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Abstract—In this paper we present a new technique for
automatically measuring the performance of tasks, functions or
arbitrary parts of a program on a multiprocessor embedded sys-
tem. The technique instruments the tasks described by OpenMP,
used to represent the task parallelism, while ad hoc pragmas in
the source indicate other pieces of code to profile. The annotations
and the instrumentation are completely target-independent, so
the same code can be measured on different target architectures,
on simulators or on prototypes.

We validate the approach on a single and on a dual LEON 3
platform synthesized on FPGA, demonstrating a low instrumen-
tation overhead. We show how the information obtained with
this technique can be easily exploited in a Hardware/Software
design space exploration tool, by estimating, with good accuracy,
the speed-up of a parallel applications given the profiling on the
single processor prototype.

I. INTRODUCTION

Performance analysis is a crucial phase of the embed-
ded design flow. Multi-Processor Systems-on-Chip (MPSoCs),
composed of several processors, often heterogeneous, inter-
connected with memories, application specific accelerators and
Input/Output components, are the standard architectures for
modern embedded systems [1].

The complex organization of these architectures, the par-
allelism, the synchronization and the communication mech-
anisms introduce several issues in the optimization process.
In particular, accurate measurements or estimations of the
execution time of the applications are required to help the
designer in meeting the performance constraints. However
estimation methodologies cannot be used if some parts of the
application are provided only within libraries, or the input data
are available only on the target architecture. In such cases, the
only way to gather accurate performance information is to
directly instrument the code onto the target architecture.

In this paper, we propose a technique for automatic code
instrumentation of parallel applications for MPSoCs. The tech-
nique is selectively applied only to the most interesting parts
of the code, identified by pragma annotations. The parallelism
is described through OpenMP [2], while ad hoc annotations
are used to measure the execution times of functions and
arbitrary parts of code. Several methodologies and tools have
been proposed for code instrumentation and analysis.

In [3] the authors apply a fine-grained instrumentation to
estimate the performance of embedded applications inside a
Transaction Level Model (TLM) tool for MPSoC design. The
instrumentation sums the clock cycles required by a specific
instruction each time it is executed. The execution delay of
each instruction, in clock cycles, has to be provided to the
tool. Garcia et al. present Pet [4], a tool for monitoring and

analyzing parallel applications on embedded multiprocessors.
The tool analyzes the execution trace and identifies all the
interactions among the tasks and their occurrence. However,
it only works on a specific embedded architecture and cannot
manage general parallelism annotations like OpenMP. Some
works discuss the performance analysis of OpenMP paral-
lel application in the High Performance Computing field.
SCALEA [5] allows the evaluation of the overheads introduced
by parallel programming paradigms. It deals not only with
OpenMP but also with Message Passing Interface (MPI)
and High Performance Fortan (HPF). Nevertheless, SCALEA
is tightly integrated with its Fortran compiler framework,
and is geared towards distributed systems. OPARI [6] is
a source-to-source translation tool that exploits the idea of
OpenMP pragma/directive rewriting, automatically adding all
the necessary calls to a runtime measurement library. The
tool, however, do not allow to measure specific parts of the
code. We follow the ideas proposed in those solutions for the
performance analysis of parallel OpenMP code, but introduce
those techniques on embedded architectures. Konkin et al.
in [7] describe a methodology to identify the points where
to add instrumentation for performance measurement. The
authors define as suitable instrumentation points the interfaces
among different software modules, like function call points.
This solution allows complete automatic instrumentation of
the source code, but the large number of instrumentation
points introduces significant overheads. Our proposal, instead,
allows selecting which points to instrument. Our solution is
somewhat inspired by DTrace [8]. With Dtrace, the code is
instrumented by the programmer during the development, and
the profiled data are collected at runtime through the use of
scripts that enables the probes. In our case, the developer
specifies with pragmas what he or she wants to measure, and at
compilation time the tool inserts the required instrumentation.
Our approach is thus more suitable for embedded systems:
performance optimization is usually done at design time, and
not adding performance libraries and probes (even if only
activated when required) reduces the memory footprint of the
application.

Moreover, embedded system design imposes further con-
straints. Often, during the designs of the applications, we
can rely the code on the final target platform, but only on a
prototype which does not represent all the details of the final
architecture. Usually, for example, we have FPGA prototypes
that, for area reasons, have few processors than the final
ASIC architecture. Thus, solutions able to correctly estimate
the speed up and the overhead due to the higher degree of
parallelism are required. Our methodology can be used for



the estimation of the performance of parallel code, starting
from a single processor solution.

The contributions of this paper can be summarized as
follows:

• it introduces a technique for measuring OpenMP parti-
tioned applications on embedded systems;

• it proposes a fast, target independent technique for arbi-
trary code instrumentation, that, limiting the overheads
only on the interesting parts of the code, may be adopted
in a embedded design flow;

• it uses the instrumentation technique to estimate the
performance of a dual processor embedded platform,
starting from a single processor solution.

The paper is organized as follows. Section II describes the
proposed technique. Section III describes our case study, while
Section IV discusses the experimental results. Finally, Section
V concludes the paper.

II. PROPOSED METHODOLOGY

The proposed methodology is integrated in Zebu, a tool
provided in PandA [9], a framework for hardware/software co-
design. The methodology consists in a performance analysis
flow composed of three different phases, that will be detailed
in the following:

• instrumentation (Section II-1): the original source code
is parsed, analyzed and then reproduced with the instru-
mentation added in the proper points;

• compilation (Section II-2): the produced source code is
compiled and executed on the target architecture;

• data collection (Section II-3): the measured data are
collected and associated with the parts of the code which
they refer to.

1) Instrumentation: Zebu exploits the GNU/GCC compiler
to translate the initial C source code into the GIMPLE in-
termediate representation, considering three different type of
pragmas:

• OpenMP pragmas: we consider only the omp parallel
sections, omp sections and omp parallel for pragmas;

• function pragmas: they identify the functions we are
interested to measure the execution time;

• custom measurement pragmas: they identify arbitrary
blocks of structured code that may require measurement.

The intermediate representation is then modified adding the
requested instrumentation. A unique identifier is assigned to
each omp parallel sections or omp sections pragma, when
encountered, and the instrumentation code is added immedi-
ately before and after the corresponding code block. Next,
a unique identifier is assigned also to each omp section in
the sections and the instrumentation is added at its beginning
and at its end. In this way, it is possible to measure both the
execution time of each task of the omp sections region and
the overall synchronization costs. The omp for pragmas are
treated in two different ways. When we have the number of
threads active at that point , the pragma is replaced with an
omp parallel sections region and loop iterations are statically
partitioned and assigned to different omp section. When the
number of threads is unknown, the omp for pragma is treated
like a custom measurement pragma and only the execution
time of the whole loop is measured.

The second type of considered pragmas is the function
pragma which is associated with the declaration of the
functions. When a call point of an annotated function is
detected, a unique identifier is associated to that and the
instrumentation code is added immediately before and after the
call. Instrumenting the code in this way allows distinguishing
the execution time of the function according to the call
points. Furthermore, the overhead of the function call is also
considered in the execution time.

Finally, when a custom measurement pragma is found, the
instrumentation code is simply added at each entry and exit
point of the annotated code block. Also in this situation, we
associate a unique identifier with the portion of code, adding
the related instrumentation code to the produced code.

About the instrumentation, Zebu adds a numeric array,
which stores the measures, and some function calls to record
the application overall execution time and to allow collecting
the data at the end of the execution. When all the needed
instrumentation code has been added, the GIMPLE code is
translated back to C source code.

2) Compilation: Since the instrumentation code added in
the previous phase is completely target-independent, in this
phase, it is customized for a particular target through an
architecture-specific definition file composed of two different
parts. The first part defines the type of the array elements
which record the measures. The second part contains the
implementation of the functions which effectively measure
the execution time, since these implementations heavily de-
pend upon both the considered architecture and the oper-
ating system, if present. The instrumented source code and
the architecture-specific definition file are compiled and then
linked, obtaining the executable object code for the application
on the specific target architecture.

3) Data Collection: The last phase of the flow consists in
collecting the measurement data by executing the application
onto the target architecture. Different runs with different
inputs have to be executed if the application is strongly data-
dependent, producing different datasets to be collected. Note
that, if a piece of code is executed more than once during
a single run of the application, the technique measures the
related average execution time. If the application has been
executed more than once, the average execution time of
each annotated code section is computed. Finally, since Zebu
maintains the correspondence between the unique identifiers
and the parts of the code, it easily assigns to each task,
annotated function or annotated part of code, its measured
execution time.

III. CASE STUDY: LEON 3 MP

In this section, we show how the proposed technique is
applied to LEON 3 based systems [10]. In particular, we
demonstrate that our approach allows the performance esti-
mation of a parallel application, annotated with OpenMP, on
a multiprocessor system, while measuring its execution time
on a single processor architecture.

We implemented two different architectures. The first uses
a single LEON 3, the second integrates two processors. In
both the designs, we enabled the Memory Management Unit
(MMU) and instantiated 16 KB of instruction cache and 8
KB of data cache. We enabled the Gaisler Floating Point Unit



void loop(int nthreads, int size, int numiter) {
/* Variable Declaration and initialization code*/
...
for(iter=0; iter<numiter; iter++) {
#pragma omp parallel for ...
shared(V,oldV,totalSize) schedule(static)
for (i=0; i<totalSize; i++)

oldV[i] = V[i];
#pragma omp parallel for ...
for (i=0; i<totalSize-1; i++)

V[i] = f(V[i],oldV[i+1]);
}

}

Fig. 1. The loop function of Loop with dependencies benchmark

(FPU) Lite on both the systems, instantiating a FPU per core
on the multiprocessor configuration. Floating point operations
are required by the standard implementation of libgomp (the
OpenMP library). On multiprocessor LEON 3 solutions, the
data caches are coherent. We implemented the architectures
on a Xilinx Virtex-5 FX70T FPGA, with a target frequency
of 80 MHz, using Xilinx ISE 10.1 for synthesis, mapping and
routing. With the MMU support, LEON 3 can run Linux, in
single and multi-processing mode. Both the system used the
Snapgear distribution, with the Linux kernel version 2.6.21.1.

We now describe the steps required to perform the speed-
up estimation on an example, the first version of the Loop
with Dependencies benchmark from OpenMP Source Code
Repository [11]. The significant part of its source code is
reported in Figure 1.

The function loop, which is the kernel of the application,
has two omp parallel for regions. The number of threads
executing the application is two (the number of processor of
our target architecture), so each omp parallel for region is
replaced by an omp parallel sections with two sections. The
resulting instrumented source code is shown in Figure 2. The
START_PARALLEL and STOP_PARALLEL functions mea-
sure the execution times of the two parallel regions identified
as 1 and 4. The START_SECTION and STOP_SECTION

functions, instead, measure the execution time of the four
sections identified as 2, 3, 5 and 6.

The instrumented application is then compiled with the
architecture-specific definition file for sequential execution,
ignoring the OpenMP pragmas, and is executed on the single
processor platform. In particular, the functions implemented

void loop(int nthreads, int size, int numiter) {
/* Variable Declaration and initialization code */
...
for(iter=0; iter<numiter; iter++) {START_PARALLEL(1);
#pragma omp parallel sections num_threads(2) ... {

#pragma omp section {START_SECTION(2);
for (i=0; i<totalSize/2; i++)

oldV[i] = V[i];
STOP_SECTION(2);}

#pragma omp section {START_SECTION(3);
for (i=totalSize/2; i<totalSize; i++)

oldV[i] = V[i];
STOP_SECTION(3);}

} STOP_PARALLEL(1);
START_PARALLEL(4);
#pragma omp parallel sections num_threads(2) ... {

#pragma omp section {
START_SECTION(5);
for (i=0; i<(totalSize-1)/2; i++)

V[i] = f(V[i],oldV[i+1]);
STOP_SECTION(5);}

#pragma omp section {START_SECTION(6);
for (i=(totalSize-1)/2; i<totalSize-1; i++)

V[i] = f(V[i],oldV[i+1]);
STOP_SECTION(6);}

} STOP_PARALLEL(4);
}

}

Fig. 2. The instrumented source code of loop function of Loop with
dependencies benchmark

into the architecture-specific definition file for LEON 3 based
systems are based on the Linux system function gettimeofday.
At the end of the application execution, Zebu annotates each
task of the application with the measured execution time. The
next step consists in effective estimation of parallel execution
time, accomplished the differences among the sequential and
the parallel execution. On the parallel architecture, the exe-
cution time cpP of each parallel region P composed by task
t ∈ P can be computed as:

cpP = cf +maxt∈P ct + cj (1)

where cf is the fork cost, ct the execution time of task t, and cj
is the join cost. On the other hand, in the sequential execution,
the time csP needed to execute the code of the same parallel
region P is csP =

∑
t∈P ct. So the time saved by executing

the parallel region onto a multiprocessor architecture (gP ) can
be estimated as:

gP = csP − cpP =
∑

t∈P

ct −maxt∈P ct − cf − cj (2)

.
The execution times have to be combined with the profiling

information to produce a correct estimation. Consider the Loop
with dependencies example presented in Figure 2. The two
parallel regions are the body of a loop which is executed
numiter times, so the gP has to be multiplied by numiter.

Two aspects of a multi-processor system are not taken
into account in estimating the execution time of the parallel
application using sequential information: the contention in
accessing shared resources, such as the memory, and the cache
conflicts.

IV. EXPERIMENTAL RESULTS

We validate the proposed technique on a set of benchmarks
extracted from the OpenMP Source Code Repository[11]
and from MiBench [12] on both the architectures described
above. The OpenMP Source Code Repository[11] benchmarks
are already annotated with OpenMP pragmas. The MiBench
benchmarks have been parallelized by hand, splitting the
kernels of each application into one or more pairs of parallel
tasks through OpenMP annotations. In particular, the data
obtained by the single-processor architecture have been used
to estimate the execution on the multi-processor architecture.
The number of instrumentation points for each benchmark is
reported in the Table I. Each benchmark has been compiled
with a GNU/GCC Sparc cross-compiler without optimization
(-O0) and with the -O2 optimization level.

Benchmark Dataset IP MP
fft 6 (test) 20 308

jacob (test) 8 8

Loops with Dependences (test) 13 102

lu (test) 14 14

mandel (test) 8 8

MolecularDynamic (test) 14 14

pi (test) 8 8

basicmath large 14 14

blowfish (test) 14 14

dijkstra large 8 8

jpeg encoder input small 14 258

edge detection large 8 8

corner detection large 8 8

TABLE I
CHARACTERISTICS OF THE BENCHMARKS. IP IS THE NUMBER OF

INSTRUMENTATION POINT IN THE SOURCE CODE, MP IS THE NUMBER OF

MEASURES PERFORMED DURING THE EXECUTION.



The results of all the executions are reported in the left part
of the Table II. In the three columns labeled with Sequential
we show the overhead introduced by the instrumentation
for measuring the task performance on the first architecture
(single-processor platform). In particular, in Real we report
the execution time of the benchmark measured without instru-
mentation. (OH), instead, reports the overhead introduced by
the instrumentation, that is usually very reduced (it ranges
from 0.0% to 0.3%). In three cases (fft 6, Loops with
Dependencies and jpeg encoder) the overhead is more relevant,
due to a higher number of measures performed during the
execution. In particular, in Loops with Dependencies, there
are a huge number of measures with respect to the small size
of the benchmark.

The central part of Table II shows the instrumentation
overhead on the second architecture (dual-processor platform).
Real and OH report the execution time without task perfor-
mance instrumentation and the overhead introduced by the
instrumentation, respectively. The instrumentation overhead is
for most of the benchmarks bigger than what observed on the
single-processor architecture, for mainly two reasons. First, the
overall execution time of the applications on the dual processor
platform is smaller than on the single LEON solution, so the
impact of the instrumentation is more relevant. Second, the
instrumentation in parallel tasks generates a contention while
accessing the common structures used to perform the profiling.

It is worth noting the results of the Loops with Depen-
dencies benchmark. In this case, the overhead due to the
task creation/destruction/synchronization is bigger than the
benefits introduced by the parallelization. Thus, the parallel
applications results longer than the sequential one and, as
a consequence, the relative instrumentation overhead of the
parallel version results smaller.

The last two columns of the table show the results of the
estimation of parallel execution computed using the method
described in Section III. Estim. is the overall execution time

Execution Overhead Est.
Sequential Parallel Acc.

Benchmark OL Real(s) OH(%) Real(s) OH(%) Err.(%)
fft 6 O0 28.644 0.8 17.038 0.6 5.3

O2 16.715 0.4 10.797 0.2 5.9
jacob O0 98.305 0.0 73.832 0.0 0.7

O2 42.304 0.1 35.229 0.5 2.4
Loops with O0 0.230 2.6 0.591 2.1 1.1

Dependencies O2 0.135 3.7 0.506 0.7 0.4
lu O0 57.047 0.0 35.308 0.1 0.8

O2 32.820 0.1 18.728 0.1 1.2
mandel O0 69.983 0.0 35.214 0.0 1.0

O2 38.725 0.0 19.386 0.0 1.8
Molecular O0 82.272 0.0 44.356 0.0 0.0
Dynamic O2 43.511 0.0 24.549 2.2 1.6

pi O0 1.964 0.0 1.130 0.0 0.4
O2 1.252 0.0 0.702 0.0 3.4

basicmath O0 3.662 0.1 2.640 0.2 1.3
O2 2.291 0.1 1.340 0.3 1.1

blowfish O0 0.448 0.2 0.273 0.3 3.2
O2 0.190 0.0 0.114 0.8 6.9

dijkstra O0 14.206 0.0 9.314 0.1 2.5
O2 8.405 0.3 5.995 0.9 1.7

jpeg encoder O0 3.254 0.7 2.307 0.8 2.4
O2 2.603 0.7 1.928 0.7 2.0

edge detection O0 4.236 0.0 3.308 0.2 1.8
O2 1.703 0.1 1.217 0.3 1.5

corner detection O0 1.563 0.0 0.943 0.1 4.4
O2 0.648 0.3 0.420 0.5 4.7

Maximum 3.7 2.2 6.9
Mean 0.4 0.5 2.3

Std. Deviation 0.9 0.6 1.8

TABLE II
RESULTS OBTAINED BY APPLYING THE PROPOSED TECHNIQUE.

estimated and Error is the error of the estimation. The cost for
forks and joins has been obtained by applying our technique
to the OpenMP MicroBenchmark Suite [13] and the error
obtained in estimation ranges from 0.0% to 6.9%. Specifically,
we observe that the parallel execution time is underestimated
for all the benchmarks, depending on the contention for
accessing shared resources and from the cache conflicts, as
previously detailed in Section III.

V. CONCLUSION

In this paper we presented a technique to automatically mea-
sure the performance of the different parts of an application
on a MPSoC. The technique uses different pragmas to identify
the parts of the code to be measured and the related target-
independent instrumentation is directly inserted into the source
code. The proposed technique has been validated on a set of
benchmarks for parallel and embedded computing on a LEON
3 platform. The results show that the overhead introduced is
small and that the performance profiled on a sequential version
of an application can be used to estimate the execution time
of its parallel version.

Future works will focus on the extension of the proposed
methodology to heterogeneous architectures, considering in
particular the performance analysis of functions offloaded to
hardware accelerators, and on refinements of the methodology
for allowing the estimation of the effects of the resources
contention.
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