Characterizing the tissue of apple air-dried and osmo-air-dried rings by X-ray CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS.

Anna Rizzoloa, Maristella Vanolia, b, Giovanna Cortellinoa, Lorenzo Spinellic, Davide Continib, Els Herremansd, Evi Bongaerse, Alexandra Nemethf, Michael Leitnerf, Pieter Verbovene, Bart M. Nicolar, Alessandro Torricellib

a Consiglio per la Ricerca e Sperimentazione in Agricoltura, Unità di ricerca per i processi dell’industria agroalimentare (CRA-IAA), via Venezian 26, 20133 Milano, Italy
b Politecnico di Milano, Dipartimento di Fisica, piazza Leonardo da Vinci 32, 20133 Milano, Italy
c Istituto di Fotonica e Nanotecnologie, CNR, piazza Leonardo da Vinci 32, 20133 Milano, Italy
d BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42 - box 2428, 3001 Leuven, Belgium
e Skyscan Bruker Micro-CT, Kartuizersweg 3B, 2550 Kontich, Belgium
f RECENDT, Research Center for Non Destructive Testing GmbH, Science Park 2/2, OG, Altenberger Straße 69, A-4040 Linz, Austria

corresponding author:
Anna Rizzolo, Consiglio per la Ricerca e Sperimentazione in Agricoltura, Unità di ricerca per i processi dell’industria agroalimentare (CRA-IAA), via Venezian 26, 20133 Milano, Italy; Phone: +39-02-239557213, e-mail: anna.rizzolo@entecra.it
Abstract

Air-dried apple rings were prepared from ‘Golden Delicious’ apples selected at harvest as less mature and more mature according to the absorption coefficient measured at 670 nm by TRS, stored in air for 5 months, and subjected to air-drying with (OSMO) and without (noOSMO) osmodehydration pre-treatment (60% sucrose syrup). Selected rings were submitted to microstructural analysis by X-ray computed tomography (X-ray CT), to subsurface structure analysis by Optical coherence tomography (OCT) and to texture and sound emission analysis by bending-snapping test. Higher crispness index, higher number of sound events and higher average SPL characterized the OSMO rings. Total porosity was related to $SPL_{av<60}$, tissue and pore anisotropy to $SPL_{av>60}$, pore fragmentation index to fracturability and specific surface area to the work required to snap the ring. A differentiation of the drying treatments, as well as of the products according to the TRS maturity class at harvest were obtained analysing by PCA microstructure parameters and texture and acoustic parameters. The differences in mechanical and acoustic characteristics between OSMO and noOSMO rings were due to the different subsurface structure as found with OCT analysis.

Key words: Microstructure, X-CT, OCT, raw material selection, TRS, acoustic-mechanical properties, crispness, osmodehydration pre-treatment, air-dried apple rings

Industrial relevance

There is an increasing demand of dried crispy fruit as they are considered by consumers healthy, natural and tasty foods. The textural characteristics, exerting a strong effect on crispy and crunchy sensory characteristics, have a great impact at consumption of dried crispy fruit. As their textural characteristics depend on both fruit maturity at processing and processing conditions, food industry is demanding nondestructive techniques which could be used for on-line/off-line sorting of fruit into classes each one more suited for obtaining a specific product. Furthermore, the textural properties of dried foods depend on microstructure, defined as the spatial arrangement of structural components and their interactions. Due to the microscopic complexity, unambiguous methodologies that relate quality to food microstructure do not
exist today, in contrast to what already existing for several engineering materials. Hence there is the need of developing methods that measure directly the microstructural properties of dried foods.

Highlights:

- For the first time, X-ray CT, OCT and acoustic emission coupled to texture analysis were combined to investigate the structure-property relationships of air-dried apple rings in relation to fruit maturity at harvest measured by TRS and to pre-drying osmodehydration.
- X-ray CT and OCT indicated changes in the microstructure related to crispness parameters measured by acoustic-texture analysis, which could be related to both fruit maturity at harvest and osmotic pre-treatment.
- The results show that a differentiation of the products according to the TRS maturity class at harvest was obtained.
1. Introduction

In the last few years, a new interest has arisen in the field of functional products, such as minimally processed fruits and vegetables. There is an increasing demand for innovative products that respond to changed lifestyles and working rhythms. In addition, consumers are also more and more interested in consuming healthy, natural and tasty foods. Dried crispy fruits could satisfy these requirements, as they are perceived as healthy because of their nutritional value, combined with high fiber content, but also tasty. Among these products, dried apples are part of several prepared foods including snack preparations and integral breakfast foods, as well they are used alone as snacks (Lewicki & Jakubczyk, 2004).

Drying is a process involving heat and mass transfer that can cause physical and chemical alteration of the material. The stress developed when water is removed from the fresh material causes shrinkage and change in shape, both of which influence the porosity of the dried material and its rehydration properties (Lewicki & Jakubczyk, 2004; Mayor, Silva & Sereno, 2005). Other consequences of the drying process involve changes in the rheological properties of the product, which are bound to changes in composition, phase transition of the material and microstructural changes due to loss of cell turgor pressure because of the loss of water from the inner parts towards the surface, possibly causing stiffness, spoilage and disruption of cell walls, or even a collapse of the cell tissue and a cell breakage (Lewicki & Lukaszuk, 2000; Maltini, Torreggiani, Venir & Bertolo, 2003). The extent of these changes depends on the species and on the maturation degree at processing, factors affecting the textural properties of the raw material.

The internal quality of fruit can be assessed non-destructively by using time-resolved reflectance spectroscopy (TRS), which provides a complete characterization of diffusive media with the simultaneous non-invasive measurement of the bulk optical properties. TRS is based on the measurement of the temporal delay and the broadening experienced by a short laser pulse (pulse duration in the order of 100 ps) while travelling through a turbid medium (Torricelli et al., 2008). By using an appropriate theoretical model of light penetration for the analysis of photon time distribution, it is possible to simultaneously estimate the absorption coefficient (μ_a) and the reduced scattering coefficient (μ'_s). Light penetration achieved by TRS in most fruit and vegetables can be as great as 1-2 cm, depending on the optical properties (Cubeddu et al., 2001). Hence, TRS provides information on the internal properties of the medium and is not significantly
affected by surface features (Saeys, Velazco-Roa, Thennadil, Ramon & Nicolaï, 2008). TRS has been used to assess maturity, texture and cell wall structure as well as internal defects in intact fruit (Vanoli, Zerbini, Rizzolo, Spinelli & Torricelli, 2010), and to sort fruit at harvest according to maturity class, usually by measuring fruit at 670 nm (near the chlorophyll-α peak) and classifying fruit with high $\mu_\alpha 670$ values as less mature and those having low $\mu_\alpha 670$ values as more mature (Torricelli et al., 2008). As for air-dried apple rings, it was shown that the classification of apples at harvest based on $\mu_\alpha 670$ was able to segregate fruit generating fresh and air-dried rings of different quality (Rizzolo, Vanoli, Cortellino, Spinelli & Torricelli, 2011; Rizzolo, Vanoli, Cortellino, Spinelli & Torricelli, 2012): the differences found in the raw material affected the changes occurring in apple rings with air-drying, mainly influencing weight loss, area shrinkage and how much ring color changed due to browning phenomena. For ‘Golden Delicious’ and ‘Pink Lady®’ cultivars, by processing the more mature fruits, i.e. either after long cold storage or by using apples having lower $\mu_\alpha 670$ at harvest, air-dried rings with low shrinkage and low color changes (i.e. showing less browning) with lower ring hardness and crispness index were obtained.

However, maximal shrinkage during drying decreases as its solids increase and structure collapse was shown to decrease when fruit was impregnated with sugar prior to air drying (Torreggiani & Bertolo, 2004; Wolf, Behsnilian & Speiss, 2001) by means of an osmotic process, which is carried out by immersing the fruit into aqueous solutions of high sugar concentration, so achieving a partial dehydration coupled to a solute intake (Wolf, Behsnilian & Speiss, 2001). Moreover, great changes in the tissues structure could be produced by combining the osmotic dehydration with air drying (Lewicki, 1998), with texture changing from elastic-visco-plastic to rigid, becoming fragile and brittle, which are textural features linked to the crispy and crunchy sensory attributes proper of snack food (Saeleaw & Schleining, 2011). In addition, the rheological characteristics of osmo-air-dried apple rings were shown to change according to the cultivar: ‘Golden Delicious’ rings acquired rigidity but remained brittle and fragile, developing small fractures, whereas ‘Pink Lady®’ ones become rigid, but harder and stiffer, with abrupt failures of major intensity (Farris, Gobbi, Torreggiani & Piergiovanni, 2008; Gobbi, Farris, Limbo & Torreggiani, 2012). These mechanical characteristics are strictly bound to the porosity of dried apple rings, which has been characterized using different imaging 2-D techniques, such as light microscopy (Mayor, Silva & Sereno,
Even if scanning electron microscopy is a useful tool to analyze the sample microstructure, it does not give reliable information about the total pore volume and pore size distribution in the sample. These information on the microstructure can be obtained using the X-ray microtomography, which has been applied to study the effect of far-infrared radiation assisted drying on microstructure of banana slices (Léonard, Blacher, Nimmol & Devahastin, 2007), and to quantify the pore space of apple tissue (Mendoza et al., 2007; Mendoza et al., 2010; Herremans et al., 2013).

Complementary information on dried ring microstructure could also be obtained using optical coherence tomography (OCT), a novel approach to assess the subsurface microstructure (Huang et al., 1991). OCT is a purely optical, non-destructive, non-invasive, and contactless high resolution imaging method, which is based on the physical phenomenon of white light interferometry. The technique employs special light sources with very short temporal coherence, which enables an excellent depth resolution in the range of only a few microns (Drexler et al., 1999). In the field of food and plant photonics so far OCT has been used to study the morphological and functional state of higher plant tissues (Sapozhnikova, Kamenskii & Kuranov, 2003; Kutis, Sapozhnikova, Kuranov & Kamenskii, 2005; Verboven et al., 2013) and to detect disease in melon seeds (Lee, Lee, Kim, Jung & Kim, 2011) and disease, defects and rots in onion (Meglinski, Buranachai & Terry, 2010; Landahl, Terry & Ford, 2012).

The objectives of this work were: a) to evaluate the subsurface structure and the microstructure of air-dried and osmo-air-dried apple rings by OCT and X-ray micro-tomography; and, b) to study the relationships among the microstructure features and the crispness of dried apple rings in relation to fruit maturity assessed at harvest by TRS.

2. Materials and Methods

2.1. Fruit and experimental plan

‘Golden Delicious’ apples (*Malus domestica*, Borkh.) coming from Laimburg (Trentino Alto-Adige
region, Italy) were harvested on 8 September 2011, which corresponds to the commercial picking window for this cultivar in Trentino-Alto Adige region. Sixty fruits were selected and measured at harvest by TRS at 670 nm (close to the absorption peak of chlorophyll-a), ranked according to decreasing \(\mu_{670}\) (increasing maturity) and randomized into three batches of 20 fruit each. The batches were stored for 5 months at +1°C in air. Each batch corresponded to a different pre-treatment: without osmodehydration pre-drying (noOSMO) and with 1 h (OSMO1) or 3 h (OSMO2) osmodehydration pre-drying. Three 5 mm thick rings/fruit were prepared. The rings from each fruit were packed together into a tulle bag and immersed for 1 h (OSMO1) or 3 h (OSMO2) at 20°C in a sucrose solution \((a_w=0.90, 60\% \text{ w/w})\), which was continuously recirculated at 1.5 L/min through a peristaltic pump. The ratio fruit/solution was 1/3. Before air drying, the OSMO rings were drained, rinsed gently with tap water, and placed a few minutes over adsorbent paper to remove excess water. OSMO and noOSMO rings were air-dried at 80°C up to a constant weight using a pilot alternate upward-downward air circulated drier (Thermolab, Codogno, Italy) operating at an air speed of 1.5 m/s.

Due to the duration of a single analysis, for the microstructural analysis by means of X-ray micro-CT a selection of dried apple samples was made: rings obtained from the most differing pre-treatments before drying (noOSMO and OSMO2) and from the most differing apples in terms of maturity measured by means of TRS (ranks 1 and 2, less mature (LeM) fruit and ranks 19 and 20, more mature (MoM) fruit) were chosen. For the subsurface microstructure analysis by OCT, instead, within each batch, the rings obtained from the most differing apples in terms of TRS maturity (rank 1, the least mature; rank 20, the most mature) were selected. On the dried rings prepared from the selected fruit, the mechanical and acoustic properties were measured using a texture analyzer in conjunction with acoustical emission analysis (bending-snapping test).

2.2. Assessment of maturity at harvest by time-resolved reflectance spectroscopy and samples formation

For TRS measurements, a compact system was used, working at 670 nm, based on a pulsed laser diode (mod. PDL800, PicoQuant GmbH, Germany), with 80 MHz repetition frequency, 100 ps duration, and 1
mW average power, a compact photomultiplier (mod. R5900U-L16, Hamamatsu Photonics, Japan) and an integrated PC board (mod. SPC130, Becker&Hickl GmbH, Germany). Typical acquisition time for time-correlated single photon counting is 1 s per point. A couple of 1 mm plastic fibers (Mod. ESKA GK4001, Mitsubishi, Japan) delivers light into the sample and collects the emitted photons at a distance of 1.5 cm. A band pass filter tuned at 670 nm was used to cut off the fluorescence signal due to chlorophyll. Overall, the instrumental response function duration was <160 ps. The reduced scattering coefficient (μ_s) and the absorption coefficient (μ_a) were obtained by fitting the experimental TRS data with a standard solution of the diffusion approximation to the transport equation for a semi-infinite homogenous medium. The extrapolated boundary condition was used (Contini, Martelli, & Zaccanti, 1997) to take into account the refractive index mismatch at the surface.

The absorption coefficient at 670 nm was measured on two opposite sides of each fruit and the average per fruit was used for fruit ranking from less mature to more mature fruit. The 60 ranked apples were grouped by 3, with a total of 20 groups, corresponding to 20 levels of μ_a. Each fruit from each group was randomly assigned to a different pre-drying treatment. In this way, fruit from the whole range of μ_a were available for each pre-drying treatment.

2.3. Microstructural analysis

2.3.1 X-ray micro-CT

For the X-ray micro-CT analysis, by using a cork borer, small cylindrical samples (3 mm diameter) were excised from the dried apple, approximately 5 mm from the peel, excluding regions in which vascular tissue could be discerned visually. The thickness of the apple slices was not altered in preparing the samples. The samples were mounted on the rotating holder and stabilized using parafilm. Because of the dry state of the samples, hardly any sample degradation was expected within the time frame of the scan (29 minutes). X-ray micro-CT measurements were performed on a SkyScan 1172 system (Bruker microCT, Kontich, Belgium), operated at 55 keV source voltage and 181 μA current and with an isotropic image pixel resolution of 2.44 μm. The samples were rotated over 0.35° steps over a total of 180°, each time averaging 3 frames to acquire a radiographic image of 1048 by 2000 pixels. The projection images were
loaded into dedicated software (NRecon1.6.3.2, Bruker microCT, Kontich, Belgium) to reconstruct virtual
cross-sections of the sample. This resulted in a 3D greyscale datastack, digitized to 880 slices of 2000 by
2000 pixels. The images were smoothed by a Gaussian smoothing kernel, and corrected for rings and beam
hardening, which are common artifacts in X-ray CT images. For image analysis a cylindrical volume of
interest (diameter 2.5 mm) was cropped centrally in the imaged volume to exclude interference with the
excised borders of the sample. The remaining volume for analysis measured 5.4 mm³. The images were
filtered in 3D space using a median filter with filter radius of 2 pixels. Otsu’s algorithm (Otsu, 1979) was
applied for binarizing the image by separating two peaks in the grey scale frequency distribution: pixels
with lower intensities than the Otsu threshold were assigned to the background (air) and pixels with a
higher intensity than that threshold were assigned to the apple tissue material. Individual 3D objects smaller
than 27 voxels were considered to be noise and were filtered out of the datastack. Morphometric
parameters describing the microstructure were calculated on the 3D data using CTAn v.1.12.0.0 (Bruker
microCT, Kontich, Belgium). A description of the parameters and the main concept of the calculation can
be found in Herremans et al. (2013) and Skyscan (2010).

2.3.2 Optical coherence tomography
All measurements have been performed with a modular spectral domain OCT system (henceforth referred
to as “SD-OCT”), which is composed of a light source, a probe head and a spectrometer. The
supercontinuum light source (Koheras SuperK Versa, NKT Photonics, Denmark) emits light at a central
wavelength of 860 nm. Its spectral bandwidth of 170 nm allows for an axial resolution of 2 µm (in air). In
the probe head, the beam is split by a non-polarizing bulk beam splitter (BS) into a reference and a sample
arm. In the reference arm light is reflected from a gold coated mirror (M), whereas in the sample arm it is
reflected from the different layers within the sample. The light returning from both arms is recombined and
sent to the spectrometer, where it is spectrally dispersed by a transmission grating and recorded by a CCD
camera. The recorded spectrum is modulated by interference fringes, with the frequency of the modulation
depending on the path length differences between reference and sample arm. For recording a cross-section
image the beam of light is scanned over the sample surface over a range of 5 mm by means of a
galvanometer mirror (GM). During this process 1000 interferograms are recorded, which are used for reconstructing the images. A schematic diagram of a spectral-domain OCT system is depicted in Fig. 1.

This particular system was equipped with a multi focal-length probe head. With such a probe head it was possible to switch between different imaging optics, and thus, to change the lateral resolution and depth of focus of the probing beam. Single depth scans were acquired at a rate of 20 kHz.

2.4. Texture and sound emission analysis

A TA-XT plus Texture Analyzer (Stable Micro Systems, Godalming, UK) was used for bending-snapping test fitted with a 50N load cell and equipped with an acoustic emission detector (AED, Stable Microsystems), using the HDP/3PB Three Point Bending Rig. The lower supporting blades were separated by a distance of 45 mm, and the compressing blade was driven down between the two supports at a speed of 0.17 mm/s, bending each apple ring until it snapped. A microphone unit Type 4188-A-021 (Brüel & Kjær) was connected to an AED for sound pressure measurements and was placed at the sample level located 100 mm away from the central axis of the probe. The sound measurement system was calibrated using the Brüel & Kjær Type 4231 sound calibrator at sound pressure levels of 94 and 114 dB at 1000 Hz. The gain of AED was set at 0 dB and the sampling rate was set at 500 Hz for sound and force measurements. Acoustic signals were captured in “RAW” format used in the TA.XT plus Texture Analyzer. Data were than converted to dB. The mechanical and acoustic characteristics were extracted from the data using Texture Exponent 32 software (Stable Microsystems). All tests were performed in a laboratory with no special soundproof facilities at room temperature. Force/displacement and sound/displacement curves were simultaneously plotted. From the force curve the following parameters were extracted: number of peaks, ring hardness corresponding to the maximum force (hardness, N), distance at the first major point (Travel1, mm), distance at the break (fracturability, mm), work required to the first major fracture point (Area1, N×mm), work required to snap the ring (Total area, N×mm), slope of the first part of the force curve (slope, N/mm) and gradient to the maximum force (gradient_max, N/mm).

From the sound curves the following data were extracted: total number of sound peaks (N_sounds), number of sound peaks having SPL higher than 60 dB (N_sounds>60dB), average SPL of sound peaks lower than
60 dB ($SPL_{av<60}$), average SPL of sound peaks higher than 60 dB ($SPL_{av>60}$), average SPL of total sound peaks ($avSPL$). The crispness index (E_{mod}, MPa) was calculated from $gradient_{max}$ (E_{mod} max) and $slope$ (E_{mod} $slope$) according to Farris, Gobbi, Torreggiani & Piergiovanni (2008).

2.5. Statistical analysis

Data were submitted to Analysis of Variance and means were compared by Tukey’s (mechanical and acoustic parameters) and Duncan’s (morphometric parameters) tests at $P \leq 0.05\%$ (Statgraphics v.7, Manugistic Inc., Rockville, MD, USA).

Principal Component analysis (PCA) was carried out in order to study the relationships between X-ray CT morphometric parameters and mechanical and acoustic properties of dried rings considering 10 morphometric parameters, 6 mechanical and 5 acoustic parameters and was performed by The Unscrambler X version 10.0.1 (CAMO, Oslo, Norway) software package using the nonlinear iterative partial least-squares (NIPALS) algorithm. The principal component (PC) scores were then submitted to ANOVA, and means were compared by Duncan’s test at $P \leq 0.05\%$.

3. Results

3.1. Absorption coefficient at harvest

The absorption coefficient at 670 nm ranged from 0.35 cm$^{-1}$ for the least mature fruit to 0.092 cm$^{-1}$ for the most mature apple; the optical properties at harvest of LeM and MoM apples selected for this study were (average ± standard error): LeM maturity class: 0.032 ± 0.0083 cm$^{-1}$; MoM maturity class: 0.11 ± 0.0064 cm$^{-1}$.

3.2. Microstructure

Fig. 2 (left) presents an X-CT slice of an OSMO2 LeM dried apple ring. The skeleton of dried apple tissue could be accurately detected because of the high contrast with the pore space. So, a threshold was applied to segment skeleton from the pore space resulting in a binary image (Fig. 2, right). Fig. 3 shows representative cross sections of noOSMO and OSMO2 MoM dried apple rings. By comparing the images, it is clear that the microstructure of dried apple ring somewhat changes with the osmodehydration pre-
drying. In fact, in the OSMO2 sample an higher presence of large pores than in the noOSMO ones is evident.

Considering the morphometric parameters computed (Table 1), on average (mean±standard error) the osmotic pre-treatment increased porosity (noOSMO, 77.8±1.1%; OSMO2, 82.0±1.6%) and tissue specific surface area (noOSMO, 144.82±8.61 mm\(^{-1}\); OSMO2, 159.81±2.79 mm\(^{-1}\)) and decreased pore anisotropy (noOSMO, 0.532±0.016; OSMO2, 0.499±0.014), tissue thickness (noOSMO, 0.0233±0.0011 mm; OSMO2, 0.0205±0.00034 mm), tissue anisotropy (noOSMO, 0.564±0.012; OSMO2, 0.501±0.012) and tissue intersection surface (noOSMO, 2.67±0.23 mm\(^2\); OSMO2, 1.73±0.13 mm\(^2\)). On the other hand, tissue specific surface area and tissue thickness, along with tissue fractal dimension, depended also by the TRS maturity class: in fact LeM rings on average had higher tissue specific surface area (LeM, 159.92±6.58 mm\(^{-1}\); MoM, 144.71±6.12 mm\(^{-1}\)) and lower tissue thickness (LeM, 0.0209±0.00083 mm; MoM, 0.0228±0.00113 mm) and tissue fractal dimension (LeM, 2.490±0.012; MoM, 2.527±0.011). In addition, the comparison of the TRS maturity classes within the same pre-treatment highlighted that in noOSMO samples only porosity was influenced by TRS maturity class, with LeM rings showing higher porosity than MoM rings, while in OSMO2 samples LeM rings were characterized by lower pore fragmentation index and tissue fractal dimension, and higher tissue specific surface area, tissue fragmentation index and tissue structure model index than MoM rings. Furthermore, the osmotic pre-treatment had a diverse impact on morphometric parameters in the two TRS maturity classes. In fact, the osmotic pre-treatment induced in LeM rings a decrease in pore anisotropy, tissue anisotropy and tissue intersection surface, whereas in MoM rings an increase in tissue specific surface area and a decrease in tissue thickness and tissue fractal dimension (Table 1).

A more profound insight in the microstructure is shown by the pore space thickness and tissue structure thickness distributions. These are approximated by a 3D sphere-fitting algorithm on the skeletonized structure, hereby calculating local structure diameters for every position on the skeleton.

The tissue thickness distributions (Fig. 4) show that more than 75% of cell spaces in OSMO2 rings were smaller than 25 µm, independently from the TRS maturity class. In contrast, for noOSMO rings only 60.2% (MoM) and 72.8% (LeM) of cell spaces were smaller than 25 µm. As for pore space thickness
distributions (Fig. 5), in noOSMO rings, whatever the TRS maturity class, more than 50% of pores had thickness smaller than 0.10 mm, and only about 3% of pores were larger than 0.20 mm, with a maximum value of 0.27 mm. With the osmotic pre-treatment, for both LeM and MoM rings the distribution was shifted towards larger values. In LeM rings 39.6% of pores had thickness lower than 0.10 mm, and 8.7% of pores were larger than 0.20 mm, reaching a maximum value of 0.32 mm, whereas in MoM rings only 37% of pores were smaller than 0.10 mm, and more than 17% of pores were larger than 0.20 mm, with about 5.7% of pore thickness ranging from 0.40 to 0.458 mm.

3.3 Subsurface structure

Fig. 6 shows representative OCT images of the subsurface of the dried rings from the least (R1) and most (R20) mature apple fruit in each batch. The shown images consist of 1000 adjacent depth scans and feature (optical) dimensions of 5 × 0.88 mm². OCT clearly distinguished noOSMO and OSMO air-dried rings: noOSMO samples feature a dense structure and thus a limited penetration depth, while the OSMO ones feature a loose surface structure with large inclusions of air. The differences between the noOSMO and OSMO samples seemed to be a surface effect, since they could not be clearly reproduced at freshly prepared sites of fractures. From OCT images it was not possible to deduce the time of the osmodehydration pre-treatment or the effect of the TRS maturities.

3.4 Crispness parameters of air-dried and osmo-air-dried apple rings

If the mechanical and acoustic properties of dried rings from the selected fruit are considered (Table 2), no significant influence of TRS maturity at harvest within each pre-treatment was found for the parameters taken into consideration, with a few exceptions concerning the acoustic parameters. In noOSMO treatment LeM rings were characterized by higher value of $SPL_{av<60}$ than MoM ones, whereas in OSMO2 samples, LeM rings showed lower values of $SPL_{av<60}$ and $avSPL$ than MoM rings.

In contrast, the osmotic pre-treatment strongly influenced some mechanical properties and almost all the acoustic parameters: in OSMO rings fracturability, $Area1$ and $Travel1$ were lower, and $gradient_{max}$, slope, $E_{mod,max}$ and $E_{mod,slope}$ were higher than in noOSMO rings, being in OSMO rings (mean ± standard
error): fracturability, 0.66±0.04 mm; Area1, 1.70±0.18 N×mm; Travel1, 0.51±0.04 mm; gradient_max, 11.92±0.69 N/mm; slope, 10.72±0.38 N/mm, $E_{\text{mod} \cdot \text{max}}$, 279.1±26.5 MPa; and $E_{\text{mod} \cdot \text{slope}}$, 252.6±24.6 MPa.

No differences in mechanical properties between the times of osmotic pre-treatment were found. The N_{sounds} did not differ among the pre-treatments, even if there was a tendency to increase with the osmorehydration time, with OSMO2 rings showing a mean value almost twice the value of noOSMO samples. However, OSMO2 rings were characterized by a significantly higher $N_{\text{sounds}} > 60$dB (14.3±3.7), higher $SPL_{\text{av} < 60}$ (50.37±0.45 dB), higher $avSPL$ (57.86±0.74 dB), and lower $SPL_{\text{av} > 60}$ (71.39±1.17 dB), than noOSMO rings, which showed lower $N_{\text{sounds}} > 60$dB (4.5±1.4), corresponding to only about 15% of N_{sounds}, lower $avSPL$ (51.07±1.69 dB) and $SPL_{\text{av} < 60}$ (45.86±0.74 dB), but higher $SPL_{\text{av} > 60}$ (80.00±1.74 dB). The osmosis time significantly influenced $SPL_{\text{av} < 60}$ and $SPL_{\text{av} > 60}$, being the former lower in OSMO1 rings (48.40±0.57 dB), value higher than the noOSMO ones, and the latter higher in OSMO1 rings (77.97±1.56 dB), value not different from the noOSMO.

3.5 **PCA on mechanical and acoustic properties and morphometric parameters**

PCA based on X-CT morphometric parameters reported in Table 1 and the mechanical and acoustic properties of each ring analysed by X-CT allowed the selection of four principal components (PC), which explained 89.8% of total variation (Fig.7). In PC1 (45.18% of total variance) slope, gradient_max and $E_{\text{mod} \cdot \text{slope}}$ mechanical parameters were positively related to $avSPL$, N_{sounds} and $N_{\text{sounds}} > 60$dB acoustic parameters and negatively related to $SPL_{\text{av} > 60}$ and Area1 parameters. In addition, PC1 highlighted relationships between some morphometric parameters and acoustic characteristics: total porosity was related to $SPL_{\text{av} < 60}$, and was opposite to tissue anisotropy and pore anisotropy, which were related to $SPL_{\text{av} > 60}$, while Area1 was related to tissue intersection surface. PC1 had positive scores for OSMO2 rings, with LeM OSMO2 ones having the highest value, and negative for noOSMO rings, without any difference between the TRS maturity classes (Fig.8). PC2 (26.55% of total variance), instead, underlined positive relationships between morphometric parameters and mechanical characteristics: pore fragmentation index was related to fracturability and the work required to snap the ring ($Total\ area$) to specific surface area. Moreover, PC2 opposed pore fragmentation index, fracturability, and tissue fractal dimension to tissue
fragmentation index, tissue structure model index, Total area and specific surface area, and distinguished
dried apple rings according to the TRS maturity class. In fact, PC2 had negative scores for LeM rings and
positive scores for the MoM ones, but this difference was statistically significant only for the OSMO2 rings
(Fig. 8). PC3 (10.67% of total variance) was mainly linked to pore anisotropy, SPL\textsubscript{av>60} total porosity and
tissue anisotropy, which were opposite to tissue structure model index and tissue intersection surface,
whereas in PC4 (7.48% of total variance) specific surface area was inversely related to N_sounds\textgreater 60dB and
N_sounds acoustic parameters. PC3 and PC4 distinguished the TRS maturity classes, but only for the
noOSMO rings, which were characterized by positive scores for LeM rings and negative scores for the
MoM ones (Fig. 8).

4. Discussion

The usefulness of the osmotic step as a pre-treatment prior to air-drying is related to the physico-chemical
modifications occurring in the plant tissue. In fact the simultaneous counter-current mass transfer process,
in which water outflows to the surrounding solution and the solute infuses into the product, causes in a
short time a fully plasmolysis of the cells on the surface of the material due to osmotic dehydration, with
little or no influence on the interior cells, so developing a gradient of turgor pressure, which can deform the
structure. Shrinkage and stretching forces are not strong enough to break cell walls or to split middle
lamella, but, when the osmotic process lasts at least 3 h, some detachments of cells occur, resulting in the
deformation and creation of new and small intercellular spaces (Lewicki & Porzecka-Pawlak, 2005). It was
shown that osmosis is a surface process as sugars penetrate to a depth of 2-3 mm, where a decreasing of
water binding by the apple can be observed (Salvatori, Andrés, Chiralt & Fito, 1999). During subsequent
air drying, sugars added during the osmotic dehydration pre-treatment helped to decrease structural
collapse (del Valle, Cuadros & Aguilera, 1998; Lewicki, 1998; Lewicki & Lukaszuk, 2000), which resulted
in a more porous structure. The OCT analysis, applied in this work for the first time as an alternative
imaging method to study the sub-surface structure of air-dried and osmo-air-dried apple rings, confirmed
the fact that the osmosis is a surface process, as the differences found by OCT imaging between noOSMO
and OSMO rings could not be clearly reproduced at freshly prepared sites of fractures. The observed
difference in the subsurface structure, i.e. a dense structure for noOSMO rings and a loose surface structure with large inclusions of air for the OSMO ones, could be due to the fact that upon immersion in the osmotic medium the first layers of cells die, and resulting in the creation of a volume near the surface (Mavroudis, Dejmek & Sjöholm, 2004).

Scanning electron microscopy (SEM) studies carried out by Moreno, Simpson, Estrada, Lorenzen, Moraga & Almonacid (2011) on ‘Granny Smith’ apples showed the effects of osmodehydration in sucrose solution at microstructural levels. In fresh apples tissues are composed of numerous cells and intercellular spaces, with cells closely bound to each other by middle lamella. In these cells, a large vacuole occupies most of the protoplast, and the plasmalemma and tonoplast are close to the cellular wall. Cellular collapse as well as protoplast contraction and cell wall edge distortion were observed as a consequence of osmodehydration. On the other hand, Witrowa-Rajchert and Rząca (2009) found that air-drying at 70°C caused in apple slices (cv ‘Idared’) changes in the structure properties of the material, bound to physical alteration, such as shrinkage, increased porosity, decreased ability to imbibe water, and damage to microscopic structure. The same authors reported that in fresh tissue half of the population of the cells has a larger cross-section area than 0.034 mm², while most of the dried cells have a cross-section area of 0.0025 mm² with 50% having cross-section areas up to 0.0020 mm². SEM images underlined that in air-dried apple rings the shrinkage stress causes numerous breaks of cell walls, with microstructure being characterized by small cavities and very high density, with larger cells only in the boundary area of the slices, suggesting that shrinkage of air-dried apple rings was anisotropic (Witrowa-Rajchert and Rząca, 2009; Bai, Rahman, Perera, Smith & Melton, 2002; Lewicki & Jakubczyk, 2004). In addition, there has been reported a strong negative correlation between porosity, computed from apparent and true density values, and volume shrinkage, ranging the porosity from 69 to 74% with 73-76% volume shrinkage values (Witrowa-Rajchert and Rząca, 2009).

Our results showed that the pre-drying osmodehydration treatment caused an increase in the porosity and specific surface area of dried rings, which corresponded to lower volume and area shrinkage (data reported in Rizzolo, Vanoli, Cortellino, Spinelli & Torricelli, 2013), confirming the negative correlation between porosity and shrinkage found by Witrowa-Rajchert and Rząca (2009). The osmotic pre-treatment also
affected the degree of pore and tissue anisotropy, which are a measure of preferential alignment of the
structure, and they are scaled from 0 for total isotropy to 1 for total anisotropy. Here noOSMO rings
showed higher pore and tissue anisotropy values than OSMO2 rings; this difference could be ascribed to
how apple rings shrank with air-drying. In fact the light microscopy images of the section of two apple
rings air dried at 80°C, one after 90 min of osmosis and the other without the osmotic pre-treatment
reported by Gobbi, Farris, Limbo & Torreggiani (2012) showed that an important shrinkage took place
along the thickness axis in the not pretreated sample, which was characterized also by far fewer voids, with
shape not as around as the pre-treated ring. The positive effect of the osmotic pre-treatment on the dried
ring structure was confirmed also by the values of tissue fragmentation index, the tissue thickness
distribution and pore space thickness distributions, indicating that in OSMO rings there was a more
connected solid structure, with a lower local thickness of the cell spaces and an higher proportion of larger
pores than in noOSMO rings. These different morphometric characteristics found for air-dried and osmo-
air-dried apple rings greatly influenced the mechanical and acoustic parameters considered as indices of
ring crispness. Hardness, gradient to the maximum force, E_{mod}, fracturability, work required to the first
force breakdown and work to snap the ring values indicated that air-dried ring were tough (strong and
highly deformable), while the osmo-air-dried one were brittle (hard and weak), as previously found by
Farris, Gobbi, Torreggiani & Piergiovanni (2008) and Gobbi, Farris, Limbo & Torreggiani (2012). In
addition our results showed that slope, gradient_max and E_{mod} slope mechanical parameters, which had
higher values in OSMO rings, were positively related to N_{sounds}, $N_{sounds}>60dB$ and avSPL, all
acoustic parameters which have been associated to a high sensory crispness (Salvador, Varela, Sanz &
Fiszman, 2009; Saeleaw & Schleining, 2011).

Also raw material characteristics (cultivar and ripeness degree) have an influence on apple air-dried ring
quality. Konopacka & Plocharski (2001) found that prolonging the storage time of apple fruit (i.e.,
increasing ripeness) the derived ring showed increasing density and decreasing thickness retention, and that
apple rings produced by fruit after picking (less ripe) and also those produced from soft, overripe fruit after
storage were harder than those produced from ripe fruit. Higher ring hardness and crispness index were
also found by Rizzolo, Vanoli, Cortellino, Spinelli & Torricelli (2011, 2012) in air-dried apple rings
prepared either from fruit classified at harvest as less mature based on μ_a 670 or from fruit processed at harvest. Our results indicate that using less mature apples based on μ_a 670 measured at harvest by TRS, air-dried ring with higher porosity and higher $SPL_{av<60}$ could be produced, as well as osmo-air-dried ring having a more connected solid structure, with lower tissue and pore degree of anisotropy, and defined less crispy by acoustic parameters (lower $SPL_{av>60}$ and lower avSPL) than osmo-air-dried rings produced by more mature fruit.

5. Conclusions

X-ray CT images were used to compute microstructural descriptors, OCT images were used to visualize the subsurface structure, and force and sound pressure level profiles were used to evaluate crispness of air-dried apple rings obtained with or without an osmodehydration pre-treatment. Higher crispness index, higher number of sound events and higher average SPL characterized the OSMO rings. Porosity was related to $SPL_{av<60}$ tissue and pore anisotropy to $SPL_{av>60}$ pore fragmentation index to fracturability and specific surface area to the work required to snap the ring. By using principal component analysis a differentiation of the drying treatments, as well as of the products according to the TRS maturity class at harvest were obtained. The differences in mechanical and acoustic characteristics between OSMO and noOSMO rings could be also due to the different subsurface structure as found with OCT analysis.

It can be concluded that there is a clear relation between the maturity at harvest nondestructively assessed on intact fruit by TRS, the processing conditions and the microstructure features determined by X-ray CT and OCT, and texture quality (crispness) of dried apple rings. TRS therefore holds a large promise for application as a straightforward sorting tool for obtaining high quality dried apple rings.

Acknowledgements

This publication has been produced with the financial support of the European Union (project FP7-226783-InsideFood). The opinions expressed in this document do by no means reflect the official opinion of the European Union or its representatives. Alexandra Nemeth and Michael Leitner furthermore acknowledge support from the European Regional Development Fund (EFRE) in the framework of the EU-program.
REGIO 13, and the federal state of Upper Austria.

References

Postharvest Biology and Technology, 75, 114-124.

Table 1. 3-D morphometric parameters (means ± standard error) for noOSMO and OSMO2 dried apple rings in function of TRS maturity class (LeM=less mature; MoM=more mature) (n=2) for tissue structure and pore space.

<table>
<thead>
<tr>
<th></th>
<th>Means ±standard error</th>
<th>ANOVA ^</th>
<th>main effects</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>noOSMO</td>
<td>OSMO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LeM</td>
<td>MoM</td>
<td>LeM</td>
<td>MoM</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>79.63±0.82</td>
<td>76.04±0.81</td>
<td>81.88±0.76</td>
<td>82.03±3.74</td>
</tr>
<tr>
<td>Pore anisotropy</td>
<td>0.556±0.013</td>
<td>0.508±0.016</td>
<td>0.470±0.016</td>
<td>0.490±0.028</td>
</tr>
<tr>
<td>Pore specific surface area (mm⁻¹)</td>
<td>42.56 ±1.65</td>
<td>45.15±1.39</td>
<td>39.71±1.85</td>
<td>37.87±9.03</td>
</tr>
<tr>
<td>Pore fragmentation index (mm⁻¹)</td>
<td>–13.83±17.18</td>
<td>–1.71±9.50</td>
<td>–6.14±1.75</td>
<td>0.17±1.25</td>
</tr>
<tr>
<td>Tissue specific surface area (mm⁻¹)</td>
<td>155.42±14.80</td>
<td>134.21±0.79</td>
<td>164.42±0.17</td>
<td>155.20±2.03</td>
</tr>
<tr>
<td>Tissue thickness (µm)</td>
<td>21.8±1.6</td>
<td>24.7±0.7</td>
<td>20.0±0.1</td>
<td>21.0±0.5</td>
</tr>
<tr>
<td>Tissue anisotropy</td>
<td>0.582±0.009</td>
<td>0.547±0.016</td>
<td>0.493±0.014</td>
<td>0.509±0.024</td>
</tr>
<tr>
<td>Tissue Intersection surface (mm²)</td>
<td>2.36±0.06</td>
<td>2.98±0.34</td>
<td>1.70±0.18</td>
<td>1.76±0.27</td>
</tr>
<tr>
<td>Tissue fragmentation index (mm⁻¹)</td>
<td>–2.58±10.76</td>
<td>–12.10±11.43</td>
<td>–13.36±0.53</td>
<td>–20.24±2.10</td>
</tr>
<tr>
<td>Tissue structure model index</td>
<td>0.29±0.38</td>
<td>0.06±0.37</td>
<td>0.012±0.027</td>
<td>–0.227±0.035</td>
</tr>
<tr>
<td>Tissue fractal dimension</td>
<td>2.496±0.027</td>
<td>2.545±0.007</td>
<td>2.484±0.001</td>
<td>2.510±0.008</td>
</tr>
</tbody>
</table>

^ O=osmotic pre-treatment; M=TRS maturity class; significance of P-value: **, P≤0.05%; *, P≤0.1%, ns, not significant
Table 2. Mechanical and acoustic parameters (mean±standard error) of air-dried apple rings prepared from apple fruit selected for X-CT and/or OCT analysis in relation to pre-drying treatment (noOSMO, no pre-treatment; OSMO1; 1h osmodehydration; OSMO2, 3 h osmodehydration). Means in the same row followed by different letters are statistically different (Tukey’s test, P≤0.05%) (n=6).

<table>
<thead>
<tr>
<th>Means ±standard error</th>
<th>ANOVA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>noOSMO</td>
</tr>
<tr>
<td>Mechanical parameters</td>
<td></td>
</tr>
<tr>
<td>number of peaks</td>
<td>2.2±0.6a</td>
</tr>
<tr>
<td>hardness (N)</td>
<td>5.98±0.55a</td>
</tr>
<tr>
<td>fracturability (mm)</td>
<td>0.95±0.06ab</td>
</tr>
<tr>
<td>gradient_max (N/mm)</td>
<td>6.98±0.81b</td>
</tr>
<tr>
<td>Area1 (N×mm)</td>
<td>2.68±0.19ab</td>
</tr>
<tr>
<td>Total area (N×mm)</td>
<td>3.39±0.52a</td>
</tr>
<tr>
<td>Travel1 (mm)</td>
<td>0.94±0.06a</td>
</tr>
<tr>
<td>slope (N/mm)</td>
<td>5.29±0.63b</td>
</tr>
<tr>
<td>E_{mod} max (MPa)</td>
<td>132.3±20.8b</td>
</tr>
<tr>
<td>E_{mod} slope (MPa)</td>
<td>101.6±19.7b</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
</tr>
<tr>
<td>N_sounds</td>
<td>23.2±7.6a</td>
</tr>
<tr>
<td>$N_sounds>$60dB</td>
<td>3.5±1.8a</td>
</tr>
<tr>
<td>$SPL_{avg<60}$ (dB)</td>
<td>47.84±0.46b</td>
</tr>
<tr>
<td>$SPL_{avg>60}$ (dB)</td>
<td>81.82±3.09ab</td>
</tr>
<tr>
<td>$avSPL$ (dB)</td>
<td>52.62±1.85bc</td>
</tr>
</tbody>
</table>

* O, osmotic pre-treatment; M, TRS maturity class; significance of P-value: *** P≤0.001%; ** P≤0.01%; * P≤0.05%; ns, not significant.
List of Figures

Figure 1. Schematic diagram of a spectral-domain OCT system. The dashed boxes represent portable and independent modules. DC – directional coupler; FC – fibre coupler; BS – beamsplitter; (G)M – (galvanometer) mirror; LX – lens; DG – diffraction grating.

Figure 2. Micro-CT cross-section before (left) and after (right) binarisation by Otsu thresholding for a LeM OSMO2 dried apple ring.

Figure 3. Reconstructed cross section of (left) noOSMO (slice 500) and (right) OSMO (slice 500) dried MoM apple rings.

Figure 4. Distributions of tissue space thickness (n=2) and cumulative frequencies for OSMO 2 and noOSMO dried rings from apples of TRS less (LeM) and more (MoM) maturity classes. Bars refer to standard error.

Figure 5. Distributions of pore space thickness (n=2) and cumulative frequencies for OSMO 2 and noOSMO dried rings from apples of TRS less (LeM) and more (MoM) maturity classes. Bars refer to standard error.

Figure 6. Examples of OCT images of the surface of noOSMO, OSMO1 and OSMO2 dried apple rings from fruit for the most differing fruit in the batch (R1, LeM; R20, MoM). Image size 5 × 0.88 mm².

Figure 7. Results of PCA: biplots of PC1 vs PC2 (top) and of PC3 vs PC4 (bottom) showing the loadings of variables (cross) and the scores of OSMO (square) and noOSMO (circle) dried rings from less (filled symbols) and more (empty symbols) mature apples in the batch. Variables abbreviations: FI, fragmentation index; OSVR, tissue specific surface area.

Figure 8. Results of PCA: average PCs scores in function of pre-treatment and TRS maturity class (LeM, less mature; MoM, more mature). Bars refer to standard error (n=2).
Figure 1

[Diagram of a light source, DG, L, CCD, Framegrabber & PC, Light source, Sample, BS, GM, DC, L, M]
Figure 2
Figure 3.
Figure 4
Figure 5

LeM

OSMO2
noOSMO

MoM

OSMO2
noOSMO

Cumulative frequency (%)

Pore thickness (mm)

OSMO2 LeM
OSMO2 MoM
noOSMO LeM
noOSMO MoM

Relative frequency (%)

0 0.1 0.2 0.3 0.4 0.5

0 20 40 60 80 100
Figure 6

R1 noOSMO

R1 OSMO1

R1 OSMO2

R20 noOSMO

R20 OSMO1

R20 OSMO2
Figure 8

![Bar chart showing PC scores for noOSMO and OSMO2 across PC1, PC2, PC3, and PC4. The chart compares LeM and MoM groups.](chart.png)