Mobile Multimedia Communications

7th International ICST Conference, MOBIMEDIA 2011
Cagliari, Italy, September 2011
Revised Selected Papers
Preface

Successfully deploying multimedia services and applications in mobile environments requires adopting an interdisciplinary approach where multimedia, networking and physical layer issues are addressed jointly. Content features analysis and coding, media access control, multimedia flow and error control, cross-layer optimization as well as mobility management and security protocols are research challenges that need to be carefully examined when designing new architectures. We also need to put a great effort in designing applications that take into account the way the user perceives the overall quality of the provided service.

Within this scope, MobiMedia intends to provide a unique international forum for researchers from industry and academia, working on multimedia coding, mobile communications and networking fields, to study new technologies, applications and standards.

In this MobiMedia edition, particular emphasis was put on the issue of quality of experience (QoE) in pervasive media networks and applications. Indeed, the quality of the user experience, the perceived simplicity of accessing and interacting with systems and services, and the effective and acceptable hiding of the complexity of underlying technologies are certainly determining factors for success or failure of the multimedia services, as well as graceful degradation. With this intent, the conference featured a special session on QoE as well as a panel for discussing the importance of this subject for different types of multimedia applications, related standards and issues in management. Other than a session on QoE, the conference included sessions on dynamic-spectrum-access wireless networks in the TV white spaces, media streaming, mobile visual search, image processing and transmission, multimedia in human–machine interaction, and mobile applications. This book presents a selection of the revised papers.

September 2011

Luigi Atzori
Organization

MobiMedia 2011 was organized by the Multimedia Communications Lab at the Department of Electrical and Electronic Engineering, University of Cagliari.

Organizing Committee

Conference General Co-chairs
Michele Battelli Google, USA
Daniele D. Giusto University of Cagliari, Italy

Technical Program Co-chairs
Luigi Atzori University of Cagliari, Italy
Zhibo Chen Technicolor, China
Jaime Delgado Universitat Politecnica de Catalunya, Spain

Local Chair
Cristian Perra University of Cagliari, Italy

Special Session Co-chairs
Pablo Angueira University of the Basque Country, Spain
Maurizio Murroni University of Cagliari, Italy

Publicity Chair
Giaime Ginesu University of Cagliari, Italy

Web Chair
Michele Nitti University of Cagliari, Italy

Conference Management
Aza Swedin EAI, Europe

Steering Committee
Luigi Atzori DIEE – University of Cagliari, Italy
Imrich Chlamtac Create-Net, Italy
Advisory Board

Tasos Dagiuklas
Jyrki Huusko
George Kormentzas
Maria G. Martini
Christos Politis
Jonathan Rodriguez

TEI of Mesolonghi, Greece
VTT, Finland
University of the Aegean, Greece
Kingston University, UK
Kingston University, UK
Instituto de Telecomunicações, Portugal

Technical Program Committee

Michele Albano
Nancy Alonistioti
Luis Alonso
Faouzi Bader
Marco Cagnazzo
Pietro Camarda
Periklis Chatzimisios
Tao Chen
Ioannis Chochliouros
Tasos Dagiuklas
Filip De Turck
Marco Di Renzo
Tapio Frantti
Carlo Giannelli
Apostolos Gkamas
Atanas Gotchev
Oliver Hoffmann
Georgios Kormentzas
George Koudouridis
Maria Martini
Alberto Nascimento
Petros Nicopolitidis
Eleni Patouni
Fernando Pereira
Nikopolitidis Petros
Nitendra Rajput
Gianluca Reali
Claudio Sacchi
Lambros Sarakis
Wan-Chi Siu

Instituto de Telecomunicações, Portugal
University of Athens, Greece
UPC, Spain
CTTC, Spain
ENST, France
Politecnico di Bari, Italy
TEI Thessaloniki, Greece
VTT, Finland
OTE, Greece
TEI of Mesolonghi, Greece
Ghent University IBBT, Belgium
CNRS/Supelec, France
VTT, Finland
University of Bologna, Italy
Computer Technology Institute, Greece
Tampere University of Technology, Finland
TU-Dortmund, Germany
University of the Aegean, Greece
Huawei, Sweden
Kingston University, UK
Universidade da Madeira, Portugal
Aristotle University, Greece
University of Athens, Greece
IST Lisbon, Portugal
AUTH, Greece
IBM Research, USA
University of Perugia, Italy
University of Trento, Italy
NCSR ‘Demokritos’, Greece
Hong Kong Polytechnic University, SAR China
Thomas Stockhammer Nomor Research, Germany
Christian Timmerer Klagenfurt University, Austria
Popescu Vlad University of Brasov, Romania
Qin Xin Simula Research Laboratories, Norway
George Xylomenos Athens University of Economics and Business, Greece
Nizar Zorba University of Jordan, Jordan
Table of Contents

Quality of Experience

Tackling the Sheer Scale of Subjective QoE................................. 1
 Vlado Menkovski, Georgios Exarchakos, and Antonio Liotta

On the Quality Assessment of H.264/AVC Video under Seamless Handoffs .. 16
 Ilias Politis, Tasos Dagiuklas, and Lampros Dounis

Reduced-Reference Image Quality Assessment Based on Edge Preservation... 31
 Maria G. Martini, Barbara Villarini, and Federico Fiorucci

On Measuring the Perceptual Quality of Video Streams over Lossy Wireless Networks ... 46
 Ilias Politis, Michail Tsagkaropoulos, Tasos Dagiuklas, and Lampros Dounis

The Correlation Dimension: A Video Quality Measure 55
 Bogdan Budescu, Alexandru C˘ aliman, and Mihai Ivanovici

Dynamic Spectrum Access Wireless Networks in the TV White Spaces

TV White Spaces Exploitation for Signal Distribution 65
 Mauro Fadda, Maurizio Murroni, Vlad Popescu, and Vlad Cristian Stoianovici

A Spectrum Sensing Algorithm for White Spaces Detection Validated in Real Environments ... 73
 Irati Lázaro, Maurizio Murroni, Iratxe Redondo, Mikel Sánchez, and Manuel Vélez

Cooperative Spectrum Sensing for Geo-Location Databases........ 78
 Mauro Fadda, Maurizio Murroni, Vlad Popescu, and Vlad Cristian Stoianovici

Spectrum Occupancy and Hidden Node Margins for Cognitive Radio Applications in the UHF Band 84
 Miren Alonso, Irati Lázaro, Maurizio Murroni, Pablo Angueira, Manuel Vélez, J. Morgade, Mikel Sánchez, and Pablo Prieto
Media Streaming

Delay Model for Super-Frame Based Resource Reservation in Distributed Wireless Networks .. 89
 Xiaobo Yu, Pirabakaran Navaratnam, and Klaus Moessner

A Method for Detection/Deletion via Network Coding for Unequal Error Protection of Scalable Video over Error-Prone Networks 105
 Michele Sanna and E brut Izquierdo

Multiple Description Coded Video Streaming with Multipath Transport in Wireless Ad Hoc Networks 121
 Yuanyuan Xu and Ce Zhu

Mobile Multipath Cooperative Network for Real-Time Streaming 136
 Viji Raveendran, Phanikumar Bhamidipati, Xun Luo, and Xiaolong Huang

Multi-stream Rate Adaptation Using Scalable Video Coding with Medium Grain Scalability .. 152
 Sergio Cicalò, Abdul Haseeb, and Velio Tralli

The Role of Log Entries in the Quality Control of Video Distribution . . . 168
 Ismo Hakala, Sanna Laine, Mikko Myllymäki, and Jari Penttilä

Mobile Visual Search

Standards for Query Formalization in Mobile Visual Search 180
 Ruben Tous and Jaime Delgado

3D Wide Baseline Correspondences Using Depth-Maps 194
 Marco Marcon, Eliana Frigerio, Augusto Sarti, and Stefano Tubaro

Automatic Object Classification and Image Retrieval by Sobel Edge Detection and Latent Semantic Methods 204
 Vesna Zeljkovic and Pavel Praks

Image Processing and Transmission

Optimal Interleaving for Robust Wireless JPEG 2000 Images and Video Transmission .. 217
 Daniel Pascual Biosca and Max Agueh

Interactive Image Viewing in Mobile Devices Based on JPEG XR 227
 Bernardetta Saba, Cristian Perra, and Daniele D. Giusto
The Use of Selected Transforms to Improve the Accuracy of Face Recognition for Images with Uneven Illumination 242
Tomasz Marcin Orzechowski, Andrzej Dziech, Tomasz Lukanko, and Tomasz Rusc

Objective Evaluation of WebP Image Compression Efficiency 252
Maurizio Pintus, Giaime Ginesu, Luigi Atzori, and Daniele D. Giusto

Mobile Applications

Implementing Mobile Applications with the MIPAMS Content Management Platform .. 266
Xavier Maroñas, Silvia Llorente, Eva Rodríguez, and Jaime Delgado

Virtual Device: Media Service Fitness, Selection and Composition Considering Composition Interactivity and Synchronization 281
Niall Murray, Brian Lee, A.K. Karunakar, Yuansong Qiao, and Enda Fallon

Location Based Abstraction of User Generated Mobile Videos 295
Onni Ojutkangas, Johannes Peltola, and Sari Järvinen

Modeling of Network Connectivity in Multi-Homed Hybrid Ad Hoc Networks ... 307
Michele Nitti and Luigi Atzori

Author Index .. 321
3D Wide Baseline Correspondences
Using Depth-Maps

Marco Marcon, Eliana Frigerio*, Augusto Sarti, and Stefano Tubaro

Politecnico di Milano - Dipartimento di Elettronica e Informazione,
Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
marco.marcon@polimi.it, efrigerio@elet.polimi.it
http://home.dei.polimi.it/marcon

Abstract. Points matching between two or more images of a scene shot from different viewpoints is the crucial step to defining epipolar geometry between views, recover the camera’s egomotion or build a 3D model of the framed scene. Unfortunately in most of the common cases robust correspondences between points in different images can be defined only when small variations in viewpoint position, focal length or lighting are present between images. While in all the other conditions ad-hoc assumptions on the 3D scene or just weak correspondences can be used. In this paper, we present a novel matching method where depth-maps, nowadays available from cheap and off the shelf devices, are integrated with 2D images to provide robust descriptors even when wide baseline or strong lighting variations are present.

Keywords: Machine vision, feature extraction, 3D descriptors.

1 Introduction

Feature points matching between two shots of a scene from different viewpoints is one of the basic and most tackled computer vision problems. In many common applications, like objects tracking in video sequences, the baseline is relatively small and features matching can be easily obtained using well known feature descriptors [14,4]. However many other applications require feature matching in much more challenging contexts, where wide baselines, lighting variations and non-lambertian surfaces reflectance are considered. Many interesting approaches based on two single images have been proposed in the literature, starting from the pioneering work of Schmid and Mohr [12] many other interesting approaches followed: Matas et al. [8] introduced the maximally stable extremal regions (MSER) where affinely-invariant stable subset of extremal regions are used to find corresponding Distinguished Regions between images, or moment descriptors for uniform regions [10] while other approaches are based on clearly distinguishable points (like corners) and affine-invariant descriptors of their neighborhood. One of the most popular approaches in the last few years becomes the Scale Invariant Feature Transform (SIFT) proposed by Lowe [3] thanks to its outperforming capabilities, as shown by Mikolajczyk and Schmid [7]. The SIFT algorithm is

* Corresponding author.
based on a local histogram of oriented gradient around an interest point and its success is mainly due to a good compromise between accuracy and speed (as also been integrated in a Virtex II Xilinx Field Programmable Gate Array, FPGA [13]). Actually some other approaches, always based on affine invariant descriptors, got growing interest like the Gradient Location and Orientation Histogram (GLOH) [7] which is quite close to the SIFT approach but requires a Principal Component Analysis (PCA) for data compression, or the Speeded-Up Robust Features (SURF) [1] a powerful descriptor derived from an accurate integration and simplification of previous descriptors. All of the aforementioned approaches assume that, even if nothing is known of the underlying geometry of the scene, the defined features, since are describing a very small portion of the object, will undergo a simple planar transformation that can be approximated with an affine homography. This simplification has two main drawbacks, first of all the extracted features are very general and weak since wide affine transformations must provide very similar results, moreover, whenever the framed object present abrupt geometrical discontinuities (e.g. geometrical edges or corners) the affine approximation is not valid anymore. A possible solution to such problems could be a rough description of the underlying 3D geometry. In particular, within the Astute Artemis project, we are investigating the opportunity to use scene depth-maps to have a rough estimation of 3D underlying geometry: We use depth-maps to estimate the orientation of the plane, where the considered feature is laying, with respect to the observing camera and then we apply an homography to make this plane parallel to the camera image plane. Accordingly to this, our descriptors can be just similarity invariant with 2 Degrees of Freedom, scale and rotation, with respect to the 4 Degrees of Freedom present in an affine transformation (disregarding in both cases the translation on 2 axes). The proposed descriptors can then be less generic becoming more robust and discriminative. Another important aspect which we have been dealing with is geometric discontinuities in objects surface, in particular, when detected corners or edges are not due to texture of a locally planar surface but to the abrupt folding of the surface itself, affine approximation between two wide baseline views is not valid any more. Projection on the average tangent plane or the unfolding of the discontinuity (edge or corner) can significantly improve matching capabilities. In the following we will show how low-cost depth-map acquisition devices (like Microsoft Kinect) can be fruitfully adopted to prove effectiveness of the aforementioned approach.

2 Surface vs. Texture Relevant Points

Actually the, by far, most used algorithm to define significant points in a picture that can be used to be matched with corresponding points in another image, is the corner Harris detector. This pioneering algorithm from Harris and Stephens [5] is still the basic element for localization of feature descriptors: [9]. Applying this algorithm to depth-maps provides us with surface discontinuities like geometrical corners or edges. In most of cases this features are a sub-set of corner
and edges imputable to texture variations, so, once we have the depth-map registered with its corresponding image and we perform the Harris detector we are able to distinguish between:

- edges and corners due to textural variation but belonging to a flat surface.
- edges in the depth-maps corresponding to a folded or truncated surface.
- corners in the depth-maps (that are usually corners in the image too) corresponding to abrupt variations in the surface: e.g. spikes, corners or holes.

The capability to characterize different Harris features as geometrical or not (i.e. if they are also present or not in the depth-maps) is particularly important for definition of robust invariant descriptors. In particular the knowledge of the underlying geometry allows us to apply geometrical transformations to the textures on each slice in the neighborhood of the identified point in such a way to make their representation invariant from the view point. The opportunity to recover univocally a plane where the features in the neighborhood of the significant point lay is particularly important since it allows us, applying e.g. the proper homography, to obtain a frontal view of the neighborhood of a considered point independently from the viewpoint. The direct effect of this transformation is that the comparison between significant points for images acquired from different viewpoints can be simply performed comparing two frontal views of the regions around the points themselves: these regions can undergo only rotation and scaling: i.e. similarity transform where translation is disregarded since comparing neighborhood of two points implies the assumption that we are examining regions spatially already aligned).

3 Fusion of Geometric and Texture Descriptors

Many techniques have been developed to find flat planes in depth-maps, a significant example can be found in [15], and also surface curvature from cloud of points has been deeply investigated [16].

In our case we followed a simplified approach to define tangent plane to the surface around the interest point: it can be adopted even in case of discontinuities like corners, edges or generic surface folds. In fig. 1 there is a sample image where a Rubik's cube presents textural corners and edges on faces and abrupt geometrical corners and edges due to surface folds.

To find the tangent plane we followed a Principal Component Analysis for the spatial dispersion of depth-map points surrounding the interest point, in particular, accordingly to [6], we evaluated the covariance matrix \((3 \times 3)\) of the depth-map around the point (we used a \(15 \times 15\) neighborhood window centered at the considered point but it can be adapted accordingly to the surface roughness or curvature) and then we performed the eigenvector decomposition. The resulting eigenvector associated to the lower eigenvalue represents the direction cosines for the "tangent" plane where we project the texture from the color image: this plane represents the locus where the points surrounding the interest point are maximally dispersed and it will always be the same independently
Fig. 1. A synthetic representation of a Rubik cube

Fig. 2. The definition of the “tangent” plane and the reprojection on it of the neighborhood of the interest point

from the viewpoint (if all the sides are still visible). The image pixels are the projected onto this plane accordingly to their 3D position (recovered from the depth-map). Fig. 2 shows the reprojection of the texture on the ”tangent” plane.

Then, through the homography that transforms the tangent plane into a frontal plane (a plane parallel to the image plane of the camera) we can recover a frontal view which is independent from the viewpoint apart for rotation and scaling (in fig. 3).
4 Similarity Invariant Transform

Accordingly to the aforementioned steps we are able to obtain a 2D representation of the same 3D object part whose misalignment can be modeled by a four-parameter geometric transformation that maps each point \((x_f, y_f)\) in \(F\) to a corresponding point \((x_g, y_g)\) in \(G\) according to the matrix equation (in homogeneous coordinates):

\[
\begin{bmatrix}
x_g \\
y_g \\
1
\end{bmatrix}
=
\begin{bmatrix}
\rho \cos \vartheta & \rho \sin \vartheta & -\Delta x \\
\rho \sin \vartheta & \rho \cos \vartheta & -\Delta y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_f \\
y_f \\
1
\end{bmatrix}
\]

Equivalently, defining the two images as two functions denoted by \(f\) and \(g\), representing a gray-level image defined over a compact set of \(R^2\), for any pixel \((x, y)\) is true that:

\[
f(x, y) = g\left(\rho (x \cos \vartheta + y \sin \vartheta) - \Delta x, \rho (-x \sin \vartheta + y \cos \vartheta) - \Delta y\right)
\]

where \(\Delta x\) and \(\Delta y\) are translations, \(\rho\) is the uniform scale factor, and \(\vartheta\) is the rotation angle. In other words, when we speak about similarity transformation we refer to the operations in this order:

\[
RST = RS_{\rho, \vartheta} \cdot T_{\Delta x, \Delta y}
\]
Since we are comparing image regions centered around interest points the translation invariance has no relevance in our case and the similarity invariance can be limited to rotation and scaling. Many approaches are present in the literature to tackle this problem, anyway most of them are incomplete like geometric moments and complex moments, while we oriented our research toward complete descriptors, that means that only representations retaining all the information of an image, except for orientation and scale, are considered. In particular we used the Fourier-Mellin transform (FMT) that is the Fourier Transform of the image $f(x, y)$ mapped in its corresponding Log-Polar coordinates $f_{LP}(\mu, \xi)$:

$$f_{LP}(\mu, \xi) = \begin{cases} f(e^\mu \cos \xi, e^\mu \sin \xi) & \xi \in [0, 2\pi) \\ 0 & \text{otherwise} \end{cases}$$

The FMT is defined as:

$$F_m(w, k) = \int_0^{2\pi} \int_0^\infty f_{LP}(\mu, \xi) e^{-j(w\mu + k\xi)} d\xi d\mu$$

Then we explored two possible invariant for orientation and scale: the Taylor Invariant and the Hessian Invariant, which are described in the following sections. In particular we recall that after a Log-polar transformation a rotation corresponds to a circular shift along the axis representing the angles while a scaling corresponds to a shift along the logarithmic radial axis. Applying the 2D Fourier transform to the Log-polar transform the aforementioned shifts are reflected in phase shifts while the amplitude will remain unchanged.

5 Taylor and Hessian Invariant Descriptors

In this section we depict the two orientation-scale invariant descriptors that we used, both of them are based on the FMT described in the previous section. The Taylor invariant descriptor is focused on eliminating the linear part of the phase spectrum by subtracting the linear phase from the phase spectrum. Let $F(u, v)$ be the Fourier transform of an image $f(x, y)$, and $\phi(u, v)$ be its phase spectrum. The following complex function is called the Taylor invariant:

$$F_{TL}(u, v) = e^{-j(au+bv)}F(u, v)$$

where a and b are respectively the derivatives with respect to u and v of $\phi(u, v)$ at the origin $(0, 0)$, i.e.:

$$a = \varphi_u(0, 0),$$
$$b = \varphi_v(0, 0)$$

The Taylor invariant is rotationally symmetric, but not reciprocally scaled. It can be modified accordingly to the Laplacian invariant:

$$F_L(u, v) = (u^2 + v^2) F_{TL} = (u^2 + v^2) e^{-j(au+bv)}F(u, v)$$
The effect is then the registration of the input features in such a way that the phase spectrum is flat in the origin, i.e. if we should take the inverse transforms, all of them will be rotated and scaled to accomplish to this constrain.

The idea behind the Hessian Invariant Descriptor \[2\] is to differentiate the phase spectrum twice to eliminate the linear phase, the invariant parts are then the modulus of the spectrum and the three, second order, partial derivatives of the phase spectrum:

\[
F_H(u, v) = [|F(u, v)|, \varphi_{uu}(u, v), \varphi_{uv}(u, v), \varphi_{vv}(u, v)]
\]

As described in the following sections, we evaluated both descriptors obtaining very similar results.

6 Results

We applied the previous descriptors to real images together with their depth-maps. The proposed algorithm can be summarized as follow:

- for each shot of the scene, significant points are extracted using Harris corner detector applied on the picture;
- the PCA was applied on the neighborhood 15 × 15 of the corresponding point of each detected point on the depth map and the eigenvector associated to the lower eigenvalue is used to determine the homography that transform the tangent plane into a frontal plane;
- the Fourier Mellin Transform is applied to the reoriented neighborhood;
- at last the Laplacian invariant is applied to \(F_m(w, k) \) (only Laplacian translation invariant is used for these test).
- The resulted vector is used as feature descriptor of the significant point and correct match from different images are selected as those for which the Euclidean distance is minimized.

For completeness we summarize also the main step of the SIFT algorithm implemented for comparing the performances:

- Maximally Stable Extremal Regions (MSER) are found for each shot of the scene;
- all the MSER are approximated as elliptical and oriented so that each major axis is horizontal;
- the ellipses are deformed in circles and the intensity gradient for each pixel is computed;
- each circular region is divided in rectangular subregions and the histogram of the gradient’s direction is computed for each subregion;
- the feature vector is made linking all the histograms computed on the circular neighborhood and, as for the proposed algorithm, correct match from different images are selected as those for which the Euclidean distance is minimized.
We performed some experiments using snapshots similar to those visible in fig. 4. No databases of pictures and depthmaps associated are yet available nowadays, so we decided to test our algorithm taking 20 pictures of the box illustrated in fig. 4 from different viewpoints. We used a Kinect device for the acquisition in an indoor environment and without any restriction except avoid that sun light directly on the IR device’s camera. In fig. 5 we show how the planes, where the interest points lay, are reprojected in frontal views; the homographies have been defined accordingly to the PCA analysis of the underlying depth-map.

![Fig. 4. A box acquired from different viewpoints and its depth-maps](image1)

![Fig. 5. Images of interesting points after the homography to obtain a frontal view of framed surface by the depth-map](image2)

We checked the discriminative power of the proposed descriptors, in particular we compared the correct match rate and the euclidean distance from the closest match and from the second candidate. With the SIFT descriptor applied to the images, we obtained a correct match rate of 73%. For correct matches the mean ratio of the euclidean distances between the correct one and the second one is
around 0.8. Using the proposed approach we obtained a correct match rate of 85% with an average ratio of distances for the first match and the second one of 0.65.

7 Conclusion

In this paper we propose a novel approach to define putative correspondences between images where the information from corresponding depth-maps are fruitfully integrated to reduce variability in the neighborhood around interest points, in particular projective or affine distortions are reduced to similarity transforms making available more robust and complete descriptors like Taylor or Hessian invariants applied to the Fourier-Mellin Transform.

The resulting approach demonstrates the profitable integration of depth-maps with acquired images to strengthen matching capabilities. Examples have been obtained by a low cost Kinect device.

Acknowledgement. This work was supported by the ASTUTE project: a 7 Framework Programme European project within the Joint Technology Initiative ARTEMIS.

References