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Abstract This paper presents an embedded system design toolchain for automatic gener-
ation of parallel code runnable on symmetric multiprocessor systems from an
initial sequential specification written using the C language. We show how the
initial C specification is translated in a modified system dependence graph with
feedback edges (FSDG) composing the intermediate representation which is ma-
nipulated by the algorithm. Then we describe how this graph is partitioned and
optimized: at the end of the process each partition (cluster of nodes) represents
a different task. The parallel C code produced is such that the tasks can be dy-
namically scheduled on the target architecture; this is obtained thanks to the in-
troduction of start conditions for each task. We present the experimental results
obtained by applying our flow on the sequential code of the ADPCM and JPEG
algorithms and by running the parallel specification, produced by the toolchain,
on the target platform: with respect to the sequential specification, speedups up
to 70% and 42% were obtained for the two bebchmarks respectively.

Keywords:  Partitioning, Clustering, Automatic parallelization, thread decomposition, com-
pilers for embedded systems, MPSoCs, FPGA.

1. Introduction

The technology trend continues to increase the computational power by
enabling the incorporation of sophisticated functions in ever-smaller devices.
However, power and heat dissipation, difficulties in increasing the clock fre-
quency, and the need for technology reuse to reduce time-to-market push to-
wards different solutions from the classic single-core or custom technology.
A solution that is gaining widespread momentum consists of exploiting the
inherent parallelism of applications, executing them on multiple off-the-shelf
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processor cores. Having separate cores on a single chip allows better usage of
the chip surface, reduces wire-delay and dissipation problems and it provides
more possibilities to exploit parallelism.

Unfortunately, the development of parallel applications is a complex task.
Parallel programming is largely dependent on the availability of adequate soft-
ware tools and environments and developers must contend with problems not
encountered during sequential programming, namely: non-determinism, com-
munication, synchronization, data partitioning and distribution, load-balancing,
heterogeneity, shared or distributed memory, deadlocks, and race conditions.

This work tries to overcome some of these problems by proposing an ap-
proach for automatic parallelization of sequential programs. It focuses on a
complete design flow, from the high level sequential C description of the ap-
plication to its deployment on a multiprocessor system-on-chip prototype. In
a first phase the sequential code is partitioned in tasks with a specific cluster-
ing algorithm that works on the System Dependence Graph (SDG). In a second
phase the resulting task graph is optimized and the parallel C code is generated.
The backend can produce OpenMP compliant code for functional validation on
the host machine and C code that is runnable on multiprocessor system-on-chip
architectures with a minimal operating system layer, as required by an embed-
ded system. In both cases a mechanism to generate dynamically schedulable
tasks has been defined. Through run-time evaluation of boolean conditions it
is possible to determine the specific execution flow of the program and if a
specific tasks needs spawning. Thanks to the mechanism implemented, tasks
will be created as soon as only the real data dependences of the specific exe-
cution flow are satisfied, leading to an efficient exploitation of the underlying
hardware.

The remainder of this paper is organized as follows: Section 2 gives an
overview of the current state of the art on automatic parallelization techniques;
Section 3 presents the target architecture used to execute the benchmarks. Sec-
tion 4 introduces the flow we implemented focusing on the different steps
which compose the partitioning and merging phases. Section 5 shows the
numerical results obtained by the parallelization of the JPEG and ADPCM
encoding algorithms and finally Section 5 concludes the paper.

2. Related Work

MultiProcessor systems are becoming common, not only in the high per-
formance segment, but also in the consumer and embedded ones. Developing
programs for these new architectures is not easy: the developer needs to cor-
rectly decompose the application in order to enhance its performance and to
exploit the multiple processing elements at his disposal. Sometimes, it is bet-
ter to rewrite a sequential description rather than to try porting it on complex,
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and often very different, architectures. Several strategies to ease the life of the
developers, through partially automatization of the porting process, have been
proposed; they are mainly related to two different approaches. The first one
uses problem-solving environments which generate parallel programs starting
from high level sequential descriptions. The other relies on machine indepen-
dent code annotations. Our work adopts the first approach.

The parallelization process can be decomposed in several different steps.
The initial specification needs to be parsed in an intermediate graph represen-
tation. This representation, which is used to explore the available parallelism,
gets partitioned. After partitioning, an initial task graph is obtained. A task
graph is a Directed Acyclic Graph (DAG) where each node describes a poten-
tial parallel code block. In a multiprocessor system it is necessary to allocate
each task to one of the available processors. This allocation is usually realized
through a two-step process: clustering and cluster-scheduling (merging). Many
are the works related to the partitioning of the initial specification adopting
specific intermediate representations. Among them, Girkar et al. [2] propose
an intermediate representation, called Hierarchical Task Graph (HTG), which
encapsulates minimal data and control dependence and which can be used for
extraction of task level parallelism. Much of their work focuses on simpli-
fication of the conditions for execution of task nodes. Luis et al. [7] extend
this work by using a Petri net model to represent parallel code, and they also
apply some optimization techniques to minimize the overhead due to explicit
synchronization.

Newburn and Shen [8], instead, present a complete flow for automatic paral-
lelizazion through the PEDIGREE compiler. Their tool uses the Program De-
pendence Graphs (PDG) as intermediate representation and applies an heuris-
tic to create overlapping inter-dependent threads. Their approach searches the
PDG for control equivalent regions (i.e., groups of statements depending from
the same control conditions) and then partition these region with a bottom up
analysis. The resulting task graph is finally scheduled on subsets of processors
of a shared memory multiprocessor architecture.

The clustering and merging phases have been widely discussed. Usually,
these two phases are addressed separately. Well known deterministic cluster-
ing algorithms are dominant sequence clustering (DSC) by Yang and Gera-
soulis [12], linear clustering by Kim and Browne [6] and Sarkar’s internal-
ization algorithm (SIA) [9]. On the other side, many researches explored the
cluster-scheduling problem with evolutionary algorithms [4, 11]. An unified
view is given by Kianzad and Bhattacharyya [5], who modified some of the
deterministic clustering approaches introducing probability in the choice of el-
ements for the clusters, and proposed an alternative single step evolutionary
approach for both the clustering and cluster scheduling aspects.



Our approach starts from an intermediate representation which is not hi-
erarchical like HTGs and PDGs, but instead flattens out all the dependence
information at the same level. This creates bigger structures but gives the op-
portunity to extract more parallelism as it allows more complex explorations.
Moreover, although our flow starts from the analysis of control-equivalent re-
gions, we effectively partition them working on the data flow. This initial
clustering is then optimized in order to create thread of homogeneous size, but
we don’t need any sort of static scheduling mechanism as we relie on dynamic
start conditions.

3. Target Architecture

The target architecture of the presented approach is a symmetric shared
memory multiprocessor system-on-chip (MPSoC); we chose those systems be-
cause they are composed by many processing units, thus it is necessary to use
applications composed by many concurrent tasks in order to exploit their pro-
cessing power. We choose to test the produced code on a specific MPSoC
prototype developed on Field Programmable Gate Array (FPGA), the CerberO
architecture [10].
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Figure 1. The target architecture of the presented approach

CerberO, shown in Figure 1, is realized connecting multiple Xilinx MicroB-
laze softcores on a single shared Coreconnect On-Chip Peripheral Bus (OPB).
Shared IPs and the controller for the shared external memory reside on the OPB
bus. Each MicroBlaze in the system is connected to a local memory through
the Local Memory Busses (LMB) for private data. The shared instructions and
data segments of the applications reside on the (slower) external DDR mem-
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ory, while private data are saved in the local memories. The addressing space
of each processor is partitioned in two parts: a private part and a shared part.
The private space is accessible only by the local processor, while the shared
one is equally seen by all components of the system. Instructions are cached
by each processor, while data are explicitly moved from the shared to the fast,
low latency private memory.

Synchronization mechanisms are provided through a dedicated module, the
Synchronization Engine (SE), connected to each processor through the Fast
Simplex Link (FSL) point to point connections. The SE is a configurable, cen-
tralized hardware lock/barrier manager that permits atomic accesses to shared
memory locations and shared peripherals.

On top of the CerberO architecture, we developed a thin operating system
(OS) layer that permits to dynamically schedule and allocate threads.

4. Parallelization

This section introduces our flow to automatically produce multi-threaded
programs using as input a sequential specification written in the C language.
The toolchain manages the partitioning of the sequential description and gen-
erates code that can be dynamically scheduled on the target architecture using
specific boolean task start conditions.

Figure 2 provides an overview of the entire flow. The sequential C code
is compiled with a slightly modified version of the GNU C Compiler (GCC)
version 4.0 and the internal structures generated by the compiler are dumped.
From these structures, our tool suite PandA creates an abstract representation of
the program in terms of several graphs describing data and control dependence.
The C to C partitioning algorithm works on a modified system dependence
graph (SDG). We define the SDG as a graph in which both data dependence
and control dependence are represented for each procedure. This graph gets
clustered and optimized, and the resulting task graph is then converted back
in parallel C code by the specific backend. This parallel C code can finally be
compiled for the target MPSoC architecture.

FSDG Creation

In this phase of the process PandA parses the dump of the intermediate rep-
resentation of the modified GCC 4.0 compiler and creates a data structure
containing all the relevant information expressed in the initial specification.
From the version 3.5/4.0 of the GCC compiler the front-ends parse the source
language producing GENERIC trees, which are then turned into GIMPLE.
GENERIC and GIMPLE are language independent, tree based representations
of the source specification [1]. Although GIMPLE has no control flow struc-
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Figure 2. Overview of the toolchain

tures, GCC also builds the control flow graph (CFG) to perform language in-
dependent optimizations.

The GCC analysis and the GIMPLE parsing correspond to the first step per-
formed by the PandA framework to analyze the input sequential program; sev-
eral graph structures describing control and data dependencies in the program
are then derived. Each graph is a different view of the dependencies among the
operations of the initial specification.

In particular, the proposed partitioning algorithm executes a post-processing
analysis on the dependencies represented by a SDG [3] extended by introduct-
ing feedback edges (FSDG). A sample FSDG is shown in Figure 3. Vertices
are statements (round and square boxes) or predicate expressions (rhombus
boxes). Grey solid edges represent data dependencies and describe flow of
data between statements or expressions. Black edges represent control depen-
dence, and express control conditions on which the execution of a statement or
expression depends. Black dashed edges represent both control and data de-
pendencies. Grey dashed edges represent feedback edges, which makes possi-
ble to distinguish nodes belonging to loops from other nodes. Finally, the entry
node represents the entry to the procedure. It is worth noting that all the loops
are converted in do-while loops, since this code transformation simplifies the
management of the exit condition. This graph also allows the recognition of
control-equivalent regions, which are groups of nodes that descend from the
same condition (True or False) of a father predicate node.

Partitioning algorithm

The partitioning phase uses the FSDG as defined above as its input. The
first step of the algorithm analyses feedback edges and generates partitions of
nodes from the initial FSDG: one for each loop and one grouping all the nodes
not in loops. Thanks to this procedure, parallelism can be extracted also for
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Figure 3.  Example of an FSDG graph

the code inside the loops, instead of considering loops as atomic entities. The
following steps of the algorithm consider these partitions separately, one at a
time, and try to extract only the parallelism contained in each of them.

After identifying the loop partitions, the algorithm performs an analysis of
the control edges in order to recognize the control-equivalent regions. State-
ment nodes descending from the same branch condition (True or False) of a
predicate node are grouped together, forming a single control-equivalent re-
gion, as in Figure 4, A. The procedure runs as long as all the predicate nodes
are analysed.

Since the nodes in each control-equivalent region can only be data depen-
dent among each other, each region is a potential candidate to form a parallel
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task. For each control-equivalent region data dependence analysis is then ex-
ecuted, grouping together nodes that are inter-dependent and, hence, must be
serially executed, like in Figure 4, B. The analysis starts from a generic node
in a control-equivalent region with a depth-first exploration. A node is added
to the cluster being formed if it is dependent from one and only one node or if
it is dependent from more than one node, but all its predecessors have already
been added to the current cluster. Otherwise, the cluster is closed and the gen-
eration of a new set starts. These operations are iterated until all the nodes in
the control-equivalent partition are added to a set.

The final result of this procedure is a clustered FSDG graph, which repre-
sents a potential task graph, Figure 4, C. Each partition of the clustered graph
represents a single basic block of instructions, with none, or minimal inter-
dependence. Clusters that not depend on each others represent blocks of code
that can potentially execute in parallel. Edges among clusters express data de-
pendences among blocks of code, thus the data represented by in-edges of a
partition must be ready before the code in that partition can start.
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Figure 4.  Example of clustering: A) Control equivalent regions gets analyzed, B) Control
Equivalent Regions gets partitioned, C) Corresponding Task Graph



Optimizations

Even if the prototyping platform has just a small operating system layer with
little overhead due to thread management, shared memories must be atomically
accessed in order to create the task structures and verify which processing ele-
ments are free. The partitioning phase, explained in Section 3, tends to produce
too many small clusters, with the effect that the overhead of task management
could be higher than the advantages given by concurrent execution. Thus, we
decided to introduce an optimization phase aimed at grouping clusters together.
Two different techniques are used: optimizations based on control dependen-
cies and optimizations based on data dependencies.

Control structures, such as the if clause, must be executed before the code
situated beneath them, otherwise we would have speculation: it seems,
then, reasonable to put the control statement and the instructions which
depend on it in the same task, in particular if there are no other nested
control clauses. Another optimization consists in grouping the then and
else clauses in the same cluster: they are mutually exclusive, the paral-
lelism is not increased if they are in separate clusters. If a control clause
does not get optimized, as it could happen if there are many nested con-
trol statements, it is replicated in each one of the clusters containing
control dependent instructions. This means that the only type of de-
pendencies remaining between different clusters are data dependencies,
making the subsequent management of the scheduling easier.

Data dependent clusters can be joined together to form a bigger cluster; the
candidates for joining are those clusters containing a number of nodes
(instructions) smaller than n; this number roughly represents the over-
head due to the management of a task. When a small cluster is encoun-
tered, the algorithm tries to join it with the successor (say that a task b
is the successor of a if b has a control or data dependence on a); this
operation is successfully carried out when all the data dependences on
edges exiting from a have the same target cluster . These steps are re-
peated until no more clusters are joined or no more clusters smaller than
n exist.

Task creation

This part of the partitioning flow is used to translate the final clustered
FSDG into specific data structures effectively representing the tasks, their in-
put/output parameters and the relationships among them. The first step consists
in the identification of the task variables: the edges coming from the special
node ENTRY are associated with global variables; the edges entering in a cluster
represent the input parameters of the task, while the outgoing edges the output
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parameters. Finally, the edges whose both source and destination nodes are
contained in the same cluster form the local variables of the task. Note that,
of course, it may happen that two different edges are associated with the same
variable: in this case just one variable is instantiated.

The next operation consists in the computation of the start conditions for
each task; these conditions enable dynamic scheduling of the tasks. Through
dynamic scheduling the application can decide at runtime if a task should start
or not. Consider, for instance, that the application needs to start a task such as
the one in Figure 5. The arrows pointing out of each variable indicate that they
use a value produced by other tasks. To safely start the new task the application
should wait that a, b and c are written by the preceding tasks. Hence the tool
chain would have to determine a static scheduling and organize the execution
flow in order to guarantee that all the preceding tasks have correctly written
their values to cover for each possible execution path. Actually not all three
variables are used together, using a and b implies that c is not used and vicev-
ersa. A static scheduling would limit the exploitable parallelism, since the new
tasks could not be overlapped either to the tasks producing a and b or to the
task producing c. However, when the value of the condition C1 is determined,
it is decided which branch is going to be executed: in case the else branch is
taken, the new tasks only need to wait for the task which produces c, otherwise
for the tasks which produce a and b (this, of course, works if a, b and c are
produced by different tasks). So, if we allow the application to precompute the
value of the condition, it could fully take advantage of the support for dynamic
scheduling of the target architecture and, effectively, start the new task as soon
as only the true data dependencies of the specific execution flow are satisfied.

Taking these considerations into account, we enabled our Task Creator to
generate, for each task, a specific start condition related to the runtime execu-
tion path of the application. A valid start condition for a task has to satisfy
the following points: (1) a task must be started only once (i.e. only one of
the predecessors of the task can start it) and (2) all the parameters necessary
for a correct execution of the task must have already been computed when the
condition evaluates to true. To enforce the first point we use a simple boolean
variable which is set to true when the task starts; the second point is much
more complicated since, depending on the execution path which will be taken,
different variables are used.

To generate the start condition, the algorithm initially explores all the input
parameters belonging to the task to be started. Parameters used in the same
control region (i.e. all in the true or false branch) are put in an and condition
(all of them must be ready if that control region is going to be executed). All
the resulting “and” expressions (one for each control region) are joined by an
“or” operator.
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The second step consists in the exploration of the preceding tasks, the ones
which have an edge entering in the current task, looking for the locations where
the parameters, input to the task to start, are written. In case there are more
control flows from which a parameter is written, all the corresponding paths
are joined in an “or” expression. Using the diagram in Figure 6 as example,
we would have the condition for Task2:

C2-7(b) +-C2-[C3- (v(a) -7 (d) +C3-v(c)] (1)

~ () identifies all the possible paths, in the preceding tasks, which compute ;
in the example: v (a) = C0-T0 + —~C1 - T'1, where 70 and T'1 are boolean
variables equal to true if TaskO and Taskl has already ended. After computing
all the necessary ~y (x) functions we need to complete the start condition by
indicating that Task2 can start only if it has not started yet, so we put Equa-
tion 1 in “and” with =712, which is true if Task2 has already started. Since
the resulting condition is usually long, but contains many redundant elements,
we use BDDs (Binary Decision Diagrams) to reduce its complexity. The con-
dition is inserted at the end of both TaskO and Task1: the one which ends last
will evaluate the condition to true and it will actually launch the execution of
Task?2.

The last phase of the flow is the generation of the final parallel C code start-
ing from the representation of the tasks created in the previous steps. This
work is done by a specific C Writer backend, that needs to produce code in a
syntax compliant with the primitives supported by the target architecture. The
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backend can produce both OpenMP compliant code for functional validation
and code runnable on the target platform for final implementation.

S. Experimental evaluation

The effectiveness of our partitioning flow was verified running the paral-
lelized programs on the CerberO architecture. Execution time on different
runs, using a different number of processors was measured. When analyzing
the results, it must be taken into consideration that the execution time is af-
fected not only by the degree of parallelism extracted, but also by the overhead
introduced by the thread management routines of the underlying OS layer. For
this reason, in order to perform a fair comparison, the original sequential pro-
gram was slightly modified in order to execute it on top of the OS layer.

Figure 7 shows the speedup obtainable by running the ADPCM algorithm
on a different number of processors. The maximum speedup is obtained when
four processors are used, with a performance roughly 70% higher than the re-
sults on the single processor platform. With more than four processors the
execution speed starts lowering. This behavior is due to the fact that the paral-
lelized program contains at most four threads which have no inter-dependences
and can, hence, run in parallel; using more processors does not increase the
parallelism, but it does increase the synchronization overhead. The speed ups
obtained are similar to the average results shown in [8] but, while its authors
exploit also fine grained ILP parallelism, our target architecture adopts much
simpler processor cores.

Figure 8 represents the speedup obtained by parallelizing part of the JPEG
algorithm. The most computationally intensive kernels of the algorithm, the
RGB-to-YUYV color space conversion and the 2D-DCT, have been parallelized.
The RBG-to-YUV and 2D-DCT algorithms account for the 70% of the execu-
tion time of the sequential code on our target platform, while the remaining
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30% comprises the reading of the input and the writing of the output image
which are not parallelizable. As for the ADPCM algorithm, the maximum par-
allelism extracted by our tool chain is four, so using more than four processors
leads to performance degradation for unnecessary synchronization operations
and more load on the shared bus and memories of the target architecture. For
the whole JPEG algorithm the maximum speedup reached is 42%.

6. Concluding remarks

This paper presented our design flow for automatic parallelization of a se-
quential specification targeting a homogeneous MPSoC prototype. The main
contributions of this paper can be summarized as follows: (1) it proposes a
complete design flow from sequential C to parallel code runnable on homo-
geneous multiprocessor systems, (2) it describes a partitioning algorithm to
generate parallel code transforming all control dependencies in data dependen-
cies from sequential C and, finally, (3) it introduces a dynamic task scheduling
model with specific start conditions to spawn the parallel threads of the appli-
cation, without requiring complex operating system support by the target ar-
chitecture. The flow has been applied to several standard applications, and the
results obtained with the ADPCM and the JPEG algorithms on a MPSoC pro-
totype on FPGA show promising levels of parallelism extracted, with speedups
up to 70% and 42% respectively.
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