
 

Permanent link to this version 

http://hdl.handle.net/11311/1199866 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
Y. Wang, F. Topputo 
Indirect Optimization of Power-Limited Asteroid Rendezvous Trajectories 
Journal of Guidance Control and Dynamics, In press - Published online 14/02/2022 
doi:10.2514/1.G006179 
 
 
 
 
 
The final publication is available at https://doi.org/10.2514/1.G006179 
 
Access to the published version may require subscription. 
 
 
  
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Indirect Optimization of Power-Limited Asteroid Rendezvous1

Trajectories2

Yang Wang ∗ and Francesco Topputo †3
Politecnico di Milano, Via La Masa 34, Milan, Italy, 201564

I. Introduction5

Owing to the higher specific impulse compared to chemical propulsion, low-thrust solar electric propulsion (SEP)6

enables various types of space missions with a relatively smaller amount of thrust [1]. Yet, the SEP-driven trajectory7

optimization is challenging since the engine operates during a significant fraction of the flight, and the thrust level8

depends upon power availability [1].9

Numerical methods that solve a nonlinear optimal control problem (NOCP) are mainly categorized as direct methods10

and indirect methods [2]. Direct methods convert an infinite-dimensional NOCP into a finite-dimensional nonlinear11

programming problem by transcription and collocation [3]. Direct methods can handle path and boundary constraints12

easily, but many parameters and high-order integrators are usually required to obtain an accurate solution [4]. Indirect13

methods transform a NOCP into a two-point boundary value problem (TPBVP) or a multi-point boundary value problem14

(MPBVP) if interior-point constraints are involved [3, 5]. Then, the NOCP is solved as a zero-finding problem, with the15

solution satisfying first-order optimality conditions [3]. However, guessing initial costate values is challenging due to16

the narrow convergence domain of zero-finding methods [2].17

Incorporating an accurate SEP engine model into indirect optimization improves mass budget estimation. The18

electrical power to accelerate the propellant used by most SEP thrusters varies with heliocentric distance [6]. In turn, the19

thrust, propellant mass flow rate, and specific impulse vary as a function of the input power [6–8]. Due to technological20

constraints, the input power to the engine is limited, and the related bounded values are key thruster parameters [6–8].21

That is, the spacecraft flies ballistically if insufficient power is provided [9], while the input power is capped when excess22

power is available [10]. Therefore, the convergence difficulty is exacerbated by dynamics discontinuities produced23

by power constraints [11]. Smoothing techniques have been employed in [11–13]. Power operation detection was24

developed in [14] to improve solution accuracy. In indirect optimization, the gradients of nonlinear constraints with25

respect to problem decision variables are critical for most zero-finding methods [15]. However, the effects of power26

constraints on the gradients and the optimal solution are still unexplored.27

This Note analyzes this issue and further presents an efficient indirect method featuring analytic gradients for28

SEP-based trajectory optimization. First, the NOCP with scalar interior-point constraints is formulated. Analytical29
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multipliers related to interior-point constraints are obtained. This intermediate result is leveraged to tackle a MPBVP as30

a TPBVP. Second, the state transition matrix (STM), which provides sensitivities of states and costates at different time31

instants along a given trajectory [16], is employed to compute the gradients. The STM across costate and dynamics32

discontinuities produced by bang-bang control and power constraints is analyzed. Third, in order to ease the costate33

initialization, two continuation methods are used to approach a discontinuous control by a consecutive sequence of34

continuous controls: 1) energy- to fuel-optimal continuation, to mitigate the convergence difficulty associated to35

bang-bang control in the fuel-optimal problems, and 2) Hyperbolic Tangent Smoothing (HTS), to handle engine switch36

on/off related to power bounds. The advancement to the HTS in [17] consists of the capability to achieve the desired37

discontinuous solution. Finally, the flowchart in [18] is augmented by adding branches that address power constraints.38

Overall, a computational framework is set up by integrating analytic derivatives, continuation and switching detection39

into the augmented flowchart, so enabling the computation of accurate bang-bang solutions and their gradients.40

Applications involve the case of M-ARGO, the Miniaturised Asteroid Remote Geophysical Observer [19]. M-ARGO41

is proposed as the first ESA stand-alone CubeSat mission to rendezvous with and characterize a near-Earth asteroid42

(NEA) [19]. The developed method has been applied successfully to perform a comprehensive target screening [20].43

The Note is structured as follows. Sec. II presents the problem statement of power-limited low-thrust trajectory44

optimization. Sec. III describes initialization of guess solution. The STM is derived in Sec. IV. In Sec. V, the switching45

detection technique is presented and incorporated into an augmented flowchart. Sec. VI presents numerical simulations46

for asteroid rendezvous. Finally, Sec. VII reports concluding remarks.47

II. Problem Statement48

A. Mathematical Model49

The heliocentric phase of an interplanetary orbit transfer problem is considered. The equations of motion are50

Ûx = f (x,u,α) ⇒



Ûr = v

Ûv = −
µ

r3 r + u
Tmax

m
α

Ûm = −u
Tmax
Isp g0

(1)

where r , v, and m are the spacecraft position vector, velocity vector, and mass, respectively; x B [r>, v>,m]> is the state51

vector, u ∈ [0,1] is the thrust throttle factor and α is the thrust direction unit vector; g0 is the gravitational acceleration52

at sea level. Both the maximum thrust Tmax and the specific impulse Isp are assumed to vary with the engine input power53

Pin, i.e. , Tmax = Tmax(Pin) and Isp = Isp(Pin). It is assumed that Pin = Pin(r) is a function of the spacecraft-Sun distance.54
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We define Sp = Sp(r) as the power switching function used to detect the thruster operation logic (see Fig. 1):55

if Sp(r) ≥ Pmax then Pin = Pmax, u ∈ [0,1] (2)

if Sp(r) ∈ [Pmin,Pmax) then Pin = Sp(r), u ∈ [0,1] (3)

if Sp(r) < Pmin then Pin = Sp(r), u = 0 (4)

where Pmax and Pmin are upper and lower bounds of power input to the engine, respectively.56

r

in
P

max
P

p
S

in
P

min
P

0u =[0,1]uÎ

Fig. 1 Geometric relationship between Pin and Sp .

Remark 1 In actual flight, the engine switches off when Sp < Pmin, so implying Pin = 0. However, to mimic a ballistic57

flight, we set Pin = Sp and u = 0 for trajectory optimization purposes. Setting Pin to 0 creates discontinuity that58

artificially increases the complexity of the problem.59

B. Fuel-Optimal Problem60

With ti and t f given, the fuel-optimal problem is to minimize61

Jf =
∫ t f

ti

u
Tmax
Isp g0

dt (5)

under the following boundary conditions

r(ti) − r i = 0, v(ti) − vi = 0, m(ti) − mi = 0 (6)

r(t f ) − r t (t f ) = 0, v(t f ) − vt (t f ) = 0 (7)

where r t (t) are vt (t) are the known time-dependent position and velocity vectors of the moving target body, respectively.62

Since the optimal thrust throttle profile u∗ is bang-bang, a smoothing technique is implemented to gradually enforce63

3



this discontinuity. The following objective function [21]64

Jε =
∫ t f

ti

Tmax
Isp g0

[u − εu(1 − u)] dt (8)

yields an energy-optimal problem for ε = 1 and a fuel-optimal problem for ε = 0. The idea is to solve an energy-optimal65

problem (with ti , t f given and the boundary conditions in Eqs. (6)-(7)) and to continue the solution manifold while66

gradually reducing ε, until the fuel-optimal problem is solved [18].67

The Hamiltonian of the auxiliary problem is68

Hε = λr · v + λv ·

(
−
µ

r3 r + u
Tmax

m
α

)
+ λm

(
−u

Tmax
Isp g0

)
+

Tmax
Isp g0

[u − εu(1 − u)] (9)

where λ B [λ>r ,λ>v , λm]> is the vector of Lagrange multipliers (costates) associated to x. The optimal thrust direction is69

such that H is minimized at any time by virtue of the Pontryagin minimum principle (PMP) [22], i.e.,70

α∗ = −
λv
λv

(10)

where λv = ‖λv ‖2 is the Euclidean norm of λv . Substituting Eq. (10) into Eq. (9) yields71

Hε = λr · v −
µ

r3 r · λv +
Tmax
Isp g0

u (Sε − ε + εu) (11)

where the throttle switching function Sε is72

Sε = 1 − λm −
Isp g0

m
λv (12)

The optimal throttle factor u∗ is determined by the PMP and the power availability, as73

u∗ =



0 Sε > ε or Sp < Pmin

1 Sε < −ε and Sp ≥ Pmin

ε − Sε
2ε

|Sε | ≤ ε and Sp ≥ Pmin

(13)

Remark 2 An interior-point constraint should be addressed to ensure that Eq. (13) satisfies necessary conditions of74

optimality; see Sec. II.D.75
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The motion of the spacecraft can be determined by integrating the following state-costate dynamics76

Ûy = Fε(y) ⇒


Ûx =

(
∂Hε

∂λ

)>
Ûλ = −

(
∂Hε

∂x

)> (14)

where y B [x>,λ>]>. Note that Eq. (14), as well as Eq. (21), has two different expressions based on whether Pin = Pmax77

or not. Since the terminal mass is free and the augmented terminal cost does not explicitly depend on the mass, there78

exists79

λm(t f ) = 0 (15)

C. Time-Optimal Problem80

In a time-optimal problem, the spacecraft has to rendezvous with a moving target [14]. The terminal conditions are81

the same as in Eq. (7), but in this case t f is free. The objective function is82

Jt =
∫ t f

ti

1 dt (16)

thus the Hamiltonian reads83

Ht = λr · v + λv ·

(
−
µ

r3 r + u
Tmax

m
α

)
− λmu

Tmax
Isp g0

+ 1 (17)

The optimal thrust direction α∗ is again given by Eq. (10), whereas the optimal throttle factor u∗ is84

u∗ =



0 St > 0 or Sp < Pmin

1 St < 0 and Sp ≥ Pmin

∈ [0,1] St = 0 and Sp ≥ Pmin

(18)

where the time-optimal throttle switching function is85

St = −λv
Isp g0

m
− λm (19)

The transversality condition at terminal time t f is [14]86

Ht (t f ) − λr (t f ) · vt (t f ) − λv(t f ) · at (t f ) = 0 (20)
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where at is the acceleration of the target body.87

The motion of the spacecraft can be determined by integrating the following state-costate dynamics88

Ûy = F t (y) ⇒


Ûx =

(
∂Ht

∂λ

)>
Ûλ = −

(
∂Ht

∂x

)> (21)

89

D. Interior-Point Constraint90

When Sp < Pmin in Eq. (4), insufficient power is generated, and the engine switches off (u = 0). However, according91

to the PMP, this action may not be optimal since it is not related to the minimization of the Hamiltonian (Eqs. (11)92

and (17)). In order to satisfy the necessary conditions of optimality, this event should be treated as an interior-point93

constraint [22]. Suppose that Sp crosses Pmin at ts , the following conditions have to be satisfied [22]94

H(t−s ) = H(t+s ) − π
∂Sp
∂t

(22)

95

λ>r (t
−
s ) = λ

>
r (t
+
s ) + π

∂Sp
∂r

(23)

where t−s and t+s are time instants before and after ts, π is a scalar Lagrange multiplier, and ∂Sp/∂t = 0. In Eq. (23),96

only the component λr of the costate is discontinuous since ∂Sp/∂r , 0>. Let πt and πε be the scalar multipliers for97

the time- and energy-to-fuel-optimal problems, respectively. The following can be said:98

Energy-to-fuel-optimal problem The Hamiltonian function at t−s and t+s is99

Hε(t−s ) = λr (t
−
s ) · v −

µ

r3λv · r + u(t−s )
Tmax
Isp g0

(Sε − ε + εu(t−s )) (24)

100
Hε(t+s ) = λr (t

+
s ) · v −

µ

r3λv · r + u(t+s )
Tmax
Isp g0

(Sε − ε + εu(t+s )) (25)

Combining Eq. (22), (24), and (25) yields101

πε = ∆u
Tmax
Isp g0

Sε − ε + (u(t+s ) + u(t−s ))ε
ÛSp

(26)

where ∆u = u(t+s ) − u(t−s ) and ÛSp = (∂Sp/∂r)Ûr .102

Remark 3 Let y(t) = ϕε(yi, ti, t) be the solution flow for a specified ε value of Eq. (14) integrated from the initial time103

ti to a generic time t, using xi , λi at ti , α∗ in Eq. (10) and u∗ in Eq. (13). λr (t+s ) is computed through Eq. (23) if Sp104
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crosses Pmin at ts . The energy-to-fuel optimal problem is to find λ∗i such that y(t f ) = ϕε([xi,λ
∗
i ], ti, t f ) satisfies Eqs. (7)105

and (15).106

Time-optimal problem The Hamiltonian function at t−s and t+s is107

Ht (t−s ) = λr (t
−
s ) · v −

µ

r3λv · r + u(t−s )
Tmax
Isp g0

St + 1 (27)

108
Ht (t+s ) = λr (t

+
s ) · v −

µ

r3λv · r + u(t+s )
Tmax
Isp g0

St + 1 (28)

Combining Eqs. (22), (27), and (28) yields109

πt = ∆u
Tmax
Isp g0

St
ÛSp

(29)

Remark 4 Let y(t) = ϕt (yi, ti, t) be the solution flow of Eq. (21) integrated from initial time ti to a generic time t,110

using xi , λi at ti , α∗ in Eq. (10) and u∗ in Eq. (18). λr (t+s ) is computed through Eq. (23) if Sp crosses Pmin at ts. The111

time-optimal problem is to find λ∗i and t∗f such that y(t f ) = ϕt ([xi,λ
∗
i ], ti, t

∗
f ) satisfies Eqs. (7), (15) and (20).112

Remark 5 It is assumed that singular arcs where St = 0 in the time-optimal problem and Sε = 0 in the fuel-optimal113

problem are absent over finite time intervals. Also, it is assumed that Sp crosses Pmin isolated with ÛSp , 0.114

Remark 6 A NOCP with interior-point constraints is inherently a MPBVP [5]. By leveraging the analytical expressions115

of πε in Eq. (26) and πt in Eq. (29), this MPBVP is transformed into a TPBVP as stated in Remarks 3 and 4.116

III. Initialization of Guess Solution117

The Adjoint Control Transformation (ACT) [16] is used to guess initial costates of time- and energy-optimal118

problems. The idea is to map the estimation of physical control variables and their derivatives to initial costates at119

ti , i.e., M : (αi, Ûαi, βi, Ûβi,Si, ÛSi) → (λri,λvi), where αi and βi are the in-plane and out-of-plane thrust angles in a120

spacecraft-centered frame [16], Si and ÛSi are initial values of the switching function and its derivative. However, as121

shown in Eqs. (13) and (18), power constraints may cause discontinuities in u for time- and energy-optimal problems,122

which deteriorates the performance of ACT. In these cases, the Hyperbolic Tangent Smoothing (HTS) method in [17] is123

used. The idea is to replace Tmax in the above equations with T̃max defined as124

T̃max B


Tmax × ~(ρ, r) = Tmax ×

1
2

[
tanh

(
Pin − Pmin
ρ/PU

)
+ 1

]
ρ > 0

Tmax ρ = 0
(30)

where ρ is a smoothing factor and PU is the power unit.125
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Starting from ρ = ρ0 > 0 (a manually selected value), T̃max approaches Tmax while gradually reducing ρ→ 0. Here,126

ACT is used to guess the initial costate to the problem with ρ0. The improvement to the HTS method in [17] is that127

the proposed method allows reaching ρ = 0, which corresponds to the desired discontinuous solution. This feature is128

desirable to better assess the HTS method and better understand the optimal solution. Since the power unit PU used in129

the simulations (see Table 1 in Sec. VI) is large compared to Pin, PU is inserted in Eq. (30) to ease the selection of ρ0.130

The approximate Hamiltonian functions when using Eq. (30) are given by replacing Tmax in Eqs. (9) and (17)131

with T̃max. The switching functions (Eqs. (12) and (19)) and the optimal control policies (Eqs. (13) and (18)) remain132

unaltered because they are independent on Tmax. Since discontinuous control is approximated by continuous control,133

the interior-point constraints are not triggered. Thus, the HTS approaches the solution to the MPBVP by solving a134

consecutive sequence of TPBVPs. The dynamics for the approximate time- and energy-to-fuel-optimal problems are135

simply given by replacing Tmax in Eqs. (14) and (21) with T̃max.136

IV. Analytic Derivatives137

The variational method exploits the state transition matrix (STM) and the chain rule to compute the gradients [16].138

The STM maps small variations in the initial conditions δyi over ti → t, i.e., δy(t) = Φ(ti, t)δy(ti). The STM is subject139

to the variational equation140

ÛΦ(ti, t) = DyF Φ(ti, t), Φ(ti, ti) = I14×14 (31)

where DyF, the Jacobian matrix of F(y), has two different expressions based on whether u∗ is constant or not. Let141

z B [y>,vec(Φ)>]> be a 210-dimensional vector containing y and the columns of Φ, where ‘vec’ is the operator that142

converts a matrix into a column vector. There exists143

Ûz = G(z) ⇒
©­­­«
Ûy

vec( ÛΦ)

ª®®®¬ =
©­­­«

F(y)

vec(DyF Φ)

ª®®®¬ (32)

Note that Φ maps states and costates along a continuous orbit. When a discontinuity is encountered at the switching144

time ts, the STM compensation Ψ(ts) across the discontinuity should be determined [16]. Suppose there are N145

discontinuities at t1, t2, · · · , tN , the STM is calculated using the chain rule as146

Φ(t f , ti) = Φ(t f , t+N )Ψ(tN )Φ(t
−
N , t
+
N−1)Ψ(tN−1) · · ·Φ(t−2 , t

+
1 )Ψ(t1)Φ(t

−
1 , ti) (33)

Suppose that the discontinuity detected at ts is indicated by a switching function S crossing a threshold η, then there147

are three possible cases:148

• Case 1: S = Sε , ε = 0, η = 0; u jumps between 0 and 1 at ts .149
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• Case 2: S = Sp , u , 0, η = Pmin; u jumps between a non-zero value and 0 at ts .150

• Case 3: S = Sp , η = Pmax; u remains the same, but the costate dynamics are discontinuous at ts .151

Based on the method in [16], analytical expressions of Ψ(ts) are obtained. Cases 1 and 3 belong to the first category,152

where y is continuous but Ûy is discontinuous. Ψ(ts) satisfies153

Ψ(ts) =
∂y(t+s )
∂y(t−s )

= I14×14 +
(
Ûy(t+s ) − Ûy(t

−
s )

) 1
ÛS
∂S
∂y

(34)

Case 2 belongs to the second category, where both y and Ûy are discontinuous. Ψ(ts) satisfies154

Ψ(ts) =
∂y(t+s )
∂y(t−s )

= I14×14 +
∂∆y

∂y
+

(
Ûy(t+s ) − Ûy(t

−
s ) − ∆ Ûy

) 1
ÛSp

∂Sp
∂y

(35)

where ∆ Ûy =
∂∆y

∂y
Ûy(t−s ).155

Remark 7 When the input power reaches its upper and lower bounds, the gradients are compensated through Eqs. (34)156

and (35), respectively.157

V. Switching Detection Technique158

The detection of the switching time ts is essential for the STM and solution accuracy. Consider a switching function159

S and the constant threshold η, the task is to find ts such that S(y(ts)) = η. Suppose that at consecutive times tk and160

tk+1, there exists (S(yk) − η) × (S(yk+1) − η) < 0, where yk B y(tk) and yk+1 B y(tk+1). Then the switching time161

determination algorithm depicted in [18] is used to search ts ∈ [tk, tk+1], with 10−12 tolerance.162

The low-thrust trajectory optimization problem has been implemented in a numerical framework. To ease the163

discussion, let ptype and utype be the status of the available power input and the thrust throttle, respectively. When ρ = 0,164

the logic is165

ptype =



On, if Sp ≥ Pmax

Medium, if Sp ∈ [Pmin,Pmax)

Off, if Sp < Pmin

, utype =



On, if u = 1

Medium, if u ∈ (0,1)

Off, if u = 0

(36)

When ρ , 0, utype is the same as in Eq. (36), but ptype becomes166

ptype =


On, if Sp ≥ Pmax

Medium, if Sp < Pmax

(37)

thus ptype = Off is not used for ρ , 0.167
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The presented integration flowchart in Fig. 2 augments the flowchart in [18] (shown with dashed blocks) in order to168

effectively tackle power constraints. The inputs required to execute an integration step are 1) tk , the k–th integration time;169

2) hp , the step size predicted by previous integration step; 3) zk , the 210-dimensional state at tk ; 4) utype, the logical type170

of the thrust throttle; 5) ptype, the logical type of the power input; 6) ρ, the smoothing factor. Three branches emanate171

according to utype, and for each integration block, a prediction on zk+1, e.g., zk+1 = ψRK(zk, tk, tk + hp,utype, ptype, ρ), is172

executed, using a variable-step seventh/eighth Runge–Kutta integration scheme. Note that zk+1 is the state corresponding173

to tk+1 = tk + h f , where h f is the corrected time step during Runge–Kutta integration [18]. For the time-optimal174

problem, ε = 0 in Fig. 2.175

For utype being On or Medium and ρ = 0, the execution blocks are similar. The branch utype = On is analyzed176

below without losing generality. Since the engine is enforced to switch off in case of insufficient power Pin, the fist task177

after one-step integration prediction is to check the power status ptype,k+1 corresponding to zk+1. If ptype,k+1 = Off,178

indicating that Sp crosses Pmin, it is then required to execute Block 2 where the power switching time ts is detected.179

Let zs be the 210-dimensional vector, and Sc be the value of Sε (energy-to-fuel-optimal problem) or St (time-optimal180

problem) at ts. If Sc < −ε, the STM is computed using Eq. (35) which is then stored in zs. zk+1 and tk+1 used for181

the next integration step are saved as zk+1 = zs and tk+1 = ts. utype is updated to Off and ptype is updated to ptype,k+1.182

Otherwise if Sc > −ε, indicating that the throttle switching arises within [tk, tk+1], thus hp is reduced.183

If ptype,k+1 , Off, the comparison of ptype and ptype,k+1 is made. If ptype , ptype,k+1, indicating that Sp crosses Pmax,184

then Block 2 is executed. If Sc < −ε is further satisfied, the STM is computed using Eq. (34). zk+1 and tk+1 are saved185

as zk+1 = zs and tk+1 = ts . ptype is updated to ptype,k+1. Otherwise, if ptype = ptype,k+1, the thrust throttle is determined186

by Sk+1 that is the value of Sε (energy-to-fuel-optimal problem) or St (time-optimal problem) at tk+1, and the branch187

utype = On of the flowchart in [18] is executed. For the case ρ , 0, the implementation is the same except that the188

branch ptype,k+1 = Off is not executed.189

For utype being Off, the first task after the one-step integration prediction is to verify the reason that conduces the190

engine to switch off. If ptype = Off, then u = 0 is caused by insufficient input power. In this case, if ptype,k+1 = Off,191

the solution is saved. Otherwise if ptype,k+1 , Off, indicating that sufficient power is available for the next step, then192

Block 2 is executed. The u(t+s ) after ts is determined by Sc . For example, if Sc < −ε, then the STM is calculated using193

Eq. (35). zk+1 and tk+1 are saved as zk+1 = zs and tk+1 = ts . utype is updated to On. ptype is updated to ptype,k+1.194

If ptype , Off, meaning that the engine switches off due to Sk > ε. If ptype,k+1 = Off, Block 2 is executed. Since195

no discontinuity exists, it is not necessary to update the STM, but the power status is updated if Sc > ε. Otherwise if196

ptype,k+1 , Off, the check whether ptype,k equals to ptype,k+1 is executed. If ptype , ptype,k+1, implying that Sp crosses197

Pmax, Block 2 is executed. The power status is updated if Sc > ε. If ptype = ptype,k+1, the branch utype = Off of the198

flowchart in [18] is executed.199
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Input

type type, , , , ,k p kt h u p z typeu

Thrust Off

1 type type( , , , , , )k RK k k k pt t h u p   z z

type, 1Get , ,Update f k ph p h

Medium Thrust

1 type type( , , , , , )k RK k k k pt t h u p   z z
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VI. Numerical Simulations200

The M-ARGO Cubesat mission to the near-Earth asteroid 2000 SG344 is simulated [20]. The physical constants are201

listed in Table 1. The thruster model is handled using fourth-order polynomials as in [20]202

Tmax(Pin) = a0 + a1Pin + a2P2
in + a3P3

in + a4P4
in

Isp(Pin) = b0 + b1Pin + b2P2
in + b3P3

in + b4P4
in

Sp(r) = c0 + c1r + c2r2 + c3r3 + c4r4

where the coefficients are listed in Table 2. Figure 3 illustrates the variations of Pin, Tmax and Isp w.r.t. the scaled203

Sun-spacecraft distance r, with Pmax = 120 W. It can be seen that at 1 AU we have Pin = 105.4 W, Tmax = 1.89 mN204

and Isp = 3022.59 s. The comparison between the 1/r2 law, Sp and Pin is also shown in Fig. 3a, where Pin reaches Pmax205

when r ≤ 0.928 AU.206

Table 1 Physical constants.

Physical constant Value

Mass parameter, µ 1.327124 × 1011 km3/s2

Gravitational field, g0 9.80665 m/s2

Astronomical unit, AU 1.495979 × 108 km
Time unit, TU 5.022643 × 106 s
Velocity unit, VU 29.784692 km/s
Mass unit, MU 22.6 kg
Power unit, PU 3991.74 W

Table 2 Thruster coefficients.

Tmax Value Unit Isp Value Unit Sp Value Unit

a0 −0.7253 mN b0 2652 s c0 840.11 W
a1 0.02481 mN/W b1 −18.123 s/W c1 −1754.3 W/AU
a2 0 b2 0.3887 s/W2 c2 1625.01 W/AU2

a3 0 b3 −0.00174 s/W3 c3 −739.87 W/AU3

a4 0 b4 0 c4 134.45 W/AU4

The asteroid ephemerides are given by SPICE kernel from HORIZONS system [23] ∗. As a study case, the launch207

time is set to 1st Jan 2022, whereas the arrival date is set to 1st Jun 2024 for the energy- and fuel-optimal problems. The208

initial mass is set to 22.6 kg, the same as MU in Table 1. The spacecraft is supposed to depart from Sun–Earth L2209

Lagrange point, and corresponding boundary conditions provided by HORIZON system are shown in Table 3, where210
∗See https://ssd.jpl.nasa.gov/?horizons
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Fig. 3 Variation of Pin, Tmax and Isp w.r.t. r with Pmax = 120 W.

terminal position and velocity conditions are used for the energy- and fuel-optimal problems in Sec. VI.B. Terminal211

position and velocity conditions for the time-optimal problem in Sec. VI.A depend on guessed transfer time and are212

varied during the optimization. All simulations are conducted under an Intel Core i7–9750H, CPU@2.6GHz, Windows213

10 system with MATLAB R2019a. The integration code is converted to MEX file to speed up simulations.214

A total of 6 cases in Table 4 are simulated. The inputs (αi, Ûαi, βi, Ûβi,Si, ÛSi) of ACT are randomly generated at the215

initial time within given bounds. The shape-based method in [24] has been employed for case 5 to provide an intuition216

of initial thrust angles. It shows that the thrust direction at the initial time is close to the velocity. Thus the bounds are217

set up as follows: αi ∈ [−10,10] deg, Ûαi ∈ [−5,5] deg/TU, βi ∈ [−1,1] deg and Ûβi ∈ [−0.1,0.1] deg/TU. The initial218

mass costate is set to 1. From Eq. (12) and (19), Si has to be negative. The bounds of Si and ÛSi are: Si ∈ [−1.5,−0.001]219

and ÛSi ∈ [−0.01,0.01].220

Table 3 Boundary Conditions.

Boundary Condition Value

Initial position vector, AU [−0.1764352209,0.9774432047,−4.6698040914 × 10−5]>

Initial velocity vector, VU [−1.0105715460,−0.1832792298,1.2539059040 × 10−5]>

Terminal position vector, AU [−0.6547598563,0.6446483464,−1.5061497361 × 10−3]>

Terminal velocity vector, VU [−0.7759381160,−0.7425308483,1.1204008105 × 10−3]>

A. Time-Optimal Transfers221

Two time-optimal problems for Pmin = 0 W and Pmin = 95 W are solved for comparison. The transfer time is222

monotonically increased (starting from 1 year) until the solution is found. For each guessed t f , the ACT map is executed223

13



Table 4 Simulation results.

Case Type Pmin, W Optimal costate vector λ∗i t∗f , days m f , kg

1 TOa 0 [15.42735,−61.81391,0.18480,74.40205,4.50555,0.04902,4.38101]> 593.2311 19.7994
2 TO 95 [−11.00728,−175.41465,1.40145,155.51247,57.39753,0.24116,7.10106]> 699.0125 20.6825
3 EOb 0 [0.32576,−0.97280,0.03702,1.20654,0.00762,0.00254,0.05948]> 821 21.1738
4 EO 95 [0.31165,−2.07603,0.06691,2.45955,0.32964,0.00996,0.14322]> 821 20.8288
5 FOc 0 [0.31717,−0.97395,0.22169,1.19851,0.01910,0.01280,0.05682]> 821 21.4370
6 FO 95 [0.23645,−1.28756,0.08292,1.61084,0.17194,0.04682,0.11054]> 821 20.9239

a time-optimal solution; b energy-optimal solution; c fuel-optimal solution;

5 times at most. The corresponding solutions are summarized as cases 1–2 in Table 4. For case 1, since Sp < Pmin is224

not triggered, the HTS is not used. The time-optimal trajectory is shown in Fig. 4a. The variations of u, St , m, Pin, Isp225

and Tmax are shown in Fig. 4b, where the engine is always ‘on’. The minimum transfer time is 593.2311 days and the226

final mass of the spacecraft is 19.7994 kg.227

For case 2, the HTS is used first to find the approximate solution corresponding to ρ0 = 4, then ρ is gradually228

reduced to approach the optimal solution (ρ0 = 0). The corresponding time-optimal trajectory is shown in Fig. 5a, and229

the variations of u, St , m, Pin, Isp and Tmax are shown in Fig. 5b. The minimum transfer time 699.0125 days, and the230

final mass of the spacecraft is 20.6825 kg. Compared to case 1, the engine switches off twice due to insufficient input231

power, after 95.57 and 552.54 days of flight. The engine-off lasts for 273.02 and 58.69 days, respectively. The transfer232

time is 105.78 days longer than that of case 1, whereas 0.8831 kg of fuel is saved. Figure 6 shows the variations of λr ,233

where λr is discontinuous when Pin crosses Pmin and ∆u , 0.234

(a) Time-optimal trajectory.
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Fig. 4 Case 1: time-optimal solution. SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position at arrival.

B. Fuel-Optimal Transfers235

Fuel-optimal transfers for Pmin = 0 W and Pmin = 95 W are solved. The energy-optimal (cases 3 and 4) and236

fuel-optimal (cases 5 and 6) solutions are shown in Table 4, respectively. For cases 3-4, the HTS is not used. The237
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(a) Time-optimal trajectory.
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Fig. 5 Case 2: time-optimal solution. SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position at arrival.
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Fig. 6 Variations of optimal λr w.r.t. time for case 2. The discontinuities of λr are labeled red.

corresponding fuel-optimal trajectory is shown in Fig. 7a. The variations of u, Sf , m, Pin, Isp and Tmax are shown in238

Fig. 7b, where Pmax is reached after around 767.60 days of flight. The final mass of the spacecraft is 21.4370 kg.239

For cases 5-6, the HTS is used to solve the approximate energy-optimal problem first, with ρ0 = 4. The energy-240

optimal solution is found by gradually reducing ρ to 0. Then, the fuel-optimal solution is gradually approached by241

reducing ε to 0, with ∆ε = 0.05 steps. The step is halved if the continuation fails. The corresponding fuel-optimal242

trajectory is shown in Fig. 8a. The variations of u, Sf and m, Pin, Isp and Tmax are shown in Fig. 8b. The variations243

of λr is shown in Fig. 9. The final mass of the spacecraft is 20.9239 kg. The insufficient input power is encountered244

twice, after 92.16 and 532.08 days of flight, and the engine-off lasts for 262.26 and 107.69 days, respectively. The245

maximum input power is encountered after 764.47 days of flight until to the end. Compared to the fuel-optimal solution246

of case 5, case 6 requires 0.5131 kg more fuel. In terms of computational time, the HTS and energy- to fuel-optimal247

continuation (not involving ACT) in case 6 takes around 4 s, while it takes around 27 s if the gradients are computed by248

finite differences. The benefits of the variational method become tremendous in terms of computational time especially249
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when a multitude of trajectories are required [20].250

(a) Fuel-optimal trajectory.
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Fig. 7 Case 5: fuel-optimal solution. SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position at arrival.

(a) Fuel-optimal trajectory.
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Fig. 8 Case 6: fuel-optimal solution. SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position at arrival.
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C. Discussion251

A comparison of thrust profiles for both time-optimal and fuel-optimal problems using GPOPS [25] is performed252

(Fig. 10). It is clear that GPOPS solutions coincide with solutions obtained by using the proposed method. Note that253

GPOPS handles cases 1 and 5 as single phase problems, while it solves cases 2 and 6 as multi-phase problems, since254

these are inherently MPBVPs. When the desired discontinuous solution is required, the presented method has the255

advantage of solving the MPBVP as a TPBVP. Thus HTS can be embedded into the computational framework. Also,256

there is no need to specify the solution structure a priori. On the other hand, GPOPS has to solve the MPBVP separately257

with HTS, and the solution structure must be guessed beforehand.258
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Fig. 10 Comparisons of time-optimal and fuel-optimal u × Tmax profiles to GPOPS solutions.
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VII. Conclusions259

The effects of thruster power constraints on indirect optimization are investigated. The gradients at discrete,260

discontinuous points produced by power constraints are investigated by analyzing the behavior of the state transition261

matrix. The problem becomes complicated when the input power reaches its lower bound, and costates become262

discontinous. By leveraging the analytical multipliers related to the scalar interior-point constraints, an efficient indirect263

method has been developed, which allows for solving a MPBVP as a TPBVP. The computational framework for solving264

both time- and fuel-optimal problems is established by combining analytic derivatives, continuation, and switching265

detection into an augmented flowchart. The outcome is an algorithm that features accurate bang-bang solutions and266

gradients with broader convergence domain and high computational efficiency. Thus, the presented method is useful267

when solving a multitude of problems in the context of asteroid target screening [20]. Moreover, the proposed method is268

useful for solving bang-bang control problems with scalar interior-point constraints, such as the Earth-orbit low-thrust269

transfer problem with shadow constraints [26].270
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