRP =
LS

4π c

A

M
(1 + ε)

robj − rS

||robj − rS||3
ν, (35)

where A is the debris area and M its mass, ε is body reflectivity, and ν is
the shadow function. The position of the Sun, rS, is in ECI J2000 reference
frame and is obtained from JPL’s DE405 ephemeris. The acceleration aSRP

decreases as Sun’s distance increases.
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Area-to-mass ratio can be estimated from the object ballistic coefficient,
assuming a drag coefficient CD = 2.2. The reflectivity ε, if not otherwise
specified, is set to 0.31. This value lies in the range typical of materials used
for satellite construction, i.e. [0.2; 0.9] (Montenbruck and Gill, 2000).

The shadow function ν is zero when the object is in shadow, one when it is
in light, and varies within these two values when the object is in penumbra.
The value of this function is computed by comparing the satellite position
with the one of the occulting body and the Sun (Montenbruck and Gill, 2000).
Three options to model the shadow of an occulting body are implemented
in AIDA: no shadow, cylindrical shadow, and dual-cone shadow. Dual-cone
shadow model is the default model.

4. DCA and TCA expansion

Uncertainties in orbital measurements and orbital determination process
result in uncertainties in the initial orbital state of the space objects. Con-
sequently, each pair of virtual debris is characterized by a different value of
TCA. In this section the procedure to obtain the Taylor expansion of TCA
and DCA is described, provided that a first guess of TCA is available.

4.1. First guess of TCA

Amethod to compute first guess values of TCA and DCA was developed in
(Armellin et al., 2012). This method is based on the propagation of TLE with
SGP4/SDP4 and the identification of the conjunction by the rigorous solution
of a global optimization problem with the algorithm COSY-GO (Makino and
Berz, 2005).

The approach enables the computation of both the global minimum and all
local minima of the squared distance function in the time window of interest.
In the first case, the selected objective function is the square of the relative
distance, i.e.

JGM(t) = d(t)2 = (r2 − r1) · (r2 − r1), (36)

where r1 and r2 are the position vectors of the first and the second object,
and the subscript GM stands for global minimum.

When all the minima are searched for, the time derivative of the squared
distance is computed first

dd(t)2

dt
= 2dḋ = 2(v2 − v1) · (r2 − r1). (37)
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Then the objective function is set to

JSP (t) = [(v2 − v1) · (r2 − r1)]
2, (38)

where SP stands for stationary points.
Note that Eq. (38) is positive semidefinite, and its zeros (i.e., its global

minima) are stationary points of the distance function. In both global mini-
mum and local minima research, the time window is set to one week starting
from the epoch of the most recent TLE, retrieved from Space-Track6. This
method is here used to obtain an estimate of TCA and DCA, but any other
method can be used for this purpose. In the remainder of the paper, the first
guess values of TCA and DCA identified by this method are referred to as
t∗FG and d∗FG, respectively.

4.2. TCA and DCA expansion algorithm

The aims of the algorithm presented in this section are:

1. Starting from t∗FG and d∗FG, compute the nominal value of TCA and
DCA when SGP4/SDP4 propagation is substituted by AIDA propaga-
tion. These values will be referred to as t∗ and d∗.

2. Compute the Taylor expansion of t∗ and d∗ with respect to the initial
conditions of the two objects:

[t∗] = t∗ +
(

δx1
0, δx

2
0

)

[d∗] = d∗ +
(

δx1
0, δx

2
0

)

(39)

where x1
0 and x

2
0 are vectors of six elements (any set of orbital elements,

e.g. Keplerian elements, Delunay variables, position and velocity in any
arbitrary reference frame, can be used).

The algorithm starts with the initialization of the initial orbital states and
the final time as DA variables

[

x
1
0

]

= x
1
0 + δx1

0

[

x
2
0

]

= x
2
0 + δx2

0

, (40)

[tf ] = t∗FG + δt. (41)

6https://www.space-track.org
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Note that the nominal value of the final time is set to the first guess TCA
delivered by the global optimizer.

The resulting objects initial conditions are propagated forward with AIDA
and, according to Section 2.3, the Taylor polynomials of the final state are
obtained as function of time and initial uncertain states

[

x
1
f

]

= x
1
f +M

x
1

f

(

δt, δx1
0

)

[

x
2
f

]

= x
2
f +M

x
2

f

(

δt, δx2
0

)

.
(42)

In Eq. (42), x1
f and x

2
f are the nominal final positions of the two objects

at time t∗FG, whereas Mx
1

f
(δt, δx1

0) and M
x
2

f
(δt, δx2

0) are the higher order

terms of the Taylor polynomials that describe how changes in both final time
and initial conditions affect the final states.

After the integration, the squared relative distance can be computed in
the DA framework, resulting in

[d2] = d2 +Md2

(

δt, δx1
0, δx

2
0

)

, (43)

which is a Taylor polynomial of 13 variables. By using the operator of dif-
ferentiation implemented in COSY-Infinity, the Taylor polynomial

[

∂d2

∂t

]

= c0 +M ∂d2

∂t

(

δt, δx1
0, δx

2
0

)

(44)

is computed. Note that the constant part c0 is not zero as the numerical
integration in AIDA is stopped at t∗FG, which is the nominal TCA when
SGP4/SDP4 is used for the propagation. By subtracting c0 to (44), and

defining δ ∂d2

∂t
=

[

∂d2

∂t

]

− c0, the following origin preserving augmented map

can be built








δ ∂d2

∂t

δx1
0

δx2
0









=









M ∂d2

∂t

Iδx1

0

Iδx2

0















δt

δx1
0

δx2
0






, (45)

where identities in the variation of the initial states are added. This poly-
nomial map can then be inverted using suitable polynomials inversion tech-
niques (Berz, 1999a) obtaining







δt

δx1
0

δx2
0






=









M ∂d2

∂t

Iδx1

0

Iδx2

0









−1 







δ ∂d2

∂t

δx1
0

δx2
0









. (46)
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The goal is to compute δt such that
[

∂d2

∂t

]

= 0. This is obtained by evaluating

(46) in δ ∂d2

∂t
= −c0







δt

δx1
0

δx2
0






=









M ∂d2

∂t

Iδx1

0

Iδx2

0









−1






−c0

δx1
0

δx2
0






. (47)

Note that the first row of the map in Eq. (47) is a Taylor polynomial
with 1) a constant part that is the correction to t∗FG necessary to impose
the stationarity of d2 in the AIDA propagator 2) higher order terms that
approximate how the TCA changes depending on the uncertainties in the
initial conditions. By plugging the first row of Eq. (47) into Eq. (41) the
following result is achieved

[tf ] = [t∗] = t∗ +Mt∗(δx
1
0, δx

2
0), (48)

which is the high order Taylor expansion of the TCA evaluated with the nu-
merical integrator AIDA. Similarly, the high order expansion of the squared
distance is obtained by inserting the first row of Eq. (47) into Eq. (43),
yielding

[d∗2] = d∗2 +Md∗2

(

δx1
0, δx

2
0

)

. (49)

For any perturbed initial condition of the two objects (i.e., for any pair
of virtual debris) the evaluation of the Taylor polynomials in Eq. (48) and
(49) delivers the associated values of TCA and DCA. Of course, these val-
ues are not exact: their accuracy depends on the selected expansion order,
the propagation window, and the range of the uncertainties on the initial
conditions.

5. Numerical Examples

In this section the performance of the proposed method for the compu-
tation of the expansion of TCA and DCA is assessed. This analysis is split
into three phases with the goal of investigating:

1. The computational cost and accuracy of the expansion of the flow,
aimed at the selection of the expansion order;

2. The accuracy of the computation of the nominal TCA and of the ex-
pansion in time;
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3. The accuracy of the TCA and DCA Taylor expansions.

The six objects listed in Table 1 (either active spacecraft or debris) are
considered for these analyses. The first three objects are classified as Low
Earth Orbit (LEO) objects, since their altitude is below 2,000 km. In par-
ticular the altitude of the first two objects is comprised between 750 and 800
km, whereas for object 3 it is approximately 1400 km. Object 4 in an Highly
Elliptical Orbit (HEO) since it has an altitude of 1340 km at its perigee and
at its apogee is at 5700 km above the Earth’s surface. Objects 5 and 6 in-
stead are on a Geostationary Earth Orbit (GEO) since their orbit is almost
circular, with a low inclination, and an orbital period of nearly 24 hours.

Table 1: Selected objects

ID Sat. No. Sat. Name a [km] e [-] I [deg] Orbit
1 11510 COSMOS 1125 7161 1.15E-3 74.04 LEO
2 21574 ERS 1 7149 3.49E-3 98.25 LEO
3 20237 COSMOS 2043 7787 4.19E-4 82.57 LEO
4 23820 OPS 0856 DEB 9895 2.20E-1 87.62 HEO
5 36744 COMS 1 42165 7.88E-5 0.01 GEO
6 28194 RADUGA 1-7 42166 1.21E-4 5.28 GEO

The initial conditions for the numerical propagation are computed from
TLEs, using the procedure described in Vallado and Cefola (2012). The
method consists of performing an Orbit Determination (OD) process on a
set of pseudo-observations generated over a certain time span. In our case we
generated one measure, i.e. position and velocity of the satellite, every hour
over a time span of 24 h, centered at the reference epoch of the selected TLE.
The resulting state vectors were then transformed from TEME of epoch to
ECI J2000 (Vallado, 2001), that is the reference frame of AIDA. A nonlinear
least square fit of the pseudo-observations was then performed using AIDA,
to compute the initial position and velocity of the object, and its ballistic
coefficient and area-to-mass ratio for SRP. The (6× 6) covariance matrix of
initial position and velocity was also obtained after this process.

The values of initial conditions, covariance matrixes, and ballistic coeffi-
cients of the objects used for the following analyses are reported in Appendix
A. All computations are performed on an Intel Core i5 2500 @3.30GHz, 8Gb
RAM processor running Sabayon Linux 10 (kernel version 3.5.0).
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5.1. Performances of the differential algebraic numerical propagation

The selection of the expansion order requires a trade-off between accu-
racy and computational time. This analysis is performed by propagating the
objects for a time window of 7 days (which is the time window for conjunc-
tion identification) with uncertainties on initial states compatible with the
estimated covariance matrixes.

The computational time required for each run of AIDA is reported in Table
2 for zeroth (i.e., pointwise integration) to fourth order expansions. Only one
test case for each orbital regime is given, since similar results are obtained
for objects in similar orbits. The computational time required to propagate
each object for one orbit is also given in Table 2. It can be observed that the
computational time per revolution is nearly the same for each of the three
orbits for a given order of truncation. The total computational time for 7
days propagation clearly depends on the orbital period of the orbits, i.e. on
the number of orbital revolutions completed in the considered time span.

Table 2: Computational costs for 7 days propagation and for each revolution with AIDA
for different expansion orders

Order
Computational time [s] Comp. time per rev. [s]

LEO HEO GEO LEO HEO GEO
0 63.53 37.65 6.45 0.63 0.61 0.91
1 98.81 55.87 9.38 0.98 0.90 1.33
2 176.31 98.19 15.85 1.75 1.59 2.26
3 443.77 234.87 41.38 4.41 3.80 5.90
4 1391.02 690.77 110.80 13.84 11.19 15.79

It is worth highlighting that the computational time of pointwise inte-
grations is not the main focus of the following analysis, since it depends
on the details of the implementation of the dynamical model, programming
language, compiler, and machine. The significant figure to be investigated
is the time of a k-th order computation compared to a pointwise one. For
this reason, the computational times can be normalized using the pointwise
integration as reference value. The ratios are plotted, for each orbital regime,
in Figure 2. It is clear that the computational time increases exponentially
with the order, but it is remarkable that a fourth order expansion is roughly
only ten times slower than a pointwise integration.
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Figure 2: Normalized computational time for three classes of orbits

The accuracy of maps (42) with respect to uncertainties in the initial
states (thus neglecting variation in the final time) is reported in Figure 3.
The final positions are computed by evaluating the polynomial

[rf ] = rf +Mrf
(δr0, δv0) , (50)

which is obtained by the DA-based integration in AIDA for a given time
window up to 7 days. Then, they are compared with pointwise propagations
of the same perturbed initial states. For each of the three orbital regimes
109 samples were generated considering the normalized full state covariance
matrix obtained with the OD process described in Sect. 5. Since the accuracy
of the map decreases with the distance of the sample from the reference point,
the 100 samples with the largest displacement from the reference position
and velocity were selected. This represents an accurate estimation of the
worst cases that can be encountered if collision probability is computed using
Monte Carlo based on the polynomial approximation of the final position.
Realistically, at least one billion samples would be required to estimate a
collision probability of 10−6 with a reasonable confidence level (Dagum et al.,
2000).

The maximum differences between Taylor polynomials evaluations and
pointwise integrations over a time window of 7 days are plotted in Fig-
ure 3(a) for different expansion orders. The error on the final position is
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lower for the GEO orbit, due to the lower number of revolutions, and higher
for the HEO. For the latter, the reason is mainly the higher values of the
states covariances and the particular environment encountered by the objects
during their motion. The influence of perturbations changes along the orbit,
with an increasing relative importance of atmospheric drag near the pericen-
ter and of third body gravity and solar radiation pressure at the apogee. In
addition, the area to mass ratio is the highest among the considered orbits.
Note that in all cases the maximum error on position after 7 days is approxi-
mately 1 meter for the HEO, less than 0.1 m for the LEO, and 1 mm for the
GEO.

To provide more insight on the expansion error, Figure 3(b) illustrates the
maximum differences between the polynomial evaluations and pointwise inte-
gration of the final position for different propagation time using an expansion
order k = 3.
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(b) Final position error versus propagation
time using order k = 3

Figure 3: Accuracy of the DA map of final position rf (r0,v0) obtained with AIDA against
DA expansion order and propagation time

The results of the same analysis focused on the final velocity are plotted
in Figure 4(a) and Figure 4(b). The figures confirm the behaviour found
for the final position. The maximum error is found again for HEO and is
approximately 1 mm/s.

According to these results, a third order expansion is a good compromise
between computational time and expansion accuracy for the selected test
cases.
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sion order
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(b) Final velocity error versus propagation
time

Figure 4: Accuracy of the DA map of final velocity vf (r0,v0) obtained with AIDA against
DA expansion order and propagation time

In the following analysis, the effects of orbital perturbations on the final
position are studied to assess

1. the effect of the perturbations in the considered cases;

2. how well these effects are captured by the Taylor expansion.

For point 1) the final position obtained by considering the gravitational model
of degree and order 10, atmospheric drag, solar radiation pressure with dual-
cone shadow model, and third body perturbation from Sun and Moon is used
as reference. Starting from a Keplerian orbital model (labeled as K in the
figure), perturbations are gradually added and the displacement between the
resulting final position and the reference value are computed. The results for
a 7-day propagation are represented by the black curves in Figures 5(a), 5(b),
5(c). As before, the error curves are obtained considering the 100 samples
with the largest displacement from the reference initial state selected from a
set of 109 samples.

For the LEO regime, the largest effect is due to the gravitational model.
The reason is that the orbital perigee is high enough to limit the effect of drag,
whereas the high inclination result in a large effect of Earth oblateness. For
the HEO regime no significant improvements are obtained by adding solar
radiation pressure or atmospheric drag to Keplerian model. Nevertheless,
the combined effects of gravitational harmonics, solar radiation pressure,
and drag reduce considerably the displacement with the reference position.
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Figure 5: Analysis of model and DA expansion error with different perturbations for the
three orbital regimes for a 7-day propagation.

Even in the GEO regime, the combined effect of third body and gravitational
harmonics is necessary to obtain a displacement on the final position of less
than 10 km.

The accuracy of the DA expansions for the different orbital regimes and
dynamical models is also analyzed in Figure 5 to highlight the contribution
of the different sources of perturbation in the expansion error budget. The
analysis is again obtained by comparing pointwise integrations with map
evaluations for 100 virtual debris selected with the procedure used throughout
this section. The curves are obtained considering 7-days propagations with
an expansion order of the flow k = 3. For the LEO and GEO regimes the
error remains almost constant with the introduction of the different sources
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of perturbation. In particular, the expansion error remains below 0.1 m for
the LEO and is approximately 1 mm for the GEO, confirming the figures
obtained previously in the position accuracy analysis with respect to order
of the expansion and propagation time. For the HEO test case the largest
contribution to final position error comes from atmospheric drag. The orbit
is highly eccentric, with a perigee of 1340 km and an apogee of 5700 km.
In addition, the area to mass ratio estimated by the OD process is 2.94
m2/kg. After each revolution, the virtual debris will distribute along the
trajectory. Due to the eccentricity of the orbit, debris can experience different
air densities since they are found at different altitudes. This behaviour has
to be captured by the DA expansion of the density, which is a function of
altitude that in turn is a function of the current satellite position. As a
result, the accuracy of the air drag perturbation is lower due to the large
range of altitude that is captured by the Taylor expansion of the satellite
position at each integration step within the atmosphere bound of 2,000 km.
Nevertheless, the expansion error of the HEO remains always below 1 m after
7 days of propagation.

5.2. Nominal TCA identification and time expansion accuracy

Three close approaches can be identified for the test case orbits listed in
Table 1 using TLEs and SGP4/SDP4 propagations. The obtained TCA and
DCA are reported in Table 3, together with the relative velocity ∆v at the
close approach. It can be observed that the relative velocity at the close
encounter varies from more than 12 km/s for LEO to a few hundred m/s for
the geosynchronous case. As a result, the close approaches can last from few
seconds up to tens of seconds or even minutes.

Figure 6 illustrates the relative distance as a function of time in the neigh-
bourhood of TCA for the three close approaches. The dashed line refers to
the relative distance between the two objects computed using TLEs and
SGP4/SDP4 propagations; the grey dot is the identified minimum. The rel-
ative distance obtained with AIDA propagation is plotted on the same figure
with a solid black curve. The TCA of Table 3 are used as first guesses for
the algorithm described in Section 4, which uses the nominal positions and
velocities listed in Appendix A as inputs. The resulting minima of the rel-
ative distances are reported as grey dots on the solid black curves in Figure
6. The threshold value used to sieve potentially dangerous approaches, here
set to 7.5 km, is indicated by the dashed-dotted lines.
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Table 3: Close approaches: first guesses with SGP4/SDP4

Test
Sat. No. Orbit

TCA
TCA

DCA ∆v
case [days] [km] [km/s]

A
11510 LEO 3.538

2013 Jan 26 17:45:19 1.149 12.472
21574 LEO 3.805

B
20237 LEO 4.125

2013 Mar 07 06:34:23 6.064 8.553
23820 HEO 2.403

C
36744 GEO 0.240

2011 Feb 07 23:14:17 1.676 0.283
28194 GEO 0.431

As can be seen, the algorithm correctly identifies the minima of the relative
distances computed with AIDA propagations. The differences between the
two curves are due to the more accurate dynamical model implemented in
AIDA and to the procedure adopted to estimate the initial conditions from
TLEs. In particular, the error increases with the distance from the time
windows on which the OD process is performed. The largest difference in
TCA and DCA is obtained for test case B, probably due to slightly differences
in the two orbital periods that caused a phase shift at the TCA with respect to
SGP4/SDP4 propagation. For what concerns the GEO test cases, the TCA
and DCA are the closest to the SGP4/SDP4 ones since the close conjunction
occurs within the time window used for the OD process, i.e. less than 0.5
days from the reference epoch of both objects.

For the sake of completeness, the numerical values of TCA and DCA
obtained with AIDA are reported in Table 4.

The analysis of the accuracy of the time expansions is performed on the
square root of Map (43) evaluated in −c0+δt, and considering nominal initial
conditions, i.e.

[d] = d+Md(δt). (51)

The accuracy of Map (51) in a time window of 8 minutes around t∗ is illus-
trated for the three conjunctions in Figure 7, where the relative distances
computed with the DA approach are compared with pointwise propagations
for samples equally spaced in the time domain. A third order expansion is
used, following the considerations carried out in Section 5.1 about computa-
tional time and expansion accuracy.
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Figure 6: Comparison of the relative distances obtained with AIDA and SGP4/SDP4
propagations. Grey dots are identified local minima and the dashed-dotted line is the 7.5
km conjunction threshold.

The error reaches its minimum at the TCA and increases with the dis-
placement from TCA. The maximum errors on the DCA are at the boundary
of the considered time intervals, and are 108 m for test case A, 294 m for
test case B, and 4×10−3 m for test case C. The computational costs for each
simulation are listed in Table 5. Most time is needed in the propagation of
the two orbits, whereas the time required for the identification of the TCA is
only a few milliseconds and is independent of the propagation period covered
for each orbit. Note that the computational time for orbit propagation of
the two GEO orbits is really low due to the short time interval between TCA
and reference epoch.
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Table 4: Close approaches: TCA, DCA, and relative velocities obtained with AIDA and
TCA expansion algorithm

Test
Sat. No. Orbit TCA

DCA ∆v
case [km] [km/s]

A
11510 LEO

2013 Jan 26 17:45:19 1.641 12.471
21574 LEO

B
20237 LEO

2013 Mar 07 06:34:27 5.248 8.553
23820 HEO

C
36744 GEO

2011 Feb 07 23:14:17 1.739 0.283
28194 GEO

Table 5: Computational time of TCA identification algorithm. In this case propagation
with AIDA is performed only with one DA variable, time tf .

Test case 1st orbit prop. 2nd orbit prop. TCA expansion Total time
A 31.44 34.11 8.83E-3 65.56 s
B 33.05 12.85 8.51E-3 45.91 s
C 0.34 0.51 8.62E-3 0.85 s

5.3. TCA and DCA expansion accuracy

As already pointed out in Sect. 5.1, each virtual debris is characterized by
a different trajectory evolution. Thus, each pair of virtual debris has its own
value of TCA and DCA. If a pointwise method is used, the integration of
two orbits and the use of a root-finding method would be required for each
pair of virtual debris. The DA-based method introduced in this work allows
replacing multiple propagation with faster evaluations of Taylor polynomials,
after a single DA propagation of the two objects is carried out with AIDA.
These maps can be used provided that they are sufficiently accurate for the
aimed task: i.e., the identification of conjunctions and the computation of
collision probabilities. As an example, when the computation of collision
probabilities is of interest, the error on DCA expansion should be at least
lower than the threshold adopted for the classification of a close conjunction
as potentially dangerous. The accuracy analysis of these maps is the focus
of this section.

29



−240 −180 −120 −60 0 60 120 180 240
10

−15

10
−10

10
−5

10
0

Time from TCA [s]

D
C

A
 e

rr
or

 [k
m

]

(a) Test case A

−240 −180 −120 −60 0 60 120 180 240
10

−15

10
−10

10
−5

10
0

Time from TCA [s]

D
C

A
 e

rr
or

 [k
m

]

(b) Test case B

−240 −180 −120 −60 0 60 120 180 240
10

−12

10
−10

10
−8

10
−6

Time from TCA [s]

D
C

A
 e

rr
or

 [k
m

]

(c) Test case C

Figure 7: Comparison between pointwise numerical propagations and polynomial expan-
sions for the relative distance d in the proximity of TCA

As the expansion errors get bigger for larger uncertainties, the same method
used for the selection of virtual debris in Sect. 5.1 is here used. Thus, 109 sam-
ples are generated and those with the largest displacement from the nominal
initial position and velocity of the two objects are selected. Given a couple of
virtual debris, the TCA and DCA computed with the evaluation of the Tay-
lor polynomials (48) and (49) are compared with those obtained with AIDA
pointwise integrations (i.e., two integrations and some root-finder iterations).
The comparison of the times and associated distances of close approach for
the three conjunctions are given in Figures 8(a), 8(c), and 8(e).

The black dots are the TCAs and DCAs obtained with the pointwise
numerical propagation of the set of virtual debris, whereas grey crosses are

30



17:45:18 17:45:19 17:45:20
0

1

2

3

4

5

TCA (UTC)

D
C

A
 [k

m
]

2013/01/26

 

 
Pointwise
DA map

(a) Test case A: TCA vs. DCA

10
−1

10
0

10
1

10
−10

10
−5

10
0

DCA [km]

er
r D

C
A
 [k

m
]

100 m
25 m

(b) Test case A: DCA error

06:34:26 06:34:27 06:34:28
0

2

4

6

8

10

TCA (UTC)

D
C

A
 [k

m
]

2013/03/07

 

 

Pointwise
DA map

(c) Test case B: TCA vs. DCA
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(e) Test case C: TCA vs. DCA
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Figure 8: Comparison between pointwise numerical propagations and polynomial expan-
sions for TCA and DCA with uncertain initial states
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the values obtained with DA maps evaluations. The dashed line locates
the nominal TCA value. In all cases the polynomial evaluation matches
the numerical one. The difference between the polynomial evaluation of the
perturbed TCA, t∗DA, and the pointwise one, t∗PW , is always lower than 10−4

seconds making them indistinguishable in Figure 8.
The error on the DCAs is defined as

errd∗ = |d∗PW − d∗DA| , (52)

where d∗PW is the numerical DCA obtained with pointwise integrations, and
d∗DA is the one obtained with the evaluation of the Taylor expansions. This
error is plotted versus the numerical DCA in Figures 8(b), 8(d), and 8(f).
The data are compared with two thresholds, 100 m and 25 m. These two
values represent estimates of the combined hard body radius that can be
used for collision probability computation. The nominal DCA is indicated
with a vertical dashed line.

In all cases the error on the DCA is well below the 25 m threshold, so the
accuracy of the methods is suitable for a collision probability computation
using a Monte Carlo method. The accuracy of the DA map can be related
to the accuracy of the final position map with respect to propagation time
analyzed in Sect. 5.1 and summarized in Figure 3(b). The maximum error
for test case A is around 10−5 km and the TCA is 3.5 days after the reference
epoch of satellite 1 and 3.8 days after the reference epoch of satellite 2. This
is the same error of the final position map of the LEO orbit after 4 days of
propagations. Similar considerations can be made for test case 2, where the
TCA is 4.1 days after the reference epoch of satellite 3 and 2.4 days after the
reference epoch of satellite 4, that is in HEO. The maximum error for these
propagation times, according to Figure 3(b), is obtained for the HEO orbit
and is nearly 10−3 km, which is compatible with the error obtained for the
DCA expansion. The lower error is found for the GEO, also due to the short
propagation time.

The computational times required for computing Map (48) and (49) are
listed in Table 6. The higher number of variables results in higher compu-
tational cost with respect to the single variable DA propagations of Table 5.
Note that these performances could be improved by running the propagation
of the two orbits in parallel, reducing in this way the computational time
to the one required by the most demanding orbit. In addition, in case of
multiple conjunctions, the propagation of the two objects can be performed
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only once, whereas the TCA and DCA expansion algorithm is run on each
conjunction.

Table 6: Computational time of TCA and DCA expansion algorithm. Each propagation
with AIDA involves in this case 7 DA variables, i.e. time and initial states, since the aim
is to obtain the polynomial approximation of d∗ = M(δx1

0, δx
2
0)

Test case 1st orbit prop. 2nd orbit prop. TCA&DCA expansion Total time
A 265.76 313.80 4.85E-2 579.60 s
B 262.44 101.53 3.99E-2 364.02 s
C 1.86 3.13 3.86E-2 5.03 s

Note that the evaluation of the d∗ map takes 1.73×10−5 s on average (this
number is obtained by evaluating the map for one million samples using the
Horner scheme implemented in COSY-Infinity). If one considers that the
reliable computation of collision probability requires a large set of virtual
debris to be evaluated, it is apparent that the proposed approach allows
large time savings with respect to pointwise propagations, with limited loss
of accuracy.

6. Conclusion

A method for the analysis of close conjunctions between objects in Earth
orbit has been presented. Differential algebraic (DA) techniques have been
exploited to calculate the Taylor expansion of the time and distance of closest
approach (TCA and DCA) with respect to initial orbital uncertainties. This
reduces the problem of computing the TCA and DCA for the entire set
of virtual debris to 1) two DA-based numerical propagations 2) polynomial
manipulations to get maps of the time t∗ and distance d∗ of closest approach
as function of uncertain initial states 3) multiple fast evaluations of these
maps.

The numerical propagations are performed with AIDA (Accurate Integra-
tor for Debris Analysis), a high-fidelity propagator (which includes EGM2008
gravity model, NRLMSISE-00 atmosphere, Sun and Moon perturbations
based on JPL DE405 ephemerides, and solar radiation pressure) written in
the language COSY-Infinity. This allows us to compute, along with the tra-
jectory, the high order expansion of the flow with respect to initial conditions
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in a limited amount of time. The resulting expansions are then used to build
the map of the squared distance function. Partial inversion techniques and
polynomial compositions are exploited to calculate the nominal values of
TCA and DCA as well as their Taylor expansion with respect to uncertain-
ties in the initial states. Thus, for each pair of virtual debris the computation
of TCA and DCA reduces to polynomial evaluations. As a result, a drastic
reduction in computational cost is achieved compared to classical pointwise
methods: this paves the way to the development of efficient algorithms for
the computation of collision probabilities.

The accuracy of the Taylor polynomials is suitable for the computation of
a collision probability. An analysis is performed considering the 100 samples
with the largest displacement from the nominal initial conditions among a
set of 109 samples generated considering the full covariance matrix. The
error between the polynomial evaluations of the DCA maps and a pointwise
propagation are always less than 1 m for the considered orbits. It was also
shown that the accuracy of the map of d∗ is related to the accuracy of the
maps of the final position of the objects. With order k = 3 and propagation
window of 7 days, the error on the final position is less than 1 m for the
orbits that are analyzed in this paper.

Further analysis will be performed to test the proposed approach on dif-
ferent orbital regimes and for different conjunction geometries. Future re-
search will also take into account computationally efficient methods for the
estimation of small collision probabilities. The reason is that the collision
probability between Earth orbiting objects is usually of the order 10−4 to
10−6 and a high number of samples, and in turn polynomial evaluations, are
required in those cases.
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Appendix A. Initial states

Object 1

#Satellite ID

11510

# Reference UT

23/01/2013 04:50:14.3891483545

# ECI J2000 mean position (km) # ECI J2000 mean velocity (km/s)

-3.7721713215E+03 +2.0902060722E-01

+4.9994447579E+03 -4.1566598389E+00

+3.4596010085E+03 +6.2007675483E+00

#Covariance matrix (km^2, km^2/s, km^2/s^2)

+3.3085138968E-03 +8.1569556907E-04 +6.3216213375E-04 +1.8594276250E-07 -6.8263129256E-07 +5.9476230591E-07

+8.1569556907E-04 +3.5565393379E-03 -2.0265346793E-03 -1.4711117793E-06 +2.4696267856E-06 +3.9897201273E-07

+6.3216213375E-04 -2.0265346793E-03 +5.2194974395E-03 +1.8751377639E-06 -2.0999712757E-06 -2.4422592051E-06

+1.8594276250E-07 -1.4711117793E-06 +1.8751377639E-06 +4.1301523076E-09 +1.5475454258E-10 +2.0530594462E-10

-6.8263129256E-07 +2.4696267856E-06 -2.0999712757E-06 +1.5475454258E-10 +3.3307135024E-09 +9.4333446860E-10

+5.9476230591E-07 +3.9897201273E-07 -2.4422592051E-06 +2.0530594462E-10 +9.4333446860E-10 +2.1401382330E-09

# Drag Area to mass ratio (m^2/kg), Cd = 2.2

+7.9693388204E-07

# SRP Area to mass ratio (m^2/kg), eps = 0.31

+7.2433066671E-02

# TLE used for nonlinear least square fit

1 11510U 79078A 13023.20155543 .00000103 00000-0 47518-4 0 1325

2 11510 074.0358 118.1525 0011496 088.5235 301.8268 14.32681184744812

Object 2

#Satellite ID

21574

# Reference UT

22/01/2013 22:26:54.0620023012

# ECI J2000 mean position (km) # ECI J2000 mean velocity (km/s)

+3.0799289553E+03 -6.7335462784E+00

-1.1774790818E+03 +9.0909039658E-02

+6.3094366569E+03 +3.2876594254E+00

#Covariance matrix (km^2, km^2/s, km^2/s^2)

+6.5110022394E-03 +1.1558082277E-04 -2.6158096782E-03 +2.7966467039E-06 -9.1277337669E-07 +4.6393449869E-06

+1.1558082277E-04 +3.4915733193E-03 +3.9873127221E-04 -2.0268510003E-07 +9.4972338534E-09 -4.9783742550E-09

-2.6158096782E-03 +3.9873127221E-04 +2.3878201022E-03 -2.8390289006E-07 +4.3116429054E-07 -2.7993620662E-06

+2.7966467039E-06 -2.0268510003E-07 -2.8390289006E-07 +1.9513723058E-09 -7.2082566955E-11 +1.6422454906E-09

-9.1277337669E-07 +9.4972338534E-09 +4.3116429054E-07 -7.2082566955E-11 +3.9810526042E-09 -2.2788964517E-10

+4.6393449869E-06 -4.9783742550E-09 -2.7993620662E-06 +1.6422454906E-09 -2.2788964517E-10 +4.5198732031E-09

# Drag Area to mass ratio (m^2/kg), Cd = 2.2

+3.1525096930E-02

# SRP Area to mass ratio (m^2/kg), eps = 0.31

+8.6998667752E-02

# TLE used for nonlinear least square fit

1 21574U 91500A 13022.93534794 .00000203 00000-0 83024-4 0 5448

2 21574 098.2460 355.3520 0034877 082.5971 341.2307 14.36304867126904

37



Object 3

#Satellite ID

20237

# Reference UT

03/03/2013 03:34:55.0660854578

# ECI J2000 mean position (km) # ECI J2000 mean velocity (km/s)

-6.9608504967E+02 -7.1908922523E-01

+3.9447413218E+03 -6.1667222531E+00

+6.6676677691E+03 +3.5653521805E+00

#Covariance matrix (km^2, km^2/s, km^2/s^2)

+2.6282128459E-03 +4.9609574850E-04 -1.2472570972E-04 -4.6583233145E-08 +1.7868359512E-07 +4.6499234699E-07

+4.9609574850E-04 +5.1294297368E-03 -2.8175167448E-03 -2.6604126144E-07 +2.0213010498E-06 +3.1959036434E-06

-1.2472570972E-04 -2.8175167448E-03 +2.5231867160E-03 +2.3789204150E-07 -6.2505918713E-07 -2.4279044407E-06

-4.6583233145E-08 -2.6604126144E-07 +2.3789204150E-07 +2.1743122769E-09 -1.5519486573E-10 +3.4526380891E-11

+1.7868359512E-07 +2.0213010498E-06 -6.2505918713E-07 -1.5519486573E-10 +1.1046525934E-09 +1.0043646178E-09

+4.6499234699E-07 +3.1959036434E-06 -2.4279044407E-06 +3.4526380891E-11 +1.0043646178E-09 +2.6911031636E-09

# Drag Area to mass ratio (m^2/kg), Cd = 2.2

+1.2645425516E-03

# SRP Area to mass ratio (m^2/kg), eps = 0.31

+1.2072974147E-03

# TLE used for nonlinear least square fit

1 20237U 89074F 13062.14924845 .00000051 00000-0 22376-3 0 924

2 20237 082.5723 087.7657 0004186 082.5944 337.2822 12.63395421 82164

Object 4

#Satellite ID

23820

# Reference UT

04/03/2013 20:54:42.1015834808

# ECI J2000 mean position (km) # ECI J2000 mean velocity (km/s)

+8.7741400840E+03 -1.4355103802E+00

+2.5174129938E+03 -1.2478148630E-01

-1.1037130913E+01 +6.7080731673E+00

#Covariance matrix (km^2, km^2/s, km^2/s^2)

+3.7365649111E-03 -1.8774896159E-03 -1.7756879090E-03 +1.1737797328E-06 +7.2965655117E-07 -1.9125787150E-06

-1.8774896159E-03 +8.4701814389E-03 +1.0368790267E-03 -3.6471225605E-07 -1.6589500283E-06 -4.7980730691E-07

-1.7756879090E-03 +1.0368790267E-03 +1.6075521088E-02 -7.5785218204E-06 -1.8780849958E-06 -6.5081630239E-07

+1.1737797328E-06 -3.6471225605E-07 -7.5785218204E-06 +4.4433848385E-09 -2.2730797064E-10 +2.1850803760E-10

+7.2965655117E-07 -1.6589500283E-06 -1.8780849958E-06 -2.2730797064E-10 +4.4757376092E-09 -1.2691331517E-10

-1.9125787150E-06 -4.7980730691E-07 -6.5081630239E-07 +2.1850803760E-10 -1.2691331517E-10 +1.4485851866E-09

# Drag Area to mass ratio (m^2/kg), Cd = 2.2

+2.9406164525E+00

# SRP Area to mass ratio (m^2/kg), eps = 0.31

+3.0085686833E+00

# TLE used for nonlinear least square fit

1 23820U 66077D 13063.87132062 .00020734 00000-0 60931+0 0 3081

2 23820 087.6151 016.1776 2204224 081.8477 302.4728 08.81977559657175

Object 5

#Satellite ID

36744

# Reference UT

07/02/2011 17:28:54.3233361840

# ECI J2000 mean position (km) # ECI J2000 mean velocity (km/s)

-4.1218586022E+04 -6.4868868413E-01

+8.8973993544E+03 -3.0052824298E+00

+6.5767406271E+01 +1.1524550572E-03

#Covariance matrix (km^2, km^2/s, km^2/s^2)

+4.8684260805E-03 +2.8144019728E-03 +2.5855660862E-04 -2.9284545423E-07 -2.6416134160E-07 +4.7498191816E-10

+2.8144019728E-03 +2.1151760568E-02 -3.7731926146E-04 -8.9572939141E-07 +3.3550231926E-07 +1.4314764844E-09

+2.5855660862E-04 -3.7731926146E-04 +1.2383334290E-02 -1.5150684923E-08 -2.4339739820E-08 +1.8043084888E-11

-2.9284545423E-07 -8.9572939141E-07 -1.5150684923E-08 +5.3865847597E-11 -3.4214779531E-12 +1.8558767562E-14

-2.6416134160E-07 +3.3550231926E-07 -2.4339739820E-08 -3.4214779531E-12 +2.8061830734E-11 +7.0815634448E-15

+4.7498191816E-10 +1.4314764844E-09 +1.8043084888E-11 +1.8558767562E-14 +7.0815634448E-15 +6.5166338686E-11

# SRP Area to mass ratio (m^2/kg), eps = 0.31

+4.6465256622E-12

# TLE used for nonlinear least square fit

1 36744U 10032A 11038.72840652 -.00000340 00000-0 10000-3 0 956

2 36744 000.0086 088.0631 0000788 256.3015 183.5741 01.00269939 2416

Object 6
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#Satellite ID

28194

# Reference UT

07/02/2011 12:53:3.5177153349

# ECI J2000 mean position (km) # ECI J2000 mean velocity (km/s)

-6.2997743088E+03 -3.0273029590E+00

+4.1664952743E+04 -4.6758259629E-01

+1.6017472390E+03 +2.6224219851E-01

#Covariance matrix (km^2, km^2/s, km^2/s^2)

+2.4642428245E-02 +2.2712137544E-03 -6.4227590670E-04 -2.7598724396E-07 +1.0326836589E-06 +5.0508709424E-08

+2.2712137544E-03 +4.7804014798E-03 -5.3528868674E-04 +2.9818134924E-07 +2.3812269421E-07 -2.1062388599E-08

-6.4227590670E-04 -5.3528868674E-04 +1.3920101199E-02 +2.1358765258E-08 -9.7456008690E-08 -4.2449078518E-09

-2.7598724396E-07 +2.9818134924E-07 +2.1358765258E-08 +2.8385263365E-11 -3.0436486056E-12 +4.0211735020E-12

+1.0326836589E-06 +2.3812269421E-07 -9.7456008690E-08 -3.0436486056E-12 +6.1556025538E-11 -2.2819832001E-14

+5.0508709424E-08 -2.1062388599E-08 -4.2449078518E-09 +4.0211735020E-12 -2.2819832001E-14 +7.3295880653E-11

# SRP Area to mass ratio (m^2/kg), eps = 0.31

+4.0165085827E-02

# TLE used for nonlinear least square fit

1 28194U 04010A 11038.53684627 -.00000341 +00000-0 +10000-3 0 03215

2 28194 005.2813 074.4923 0001212 268.2646 116.0489 01.00265873025169
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