Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: Analytical, deterministic and Monte Carlo approaches

ManueleAufiero a, Mariya Brovchenko b, Antonio Cammia a, Ivor Clifford c, Olivier Geoffroy d, Daniel Heuer b, Axel Laureaub, Mario Losaa, Lelio Luzzia, Elsa Merle-Lucotte b, Marco E. Ricotti a, Hervé Rouch d

⇑Corresponding author. Tel.: +39 0223996326.
E-mail address: lelio.luzzi@polimi.it (L. Luzzi).

1. Introduction

The effective delayed neutron fraction (βeff) is an important reactor kinetics parameter. The contribution of delayed neutrons is of primary importance for the safe control of any nuclear reactor. βeff is often adopted as unit of experimental reactivity (dollar) (Bell and Glasstone, 1979). Many efforts have been devoted to the measurement (e.g., Sakurai et al., 1999; Rudstam et al., 2002) and calculation (e.g., Meulekamp and van der Marck, 2006; Carta et al., 2011) of physical and effective delayed neutron fractions. The traditional definition of βeff involves the calculation of both the forward and adjoint solution of the neutron transport equations, which makes its accurate calculation by means of continuous energy Monte Carlo codes a hard task, even for static-fuel reactors (Nagaya et al., 2010). In circulating-fuel systems, the motion of delayed neutron precursors complicates the calculation of the effective delayed neutron fraction. In molten salt reactors, the adoption of the Thorium cycle (with 233U as fissile) or the envisaged incineration of Minor Actinides (Merle-Lucotte et al., 2011), and the fuel motion itself (Guerrieri et al., 2013), may lead to βeff values much lower than those typical of Light Water Reactors (LWR). Moreover, loss of flow accidental scenarios in fluid-fuel systems involve the introduction of positive reactivity due to delayed neutron source term redistribution (Guerrieri et al., 2012). The quantification of the introduced reactivity requires the calculation of the difference in delayed neutron effectiveness between static and circulating conditions. For these reasons, accurate and reliable βeff calculations for molten salt reactors are desirable.

In circulating-fuel reactors, the effective delayed neutron fraction (βeff) differs from the physical delayed neutron fraction (β0) for two distinct reasons. The first reason (common to solid-fuelled reactors) is that the emission spectrum of delayed neutrons is softer than that of prompt neutrons: on average, the former are emitted with a lower energy. This may imply a difference in the importance of delayed and prompt neutrons. The second reason is that delayed neutron precursors are transported by the fluid flow in the fuel circuit and might decay in position of low importance and even out of the core. Spatial effects due to fuel motion are more relevant and always reduce the values of βeff. Energy effects are, in general, of lesser relevance and might reduce or increase the effective delayed neutron fraction, according to the neutronic characteristics of the core.

One-dimensional approaches have often been adopted to correct the effective delayed neutron fraction calculation in order to take into account the fuel motion. One of the most common em-
The delayed neutron fraction is calculated. For example, Mattioda et al. (2000) adopted the multi-group neutron diffusion approximation to have a relative effectiveness of one, regardless of their position, while those produced outside the core have zero importance. On average, precursors are created in a position with a higher spatial neutron importance with respect to the place where they will decay. For this reason, this approach may lead to a significant overestimation of the effective delayed neutron fraction in circulating conditions. In Section 3.1, a new analytical formula for the \(\beta_{\text{eff}} \) correction factor is derived, which takes into account the in-core spatial importance effect. Moreover, the proposed approach allows for radial redistribution of the delayed neutron precursors that re-enter in the core.

A more accurate approach involves the adoption of deterministic neutronic calculations to solve the adjoint and forward neutron transport problem. Then, the effective (i.e., adjoint weighted) delayed neutron fraction is calculated. For example, Mattioda et al. (2000) adopted the multi-group neutron diffusion approximation along with precursors drift in one-dimensional geometry. Kópházi et al. (2009) proposed a model for the analysis of moderated MSRs based on neutron diffusion and precursor convection and applied it to the MSRE (Molten Salt Reactor Experiment). In Section 3.2, the solution of the equations of neutron diffusion and precursor transport by means of the multi-physics open-source toolkit OpenFOAM (Weller et al., 1998) is discussed. The proposed solver allows the solution of the forward and adjoint eigenvalue problems for arbitrary geometries based on detailed spatially-dependent velocity fields.

Monte Carlo has often been regarded as a reference method for verifying the results of deterministic calculations. Commonly available Monte Carlo codes are not suitable for \(\beta_{\text{eff}} \) calculation in circulating-fuel systems. Kópházi et al. (2004) evaluated the reactivity loss due to fuel circulation in the MSRE with an extended version of Monte Carlo N-Particle Transport Code (MCNP). In that work, the decay position of delayed neutron precursors was recalculated under simple hypotheses, and neutrons emitted outside of the core were considered lost. More recently, Kiedrowski (2012) also considered the effect of precursors diffusion in fissile solution systems.

In both works, the velocity profiles, adopted as input in the Monte Carlo simulations, were simple analytical functions of the position.
making use of more realistic velocity fields obtained from Computational Fluid Dynamics (CFD) simulations.

The Molten Salt Fast Reactor (MSFR) is adopted as test case for the presented methods. In Section 2, a brief description of the MSFR is given, along with a few details about the different case studies analysed in this work. In Section 3, the three presented methods for b_{eff} calculation are discussed. In Section 4, the main results are reported and discussed. Finally, in Section 5, the main conclusions and possible improvements of the work are presented.

2. Test-case reactor concept

2.1. The Molten Salt Fast Reactor

The Molten Salt Fast Reactor (MSFR) is the reference circulating-fuel reactor in the framework of the Generation IV International Forum (GIF, 2010), and it is mainly developed in the EURATOM EVOL (Evaluation and Viability Of Liquid fuel fast reactor system) Project (EVOL, 2010–2013). Details about the MSFR configuration can be found in the references (Merle-Lucotte et al., 2009, 2011; Brovchenko et al., 2012). In the following, a brief description of the reactor is given. Fig. 1 shows a schematic view of the MSFR components, the fuel salt being not pictured. The molten salt mixture of the fuel circuit acts both as fuel and coolant. The core of the reactor has a volume of 9 m3. The fuel salt enters from the bottom and is extracted from the top of the core. The heated mixture flows in sixteen external loops where it exchanges heat with an intermediate salt and is pumped back to the core. The fuel velocity field inside the core is solved adopting the RANS turbulence treatment for incompressible flow and the k-epsilon turbulence model. In nominal conditions, large recirculation vortex appears near the core wall which would lead to excessive structural material temperatures. For this reason, a core shape optimization process is ongoing within the EVOL Project, aimed at the elimination of high-temperature zones.

2.2. Case studies

In Section 4, the effect of both the reactor core shape and the fluid flow path on b_{eff} is discussed. This analysis is carried out by means of a comparison between three different case studies. The first one (referred to as “k-epsilon case study” in the following) concerns the reference MSFR geometry adopted for the neutronic calculation benchmark within the EVOL Project. This option features a simple axial-symmetric (r,z) cylindrical core shape, which can be easily modelled by most of the neutron transport codes (see Fig. 2 and Table 2). The fuel velocity field inside the core is solved adopting the RANS turbulence treatment for incompressible flow and the k-epsilon turbulence model. In nominal conditions, large recirculation vortex appears near the core wall which would lead to excessive structural material temperatures. For this reason, a core shape optimization process is ongoing within the EVOL Project, aimed at the elimination of high-temperature zones. A second configuration (referred to as “uniform velocity case study”) is analysed in the present work, as representative of optimized flow path conditions. In this case study, the simplified cylindrical geometry is
adopted along with a fairly uniform fuel velocity field in the core. Finally, the optimized 3D core shape adopted as CFD benchmark within the EVOL Project is considered as third case study ("optimized geometry, 3D case study").

Different fuel materials have also been considered for the calculation of the effective delayed neutron fraction in both circulating and static conditions. Thorium is adopted as fertile material in the fuel mixture. As fissile material the following options have been studied: (i) 235U at 20% at. enrichment; (ii) only 233U; (iii) a mixture of transuranic elements and 235U at 13% at. enrichment; (iv) a mixture of transuranic elements and 235U at 20% at. enrichment.

3. Methods

In this section, the three proposed approaches adopted to calculate the effective delayed neutron fraction in the MSFR are described.

3.1. Analytical approach

In the following, an analytical formula for the circulating-to-static correction factor of the effective delayed neutron fraction is derived. It features an explicit consideration of the in-core spatial neutron importance. This leads to significant difference with respect to non-adjoint-weighted approaches (see Fig. 6).

We can write the correction factor for the effective delayed neutron fraction as:

$$c_{circ} = \frac{\rho_{eff}}{\rho_{circ}} = \frac{\int_{V} D'(r') \cdot I'(r') \, dV}{\int_{V} D^p(r') \cdot I'(r') \, dV}$$

(1)

where $D'(r')$ and $D^p(r')$ are the probabilities to have a precursors decay in the position r' in circulating and static conditions, respectively, and $I'(r')$ is the spatial dependence of the neutron importance.

We can write $D(r')$ as:

$$D(r') = \int_{V} K(r', r) S(r) \, dV$$

(2)

where $S(r)$ is the probability to have the production of a precursor in the position r and $K(r', r)$ is the kernel function of the integral transform operator that allows transforming the probability density function of the precursor production into the probability density function of the precursor decay. In a simpler way, $K(r', r)$ can be seen as the conditional probability to have the decay of a precursor in the position r', given that it was produced in the position r. $K(r', r)$ is independent from $S(r)$ and $I'(r')$ and depends only on the precursor decay constant and the fluid-fuel flow.

For the static-fuel conditions, any delayed neutron precursors will decay when it has been created:

$$K^s(r', r) = \delta(r' - r)$$

(3)

thus

$$D^s(r') = S^s(r')$$

(4)

Now, we can rewrite Eq. (1) as:

$$c_{circ} = \frac{\int_{V} \int_{V} K^c(r', r) S(r) \, dV \cdot I^p(r') \, dV}{\int_{V} S(r) \cdot I'(r') \, dV}$$

(5)

Due to the fact that delayed neutrons are very few compared to prompt neutrons, we can consider that the spatial source of precursors (that are mainly produced by prompt neutrons) is the same for static and circulating cases. We have that: $S^c(r) \simeq S^s(r) \simeq S(r)$.

Under the one-group neutron diffusion hypotheses, recalling again that delayed neutrons are few compared to prompt neutrons, we have that the spatial dependence of the neutron flux and the adjoint flux is the same: $\phi^c(r') \simeq \phi^s(r')$. In the case of homogeneous core composition the source of delayed neutrons is proportional to the neutron flux and the spatial neutron importance is proportional to the adjoint flux.

Under these hypotheses, in the case of a cylindrical core, we obtain:

$$S(r) \simeq I(r) \simeq \cos \left(\frac{\pi z}{H_\text{c}} \right) J_0 \left(\frac{2.405 r}{R_\text{c}} \right)$$

(6)

where H_c and R_c are the extrapolated height and radius, respectively, at which ϕ and ϕ' go to zero. $S(r)$ and $I(r)$ are both normalized to be equal to one at core centre.

Now, only the term $K^c(r', r)$ is missing in Eq. (5). In the following, $K^c(r'z \to rz)$ is derived for the general case of precursor decay constant λ, fuel salt loop circulation period T and in-core-to-total fuel volume ratio γ; H_c and R_c are the core active height and radius, respectively. As further hypotheses, uniform (axial) velocity in the core and complete mixing in the out-of-core part of the primary loop (i.e., in the pump and the heat exchanger) have been assumed.

In order to simplify the solution, we can split the problem in two parts:

$$K^c(r'z \to rz) = p_1^c(r'z \to rz) + p_2^c(r'z \to rz)$$

(7)

where $p_1^c(r'z \to rz)$ is the conditional probability for the decay in $(r'z')$ during the first passage in the core.
probability to have a decay during the further N passage in the core, with $N \rightarrow \infty$.

In general, for a precursor created at time $t = 0$, the probability to have a decay between t_1 and $t_1 + \Delta t$ is: $p = \int_{t_1}^{t_1 + \Delta t} e^{-zt} \, dt$ for $t_1 \geq 0$ and $p = 0$ for $t_1 < 0$. Similarly, the probability density function for a precursor created in z to have a decay, during the first loop, in z' is:

$$p(z' \rightarrow z) = \int_{z_0}^{z_1} \frac{1}{2\pi} \delta(r' - r) \cdot \frac{1}{2\pi} \delta(z - z') \cdot e^{-zt} \, dt$$

for $z' \geq z$ and $p = 0$ for $z' < z$. Thus, due to the zero radial velocity in the core, we have:

$$p_T(r'z' \rightarrow rz) = \frac{1}{2\pi} \delta(r' - r) \cdot \frac{1}{2\pi} \delta(z - z') \cdot e^{-zt} \, dt$$

$$= \frac{1}{2\pi} \delta(r' - r) \cdot e^{-zt} \
\cdot \delta(z - z') \cdot \left(1 - e^{-zt} \right)$$

It can be shown that the limit of p_T for $\lambda T \rightarrow +\infty$ is:

$$\lim_{\lambda T \rightarrow +\infty} p_T(r'z' \rightarrow rz) = 0$$

Then, as expected, for very low fuel velocity the decays will occur near the precursor production position. The limit for very fast fuel velocity ($\lambda T \rightarrow 0^+$) is:

$$\lim_{\lambda T \rightarrow 0^+} p_T(r'z' \rightarrow rz) = 0$$

It means that the probability to have a decay during the first passage in the core tends to zero as fuel velocity increases.

For finite value of λT, we can proceed to first order Taylor series expansion around $dz = 0$:

$$p_T(r'z' \rightarrow rz) = \frac{1}{2\pi} \delta(r' - r) \cdot e^{-zt} \cdot \left(1 - e^{-zt} \right)$$

After the first loop, if the precursor has not yet undergone the decay, it might emit the neutron in the out-of-core part of the fuel loop or come back in the core at $z' = -\frac{z}{2}$ in any radial position (see Fig. 3). If the precursor is still alive after the second passage in the core, it might decay outside or come back again at $z' = -\frac{z}{4}$, and so on:

$$p_T^2(r'z' \rightarrow rz) = \frac{2\pi r'dr'}{2\pi} \cdot \left(1 - e^{-zt} \right)$$

$$= \frac{1}{2\pi} \delta(r' - r) \cdot e^{-zt} \cdot \delta(z - z')$$

The limit for very low fuel velocity ($\lambda T \rightarrow +\infty$) is:

$$\lim_{\lambda T \rightarrow +\infty} p_T^2(r'z' \rightarrow rz) = 0$$

As λT tends to $+\infty$, the probability to have a decay during a passage in the core different from the first one tends to zero.

The sum $\sum_{N=1}^{\infty} e^{-\lambda NT}$ converges to $\frac{1}{\lambda T}$ and we obtain:

$$p_T^n(r'z' \rightarrow rz) = \frac{2\pi r'dr'}{2\pi} \cdot \left(1 - e^{-zt} \right)$$

The limit of p_T^n for $\lambda T \rightarrow 0^+$ is:

$$\lim_{\lambda T \rightarrow 0^+} p_T^n(r'z' \rightarrow rz) = \gamma \frac{2\pi r'dr'}{2\pi} \cdot \delta(z - z')$$

For very fast fuel velocity, the probability to have a precursor decay in a certain position becomes uniform in the core and all the dependencies on the production position are lost. As expected, as λT tends to 0, the integral probability to have a decay inside the core tends to the in-core-to-total volume ratio γ.

After first order expansion of p_T^n around $dz = 0$, we can finally write the general expression for K^n:

$$K^n(r'z' \rightarrow rz) = p_T^1(r'z' \rightarrow rz) + p_T^2(r'z' \rightarrow rz) = e^{-zt}$$

$$\cdot \lambda T \int_{H(z' - z)} dz' \left[I_{z' - z}^z \delta(z' - z) \, ds + 1 - e^{-zt} \right]$$

where $H(z' - z)$ is the heavyside step function defined as $\int_{z - z}^{z' - z} \delta(z' - z) \, ds$ and is zero for $(z < z')$ and one for $(z' > z)$.

Now, all the terms of Eq. (5) are known and the correction factor can thus be calculated for any λT. The values of the parameters for the MSFR are: $H_0 = 2.24$ m, $R_0 = 1.12$ m, $H_e = 2.6$ m, $R_e = 1.3$ m, $\gamma = 0.5$.

3.2. Deterministic approach

The second approach adopted in the present work involves the solution of the forward and adjoint multi-group diffusion eigenvalue problems, along with precursor transport using CFD techniques. In this context, the fluid velocity field enters as an external operator in the system of equations (Mattioda et al., 2000; Lapenta et al., 2001) for the convective transport of the delayed neutron precursors. Commonly available neutronics codes (used for solid-fueled systems) are unable to model this convective transport and are therefore not suitable. For this reason, the multi-physics open-source toolkit OpenFOAM (Weller et al., 1998) is adopted to spatially discretize and numerically solve the equations related to multi-group neutron diffusion and neutron precursor transport using standard finite-volume methods. The coupled solution of the multi-group neutron diffusion equation within this framework is based on the work of Clifford and Jasak.
(2009). The fluid flow inside the reactor core has been obtained adopting the SIMPLE algorithm for incompressible flows along with RANS turbulence treatment. In particular, the standard k-epsilon turbulence model available in OpenFOAM has been adopted. In the present work, the spatially-dependent fluid velocity field is considered to be a fixed input to the neutronics calculations. Calculations refer to “zero-power” conditions and temperature feedbacks to both the fluid flow and the neutronics have been neglected. In the following, the equations implemented in the developed solver are reported.

\[\nabla \cdot D_s \nabla \phi_s - \sum_{g} \Sigma_{sg} \phi_g - \sum_{g} \Sigma_{sgg} \phi_s = \sum_{g} \Sigma_{cig} \phi_g + \left(1 - \beta_0 \right) \frac{1}{k_{eff}} (n \Sigma_t)_s \]

\[\nabla \cdot D_s \nabla \phi_g - \sum_{g} \Sigma_{sg} \phi_g + \sum_{g} \Sigma_{sgg} \phi_s - \sum_{g} \Sigma_{cig} \phi_g + \left(1 - \beta_0 \right) \frac{1}{k_{eff}} (n \Sigma_t)_g \]

\[\nabla \cdot (\nabla \psi_i) - \nabla \cdot \frac{v_T}{Sc_T} \nabla \psi_i - \lambda \psi_i + \beta_0 \sum_{g} \frac{1}{K_{eff}} (n \Sigma_t)_g \phi_g = 0 \]

\[\psi_i = \left(\psi_i \right)_{f} = \left(\psi_i \right)_{b} + \left(\sum_{g} \psi_i \right)_{d} \]

(22)

(23)

\[\psi_i(\text{Eqs. (22) and (23)}) \text{ is not present in classical solid fuel adjoint problem. It represents the importance of a precursor injected in a certain position (i.e., it is the average importance of the delayed neutrons emitted).} \]

In the present work, the six energy-groups structure employed in previous works (Fiorina et al., 2013) has been adopted and it is reported in Table 3. The JEFF-3.1 evaluated nuclear data library (Koning et al., 2006) has been adopted for the delayed neutron group decay constants and physical fractions. This library adopts eight groups of precursors, with the same time constants for any fissioning isotope. In Table 4, the decay constants of the different groups are reported along with the physical fractions \((\beta_0, \beta_{tot})\) for some fissionable isotopes. The value of the cross sections, diffusion coefficients and neutron emission spectra have been calculated by means of the SERPENT Monte Carlo code (SERPENT, 2011), adopting the same library.

The Open-source Field Operation And Manipulation (OpenFOAM) framework is a C++ library providing automatic matrix construction and solution for scalar and vector equations using standard finite-volume approaches based on user-specified differencing and interpolation schemes. The flexibility of design makes this library ideal for modelling complex coupled problems. The framework has been applied extensively for CFD simulations. An attractive feature of the OpenFOAM framework is that the top-level C++ representations of continuum mechanics equations closely parallel their mathematical descriptions. Clifford and Ivanov (2010) extended OpenFOAM to provide a top-level presentation for the implicit solution of multiple coupled variables, based on the block-coupled solver implementation of Clifford and Jasak (2009), which is particularly suited to the solution of the multigroup neutron diffusion equation. Eq. (19), in vector form, is discretized and solved for all six energy-groups using the following line of source code:

```c
solve
{
    - blockFvm::laplacian (D, phi)
    + blockFvm::Sp (sigma_a - sigma_s, phi)  
    =
        (1-beta_tot)/k_eff * ((chi_p * (nu_tot & sigma_f)) & phi)  
        + (chi_d * delayedNeutronSource) 
};
```

Neumann conditions are applied to the forward and adjoint precursor equations at the boundaries of the fuel salt domain. The albedo boundary condition has been applied to the neutron diffusion Eqs. (19) and (22), with the albedo coefficients calculated from Serpent results.

The bi-conjugate gradient solution algorithm with ILU preconditioning has been used for all equations. The traditional power iteration method has been employed for the steady-state nonlinear eigenvalue solution for both the forward and adjoint cases. Here the fission rate and delayed neutron precursor concentrations from the previous iteration are supplied as source terms for the solution
of the multi-group neutron diffusion equation.

Once the forward and adjoint problems have been solved, the effective delayed neutron fractions can be calculated as follows (Mattioda et al., 2000):

\[
\beta_{\text{eff},i} = \frac{\int \sum_{g=1}^{6} \phi_{g}^{*} X_{d,g} \sum_{k=1}^{8} X_{c,k} c_{k} + \int \sum_{g=1}^{6} \phi_{g}^{*} X_{p,g} \sum_{k=1}^{8} \phi_{g}^{*} (1 - \Sigma d)_{k}^{c}}{\sum_{g=1}^{6} \phi_{g}^{*} X_{d,g} \sum_{k=1}^{8} X_{c,k} c_{k}}
\]

In Fig. 4, the velocity field and stream lines of three different cases (see Section 2.2) are presented. On the top left, the axial-symmetric solution of the velocity field obtained with k-epsilon turbulence model is shown for the nominal flow rate conditions in the axial-symmetric MSFR geometry. On the top right, the case study with uniform in-core velocity is shown as representative of conditions of optimized fluid flow path. On the bottom, results obtained in the full-core optimized geometry with the k-epsilon turbulence model are shown. The effects of recirculation vortex and core geometry are discussed in Section 4.

3.3. Monte Carlo approach

The third approach presented is based on the continuous energy Monte Carlo method. The Monte Carlo code SERPENT-2 (SERPENT, 2011) has been extended, in order to take into account the presence of a circulating fuel. In common Monte Carlo criticality source simulations, when the emission of a delayed neutron is sampled, this affects only the energy of the new particle, which is sampled according to the emission spectrum of the particular delayed neutron group. In the extended version, the initial position of the new history is corrected according to the fuel velocity field and the de-

Table 3
6 energy-groups structure adopted in the deterministic approach.

<table>
<thead>
<tr>
<th>Energy-group #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper energy boundary (MeV)</td>
<td>7.485×10^{-8}</td>
<td>5.531×10^{-3}</td>
<td>2.479×10^{-2}</td>
<td>4.979×10^{-1}</td>
<td>2.231</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4
Decay constants of delayed neutron precursors. Physical delayed neutron fractions of some isotopes are also reported, for incident neutron energy of 1 eV, JEFF-3.1 nuclear data library.

<table>
<thead>
<tr>
<th>Delayed neutron group #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay constant (s$^{-1}$)</td>
<td>1.25×10^{-5}</td>
<td>2.83×10^{-3}</td>
<td>4.25×10^{-2}</td>
<td>1.33×10^{-1}</td>
<td>2.92×10^{-1}</td>
<td>6.66×10^{-1}</td>
<td>1.63</td>
<td>3.55</td>
</tr>
<tr>
<td>Relative physical fractions ($\beta_{\text{iso}}/\beta_{\text{tot}}$)</td>
<td>3.4</td>
<td>15.0</td>
<td>9.9</td>
<td>20.0</td>
<td>31.2</td>
<td>9.3</td>
<td>8.8</td>
<td>2.4</td>
</tr>
<tr>
<td>U-235</td>
<td>8.0</td>
<td>15.7</td>
<td>13.4</td>
<td>20.9</td>
<td>30.8</td>
<td>3.7</td>
<td>6.2</td>
<td>1.3</td>
</tr>
<tr>
<td>U-233</td>
<td>2.9</td>
<td>22.5</td>
<td>9.5</td>
<td>14.9</td>
<td>35.3</td>
<td>3.7</td>
<td>9.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Pu-239</td>
<td>2.9</td>
<td>22.5</td>
<td>9.5</td>
<td>14.9</td>
<td>35.3</td>
<td>3.7</td>
<td>9.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Fig. 4. Stream lines and velocity fields of the 3 analysed cases: (a) k-epsilon case study, (b) uniform velocity case study, and (c) optimized geometry, 3D case study.
layed neutron emission time, which is sampled according to the group decay constant.

As tracking algorithm, a fifth-order Runge–Kutta explicit integrator with embedded fourth-order error estimation is adopted (Dormand and Prince, 1980). The velocity fields employed have been calculated by means of OpenFOAM, adopting the k-epsilon turbulence model, and mapped to an axial-symmetric cartesian mesh. The adoption of an error estimation technique allows a continuous correction of the tracking time-step, according to the adopted mesh and the input velocity field. In principle, an *a priori* choice of the time-step is a difficult task. Independent of the particular integration algorithm adopted, if too long time-steps are employed, tracking errors might lead to inaccurate results due to a wrong spatial distribution of the delayed neutron source. On the other hand, the adoption of too short time-steps might lead to an unacceptable increase of the computational time. Nonetheless, the choice of the tolerance adopted for error check and adaptive time-stepping, is still a delicate task.

In the following, the algorithm adopted in SERPENT-2 for the transport of delayed neutron precursors is reported:

When the emission of a delayed neutron is sampled:

1. Sample the delayed neutron group according to the physical delayed neutron fractions β_{in}.
2. Sample the neutron emission time EM_{time} according to the decay constant λ_i.
3. Start the precursors tracking loop $TRK_{\text{time}} = 0$.
4. While ($TRK_{\text{time}} < EM_{\text{time}}$)
 - (5) for all the k stages of the Dormand-Prince algorithm
 - (6) Calculate u^k_i, u^k_{in}, u^k_{out} from the Cartesian mesh
 - (7) Calculate the new precursor position at the end of the time-step Δt
 - (8) Calculate the tracking error estimation ERR
 - (9) if ($ERR < \epsilon_{\text{min}}$) where ϵ_{min} is a user defined tolerance
 - (10) Increase the time-step Δt
 - (11) if ($ERR > \epsilon_{\text{max}}$) where ϵ_{max} is a user defined tolerance
 - (12) Reduce the time-step Δt
 - (13) $TRK_{\text{time}} = TRK_{\text{time}} + \Delta t$
5. Sample the new neutron energy according to the delayed neutron group

Start the new neutron history

Unfortunately, the availability of the correct energy and spatial distribution of the delayed neutrons is not enough to guarantee an accurate estimation of the delayed neutron fraction. As already mentioned, k_{eff} is an adjoint-weighted quantity and cannot be estimated by means of a simple criticality source simulation. A detailed review of the different techniques for effective delayed neutron fraction calculation in Monte Carlo is out of the scope of the present work. In the following, two of the most commonly adopted methods and their applicability are briefly discussed. More complete and detailed analyses of different methods can be found in Meulekamp and van der Marck (2006), Nagaya et al. (2010).

Often, β_{eff} is estimated through the prompt method. This method involves two separated Monte Carlo simulations, with and without the production of delayed neutrons. The effective delayed neutron fraction is then approximated as:

$$\beta_{\text{eff}} \simeq 1 - \frac{k_p}{k_{\text{eff}}}$$ \hspace{1cm} \text{(25)}

where k_{eff} is the effective multiplication factor of the reference case and k_p is the effective multiplication factor of the simulation without delayed neutrons.

This method can be easily adopted without any modification of the available Monte Carlo codes but requires a relatively high amount of computational resources. Due to the fact that the effective delayed neutron fraction is obtained by comparison of two separate runs, to have a relative statistical error on β_{eff} in the order of 1%, k_{eff} estimations with an accuracy of few pcm are required. Moreover, if the effective contributions of the different delayed neutron groups need to be investigated, the prompt method looses any applicability due to the presence of β_{eff} fractions as low as few pcm, whose contributions would be highly covered by uncertainty in k_{eff} estimations.

Other approaches, which employ a single simulation and involve the approximation of the adjoint weighting function, have been developed. The Meulekamp and van der Marck (2006) method approximates the neutron importance to the probability of producing a fission (next fission probability). It captures very well the difference in importance between prompt and delayed neutrons due to energy spectra but is not suitable when relevant spatial effects are present (Nagaya et al., 2010) and gives wrong results in circulating-fuel conditions.

For this reason, the Iterated Fission Probability (IFP) method (Nauchi and Kameyama, 2010; Kiedrowski et al., 2011) has been implemented in SERPENT-2. This method allows to calculate directly adjoint-weighted quantities. In Fig. 5, the comparison between the different β_{eff} estimations is shown. Results are relative to the MSFR nominal conditions (k-epsilon case study). The IFP method converges to the "prompt" method in about 20 latent generations. The Meulekamp and van der Marck (2006) method fails to give a good approximation of β_{eff}. The details of the IFP method implementation in SERPENT-2 can be found in Leppänen et al. (2013).

In order to better compare the analytical results with Monte Carlo simulations in the limit of infinite fuel velocity ($\Delta T \to 0$), a further modification of the code has been implemented. As already discussed, in case of infinite fuel velocity, any precursors that is produced has a uniform decay probability in the whole fuel loop. In this case, the starting positions of the delayed neutrons are uniformly sampled in the entire reactor geometry. If the sampled point is in the fuel circuit, the position is accepted and the new neutron history is started. If the sampled point falls in a different material (e.g., reflector, neutron shield, etc.), the position is rejected and new random coordinates are extracted.

Fig. 5. Comparison between IFP, "prompt" and Meulekamp methods (U235-started, k-epsilon case study; nominal flow rate).
The MSFR features the presence of radial blankets constituted by a mixture of Thorium-fluoride and Lithium-fluoride. Recent studies highlighted the necessity to actively remove the energy released in the blanket material by flowing the fluid in an external circuit. At present, no detailed studies are available on this subject. However, only few fissions occur in the blanket and few delayed neutrons are produced there. Moreover, these neutrons feature a very low importance because are likely to undergo radiative capture in the fertile material. For these reasons, precursor motion is neglected in the blanket material, and any delayed neutron produced there is emitted in the position of the originating fission event.

4. Numerical results and discussion

In this section, the presented approaches are adopted to calculate the effective delayed neutron fraction in the Molten Salt Fast Reactor.

In Fig. 6, the correction factor calculated by means of the three proposed approaches is presented, as function of the dimensionless parameter \(\lambda T \) (see Section 3.1). Results are relative to the uniform velocity case study (see Fig. 4). Results show good agreement over a wide range of \(\lambda T \) values. It is clear that, in this case, even a simple analytical approach is able to accurately estimate the effective delayed neutron fraction, provided that a correct spatial adjoint-weighting function is adopted. For comparison, results from one of the commonly adopted 1-D approach (non-adjoint-weighted) are presented (Lecarpentier, 2001). This and other similar methods overestimate the correction factor over the whole range of \(\lambda T \) values, with relative errors up to 20–30%. For small values of \(\lambda T \), precursors are trapped for several loops over the fuel circuit in the Monte Carlo approach. In this case, tracking errors accumulate and a small bias in the estimation may arise. Nonetheless, the limit for \(\lambda T \rightarrow 0 \) can be studied with a simplified algorithm (see Section 3.3). The yellow dot shows the IFP estimation of the \(\beta_{\text{eff}} \) correction factor obtained with uniform sampling of the delayed neutron position in the fuel. In this case, the three methods are again in good agreement. In the top of the plot, the positions of delayed neutron constants of the JEFF-3.1 library are shown for a circulating circuit. At present, no detailed studies are available on this subject. However, only few fissions occur in the blanket and few delayed neutrons are produced there. Moreover, these neutrons feature a very low importance because are likely to undergo radiative capture in the fertile material. For these reasons, precursor motion is neglected in the blanket material, and any delayed neutron produced there is emitted in the position of the originating fission event.

In Fig. 7, results from the k-epsilon case study with axial-symmetric geometry are presented. In this case, the analytical estimations significantly differ from those of OpenFOAM and SERPENT. This is due to the inability of the simplified approach to capture the effects of in-core fuel recirculation (see Fig. 4), both at high and low values of \(\lambda T \).

These results help in the interpretation of the effect of recirculation vortex on \(\beta_{\text{eff}} \). At low \(\lambda T \) (high recirculation velocity), the main effect is the higher in-core retention of precursors (see Fig. 8). Precursors are trapped in the core and this leads to higher values of the effective delayed neutron fractions for slow-decaying groups, even if the recirculation zone presents a relatively low importance. For high values of \(\lambda T \), most of the precursors would decay inside the core independently of the presence of the vortex. In this case, the main effect of the vortex is the increase of the effective fuel velocity at core centre (for a given flow rate). This leads to a faster removal of precursors from central zones of high neutron importance and the effect is a reduced \(\beta_{\text{eff}} \) for fast-decaying groups.

In Fig. 8, the concentration (top) and importance (bottom) of delayed neutron precursors are shown for different values of the dimensionless parameter \(\lambda T \). In the recirculation zone, the increase in both concentration and importance of delayed neutron precursors is evident for low values of \(\lambda T \).

In Fig. 9, the effect of turbulent diffusion is analysed. The turbulent Schmidt number \(Sc_T \) is the ratio between the eddy viscosity and the eddy diffusivity and is adopted to take into account the effects of turbulent mixing (i.e., equivalent of \(Pr_T \) for mass transport). Uncertainties are present both in the evaluation of the turbulent viscosity field by means of RANS turbulence models and in the choice of an appropriate value for \(Sc_T \). For this reason, a sensitivity to the effect of turbulent diffusion is presented for the nominal flow rate conditions. The main effect of turbulent diffusion is to reduce the retention of delayed neutron precursors in the recirculation zone. This leads to a decrease of the effective delayed neutron fraction for low \(Sc_T \) values, as delayed neutron are more likely to be emitted in the out-of-core part of the fuel loop. The effect of the turbulent diffusion term becomes very small in case of no recirculation vortex. Nonetheless, the analysed case studies highlight the important role of fluid flow modelling inside the reactor core. A proper solution of the in-core flow path (e.g., by means of CFD simulations) appears to be a first mandatory step, while calculating the effective delayed neutron fraction in circulating fuel reactors.

The adoption of the dimensionless parameter \(\lambda T \) allows a better comprehension of the phenomena governing the reduction of the effective delayed neutron fraction and ensures a more accurate understanding of the phenomena governing the reduction of the effective delayed neutron fraction and ensures a more accurate comprehension of the phenomena governing the reduction of the effective delayed neutron fraction and ensures a more accurate.
comparison between different approaches. Nonetheless, while studying reactor neutronic characteristics, the expression of b_{eff} as function of the fuel flow rate might lead to more useful results. These data can be used to estimate the reactivity insertion/extraction as consequence of operational or accidental change in the behaviour of fuel pumps.

In Fig. 10, the effective delayed neutron fraction is plotted against the flow rate and circulation time. Around nominal flow rate conditions (about 4 s of recirculation time), the reactivity loss due to fuel circulation is close to saturation and only little reactivity is inserted/removed by small variation of the flow rate. At higher recirculation time, little modifications in the operating conditions cause high reactivity insertion/removal. OpenFOAM results show a good agreement with Monte Carlo estimations. SERPENT-2 calculations adopting the IFP method are always statistically compatible with the more expensive results of the “prompt” method. Starting from nominal flow rate, blockage of the pumps might lead to the slow insertion of slightly more that 350 pcm of reactivity if stagnation conditions are reached at the end of the transient. Predictions of the analytical approach can be considered a good approximation over the range between static fuel and nominal conditions, also because the errors due to fuel recirculation shown before for fast and slow groups partially compensate each other.

The adoption of the IFP method allows a computationally cheap estimation of the single effective delayed neutron fractions b_{eff}. In Figs. 11 and 12, the b_{eff}/b_s correction factor is shown for the different delayed neutron groups of the JEFF-3.1 library as function of the MSFR flow rate. At the top of the plots the corresponding fuel loop circulation time (T) is shown. For better clarity, the groups are divided in slow and fast. In Fig. 11, only the interval 0–10% of the flow rate is shown. Slower groups reach their saturation values already at very low flow rate. At nominal conditions, the correction factor is significantly greater than 0.5 only for groups 7 and 8.

In Fig. 13, delayed neutron fraction values are shown for different fuel compositions. The reduction in the values from b_s to b_{eff} is due to differences in the energy spectra of prompt and delayed neutrons and is well captured by the Meulekamp and van der Marck (2006) method already available in SERPENT. In order to catch the effect of fuel motion, appropriate techniques are required (e.g., prompt or IFP methods). Energy effects are smaller and are dependent on the isotopic composition of the fissile material. Spatial effects are dominant and have a minor dependence on the fuel
composition. In particular, \(\beta_{\text{eff}}^i/\beta_{\text{eff}}^s \) correction factors calculated for the different delayed neutron groups can be considered of a certain generality, because the decay constants \(k_i \) of the JEFF-3.1 library are not dependent on the fuel composition. Moreover, spatial and energy effects may be separated as first approximation, in the case of the MSFR.

In Fig. 14, the spatial dependency of the delayed and prompt neutron source is shown as calculated with OpenFOAM for the 3D optimized MSFR core shape at nominal flow rate conditions. The delayed neutron source is calculated as sum over the eight delayed neutron groups. The upward shift of the fast decaying precursors is evident. The absence of in-core recirculation paths avoids precursors retention near reactor radial wall, as found in results related to the cylindrical axial-symmetric case study.

The optimized geometry and the simple cylindrical geometry have the same nominal in-core-to-total volume ratio (\(\sim 50\% \)). The definition of in-core is problematic in this kind of reactors. In the out-of-core part of the fuel circuit the neutron flux is several order of magnitude lower than the average value of the core. Nonetheless, the transition between the two zones is not sharp and defined as in solid-fuelled reactors or even graphite-moderated molten salt reactors. For simplicity, the core volume is often considered as the whole region between piping inlets and outlets, having a volume of approximately 9 m\(^3\) for both the reference cylindrical and the optimized MSFR geometry. On the other hand, in Fig. 14, high leakage zones near core inlets and outlets with low neutron flux can be appreciated. If we consider as in-core volume the region having a neutron importance equal or greater than the 5\% of the peak value, significant differences between the two geometries arise. The effective core volume calculated in this way results to be about 9.18 m\(^3\) for the cylindrical axial-symmetric geometry and 7.92 m\(^3\) for the optimized geometry, and the effective in-core-to-total volume ratio are 51\% and 44\%, respectively.

In Table 5, the results of the OpenFOAM simulations in the optimized geometry for different flow rates are presented. As discussed in Section 3, the analytical approach has been derived under the hypotheses of cylindrical core and uniform in-core axial velocity and does not allow for turbulent diffusion. Nonetheless, analytical results show a relative error with respect to OpenFOAM lower than 10\% in the wide range from 0.3 to 1.5 of the nominal flow rate. If the effective in-core-to-total volume ratio calculated above (44\%) is adopted, errors of about 3\% are achieved.

5. Conclusions

The effective delayed neutron fraction is an important reactor kinetics parameter, whose calculation is particularly difficult in circulating-fuel reactors. A correct importance-weighting of the delayed neutron source has proved necessary to achieve accurate results. Approximate techniques have been often adopted in the literature, which proved inaccurate in the considered test case of the Molten Salt Fast Reactor. In this work, three different approaches have been presented and adopted to study the MSFR with different geometry and flow rate conditions. The extension of the
continuous energy Monte Carlo code SERPENT-2 involves the tracking of precursors according to an input velocity field. The effective delayed neutron fraction in circulating-fuel conditions is then calculated adopting the Iterated Fission Probability method. A deterministic approach is presented as well, which is based on the OpenFOAM multi-physics finite-volume tool-kit, and involves the solution of the multi-group diffusion forward and adjoint eigenvalue problems. The new solver allows for the convective and turbulent diffusive terms in the delayed neutron precursors balance. An analytical formula for the circulating-to-static effective delayed neutron fraction correction factor is also presented. The formula is derived under simple hypotheses for cylindrical geometries. It takes into account the effect of the fuel motion on the effective delayed neutron fraction due to the non-uniform spatial neutron importance.

Results of the comparison show a good agreement between the Monte Carlo and the deterministic approaches in the three analysed case studies. The analytical formula shows close agreement with OpenFOAM for the case study with simple geometrical and velocity field conditions. Moreover, it offers a good approximation even in conditions far from the hypotheses under which it was derived, and gives better results than the commonly adopted analytical approaches (without importance weighting) in all the analysed cases.

The effect of in-core flow recirculation has been studied, revealing that it is responsible of a relevant increase of the effective delayed neutron fraction, due to in-core retention of slow-decaying precursors. β_{eff} revealed to be dependent on the particular geometry and flow conditions. At nominal flow rate, differences of about 10% have been found for the analysed case studies with the same nominal in-core-to-total volume ratio of 50%. Results highlighted the importance of a proper solution of the fluid flow inside the core for an accurate calculation of the effective delayed neutron fraction.

The present OpenFOAM implementation of the eigenvalue problem involves the same spatial discretization for both the neutron diffusion and the precursor convection, which prevents the adoption of optimised meshes. Suitable conservative mapping techniques are available (e.g., Menon and Schmidt, 2011) and their adoption in future developments of the present work would allow a more efficient solution on separated meshes. Higher-order methods for integration of stochastic differential equations (e.g., see Higham, 2001), possibly along with variable time-stepping techniques (e.g., see Gaines and Lyons, 1997), might be adopted in the presented Monte Carlo approach to accurately treat precursor turbulent diffusion. An Octave/Matlab script which numerically integrates Eq. (5) to calculate the correction factor for circulating-fuel reactors is available upon request.

References

Sakurai, T., Okajima, S., Andoh, M., Osugi, T., 1999. Experimental cores for benchmark experiments of effective delayed neutron fraction θ_{eff} at FCA. Progress in Nuclear Energy 35 (2), 131–156.

