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Data-driven Image Processing for Onboard Optical Navigation
Around a Binary Asteroid

M. Pugliatti ∗, V. Franzese †, and F. Topputo‡

Politecnico di Milano, 20156, Milan, Italy

In this work data-driven image processing options for a CubeSat mission around a binary

asteroid system are investigated. The methods considered belongs to two main branches of

image processing methods: centroid and artificial intelligence. The former is represented by

three variations of centroiding methods, the latter by three neural networks and one convolu-

tional neural network. The first contribution of this work is an enhanced center of brightness

method with a data-driven scattering law. This method is demonstrated to share similarities

with neural networks in terms both of design and performance, with the advantage of relying

on a traditional, robust, and fully explainable algorithm. The second contribution is given by

the performance assessment between the different families of image processing methods. For

this purpose, the Milani mission is considered as a case study: a 6U CubeSat that will visit the

Didymos system as part of the Hera mission. From this analysis, it emerges that convolutional

networks perform better than other methods across all metrics considered. This hints to the

importance of filtering techniques to extract spatial information from images, which is a unique

features of the convolutional approach over the other image processing methods considered.

Nomenclature

0 = Major axis length of the error ellipse, pxl

08 , 18 , 28 = Coefficients of the orientation function

1 = Minor axis length of the error ellipse, pxl

U = Shape parameter of the Gamma probability density function

V = Rate parameter of the Gamma probability density function

Γ = Bounding box vector

Γ4 = Expanded bounding box vector

ΓG,H = Bounding box corner coordinates
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Γ;,ℎ = Bounding box length and height

�>� = Center of Brigthness, pxl

�>� = Center of Figure, pxl

�>" = Center of Mass, pxl

4�>� = Center of Brigthness of the edge region, pxl

Y�>� = Error metric for the CoF estimation, pxl

Y< = Error metric for the CoF estimation in range on the image plane, m

Y%� = Error metric for the phase angle estimation, deg

� = Expanding factor of the Bounding Box

" = Magnitude correction surface, pxl

"2>4 5 5 = Set of coefficients of the magnitude correction surface

"(� = Mean Squared Error

` = Mean of the Gaussian probability density function

%� = Phase Angle, deg

?8 = Polynomial coefficients of the phase angle function

?8 9 = Polynomial coefficients of the magnitude function

Φ = Orientation correction curve, deg

Φ2>4 5 5 = Set of coefficients of the orientation correction curve

-0 = Horizontal component of the error ellipse center, pxl

.0 = Vertical component of the error ellipse center, pxl

F = Weight parameter of the WCOB method

\ = Orientation of the majorx axis of the error ellipse, deg

f = Standard deviation of the Gaussian probability density function

f1 = Binary threshold

f3 = Detection threshold

f 5 = Filter threshold for the terminator detection

I. Introduction
In the proximity of a small body, deep-space CubeSats offer the advantage of diversifying and complementing large

spacecraft missions [1]. Indeed, they can be exploited as opportunistic payloads to be deployed in situ, once the main

spacecraft has reached its target. An example is given by the AIDA (Asteroid Impact and Deflection Assessment)

collaboration between NASA and ESA to study and characterize an impact with the binary Didymos asteroid system [2],
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composed of a primary called Didymos and a secondary called Dimorphos (for simplicity, also referred to as D1 and D2

in this work, respectively). As part of this collaboration, NASA will launch the DART (Double Asteroid Redirection

Test) kinetic impactor spacecraft [3], whose impact with Dimorphos will be observed and characterized by LICIACube

in 2022 [4]. As part of this cooperation, ESA will launch the Hera mission [5] together with two deep-space CubeSats,

namely Juventas [6] and Milani [7, 8], to study and characterize the system after the impact.

Autonomous Optical Navigation (OpNav) is an enabling technology for present and future exploration missions. It

exploits an Image Processing (IP) method to extract measures from optical observables, and then use them to generate a

state estimate. Because images can be inexpensively generated onboard with low-cost and low-mass sensors, OpNav

is experiencing a growing interest, and several IP methods exist. In the case of proximity to small-bodies, both their

features and the full shape are resolved with common imaging sensors. IP methods relying on surface features are

usually expensive to process but perform at higher accuracies, while those exploiting asteroid shapes are simpler but

have lower performance. In this category there are centroiding techniques, which are simple, robust, and easy to use

[9], but they lack accuracy when applied to irregular bodies and when low phase angles are considered. To overcome

these issues, scattering laws can be introduced, as illustrated in [10, 11]. Limb and ellipse fitting methods [12–17] are

alternatives that work well with regular shapes as those of planets and moons, which is not typical for small bodies.

Attempts have been made to extend them also for irregular shapes, most notably in [12]. Correlation methods in the

resolved regime can also be used. These either assume a regular shape of the body [18] or need a rough shape model

beforehand [19, 20]. The aforementioned methods work under the assumption that the body is fully resolved in the

image, however, a different set of methods exist exploiting surface features. In [21, 22] for example, correlations are

performed between real images and surface maplets derived from high-fidelity shape models. These have been used

in Rosetta [23] and Osiris-Rex [24] missions respectively, while in Hayabusa 2 [25] a close-range navigation strategy

based on artificial landmarks positioned on the surface is used [26]. Features can also be used without high-fidelity

models available, as for the case of the feature-based navigation of Hera discussed in [18], which is based on the

Kanade-Lucas-Tomasi method described in [27].

Recent trends in Artificial Intelligence (AI) and computer vision demonstrated the capability of deep-learning

convolutional architectures in image processing tasks [28–30]. Their adoption is becoming even more relevant for

space applications [31, 32], in particular related to IP, navigation, and control [33–41]. The main advantage of these

techniques is the embedding of a complex task within the weights and bias of a network. This comes at the cost of a

large amount of realistic data needed for training.

Within this context, the aim of this work is twofold. First, to design an enhanced version of a centroiding technique

representing a compromise between simplicity, robustness and accuracy. This is performed by the use of a data-driven

scattering law and an hyper-parameter tuning derived from a methodology commonly used in machine learning. This

method, also referred to as WCOB, is a unique contribution of this work and advances previous analytical scattering laws
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applied to irregular asteroids and comets [10, 11]. Second, to assess how this and other traditional IP methods perform

when compared to AI ones. This type of assessment is not commonly reported in literature, yet it can be fundamental in

driving design choices in small-body missions. This is achieved by tuning different IP methods with the same set of

images and then test in a close-proximity scenario around a binary asteroid system. This exhibits unique challenges due

to the disturbing effect of the secondary body of the system, which is not the main target of the IP methods considered.

To evaluate the IP performance, the present work considers images of the Didymos system acquired during the nominal

phases of the Milani mission. The comparison between data-driven methods is fundamental to highlight how specific

algorithmic design choices are reflected in the performance, which is a unique contribution of this work.

The paper is organized as follows. The tool for generation of images and labels is described in Section II followed up by

a detailed description of the five different IP methods used in this work. A short overview of the Milani mission and

the application of the different IP methods is presented in Section III. A brief parenthesis upon the explainability of

the AI methods is discussed in Section IV, which highlights interesting similarities amongst traditional and AI-based

data-driven IP methods. To conclude, the main findings of this work are summarized in Section V, together with some

points for future works.

II. Methodology
The image generation tool and the five IP methods used in this work are described in this section. The objective of the

IP methods is to extract the Center of Figure (CoF) and Phase Angle (PA) from images, quantities that can be exploited

onboard for navigation purposes. This work focuses on the extraction of these quantities from the images. The AI

methods are implemented in Tensorflow 2.5.0 using Google CoLab∗ GPUs for training, while the other methods are

implemented in MATLAB R2021a†.

(Γ!, Γ") Γ#

Γ$

𝑀𝑎𝑗𝑜𝑟𝐴𝑥𝑖𝑠𝐿𝑒𝑛𝑔𝑡ℎ

𝑀𝑖𝑛𝑜𝑟𝐴𝑥𝑖𝑠𝐿𝑒𝑛𝑔𝑡ℎ

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝐴𝑟𝑒𝑎

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Figure 1 Sketch of the raw optical observables extracted from the binary blob of pixels of Didymos.
∗https://colab.research.google.com/, last accessed: 22nd of July, 2021.
†https://it.mathworks.com/products/matlab.html, last accessed: 22nd of July, 2021.
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Some conventions and nomenclatures are briefly explained to simplify the discussion. In this work, with CoM is

intended the body’s center of mass projected on the image while the CoF is the CoM estimated by the IP method.

The error between the two represents the loss metric to minimize. In Figure 1 the raw optical observables extracted

from the blob of pixels associated to Didymos are represented. The bounding box Γ detected around a blob of pixel is

represented by a vector Γ = [ G H ; ℎ ], the components being respectively the G and H coordinates in image frame of the

box corner, and the length and width of the box. The MajorAxisLength, MinorAxisLength and subsequent Eccentricity,

are the ones of the ellipse that has the same second central moments as the blob of pixels. The Orientation is the angle

between the MajorAxisLength and the G axis of the image reference frame. The Perimeter and Area are respectively the

length of the boundary of the region and the number of pixels. The Circularity is computed as 4c�A40
%4A8<4C4A2

while the

EquivalentDiameter is computed as the diameter of the circle which has the same Area of the blob of pixels.

A. SIPTO

SIPTO (Static Image Processing TOol) is a tool developed internally at Politecnico di Milano by the Deep-Space

Astrodynamics Research & Technology Group‡ used for design, validation and testing of OpNav techniques. SIPTO is

made by a combination of MATLAB, Spice§ and Blender¶ to generate and analyse image databases in a static assessment.

The first step is to define a set of datapoints with the desired geometric conditions around a target body. By using Spice,

the celestial bodies, spacecraft, and Sun can be queried to match in-flight conditions. The relative geometry among

the bodies is given as input to Blender to generate a database. The renderings are collected by specifying the camera

characteristics depending on the use case considered. The database (composed by images, labels, and auxiliary data) is

then processed by a suite of algorithms for image processing. The output of each algorithm is collected and then a

statistical analysis is performed on their performances.

In order to design, train and validate the IP methods considered in this work, a global database of interest is generated.

This database, named ��0, collects a large statistical sample of 10, 000 images of the Didymos binary system seen

from different geometric configurations. It comprehends randomly generated points between 4 km and 14 km with

azimuth angle between -95 deg and + 95 deg and elevation between -45 deg and +45 deg with respect to a reference

frame co-planar with the orbital plane of the secondary. These conditions are representative for a mission designed to

actively observe an asteroid from the illuminated side. During the generation of the database, the angular position of

the secondary with respect to the primary is changed randomly, constraining the secondary to be tidally locked with

the primary. For simplicity, the spacecraft assumes ideal pointing towards the CoM of the primary and images are

obtained with the NavCam characteristics but without noise. Moreover, the - axis of the NavCam is aligned with

the equatorial plane of the binary system, assuming that the / axis represents the boresight direction and the - and
‡https://dart.polimi.it/, last accessed: 22nd of July, 2021.
§https://naif.jpl.nasa.gov/naif/toolkit.html, last accessed: 22nd of July, 2021.
¶https://www.blender.org/, last accessed: 22nd of July, 2021.
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. axes are respectively the ones associated with the longest and shortest size of the sensor. The shape models used

are enhanced versions of the current ones for the Didymos system. They are processed with procedural changes and

re-mesh to simulate roughness and albedo variations with cloud and Voronoi patterns. A 10 m crater is also added on

the secondary (which in this work is considered only as a disturbing element) to simulate the DART impact.

B. COB and CHCOB

The COB and Convex Hull COB (CHCOB) are simple, traditional, robust, and well-known methods used to estimate the

centroid of a figure by its center of brightness. In the formulation used in this work, the CoB is computed over the

binary image using the following equation:

�>�G =

∑#
8, 9=1 �8 9G8 9∑#
8, 9=1 �8 9

�>�H =

∑#
8, 9=1 �8 9 H8 9∑#
8, 9=1 �8 9

(1)

where �8 9 is the logic value that determines if the pixel (G8 9 , H8 9 ) is illuminated or not, whereas �>�G and �>�H are the

components in pixel of the CoB. The image is pre-processed with thresholding methods to delete background noise.

The binary threshold used is determined automatically for each image using the Otsu method [42]. Then, a Region

Of Interest (ROI) that surrounds the connected pixels of the asteroid is automatically determined and the centroiding

method is applied inside the ROI. The CHCOB is a variant of the COB method in which the convex hull of the object is

considered in place of the binary mask. This improves the estimate for irregularly shaped bodies and at high-phase

angles since convexified irregular regions on the terminator naturally shifts the CoB towards the CoM. Both methods

suffer a bias given by the irregular shape of the body and a large offset when high-phase angles are considered. To

overcome the latter, scattering laws can be used [10, 11].

C. WCOB

The Weighted COB (WCOB) is a variant of the COB in which the estimate is corrected by a scattering law derived

empirically through data for the irregular body considered. The main goal of the WCOB is to generate a correction

vector on the image that pushes the CoB towards the CoM. The steps necessary to generate such correction are now

detailed using the nomenclature illustrated in the pipeline sketched in Figure 2.

Once the image is acquired from the NavCam (step 1), it is binarized using an arbitrary threshold (f1) or Otsu method

(step 2). The latter is used in this work. An object recognition algorithm is used on the blob of pixels detected in the

image to recognize the primary and secondary asteroids (step 3). This algorithm works by sorting the blob of pixels

larger than a pre-defined threshold (f3 , set to 100 pixels given the expected dimensions of the Didymos asteroids) based

on their areas and by rejecting the ones which are too close to an expanded bounding box (Γ4) around the biggest blob,

which is automatically labelled as the primary. The expansion is managed by the � parameter, which has been set to 1.2

in this work. If a blob pass the rejection test, it is then classified as the secondary, it being the second biggest group of
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Figure 2 IP pipeline of the WCOB. Input and output are represented respectively by green and red arrows.
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pixels sufficiently far away from the primary. With this method, the detection of the secondary in the image achieves a

very low number of false-positive (0.11%) but a much higher number of false-negative (8.69%). Once the primary is

detected, the focus is put on the portion of the image around it. From this step forward, the IP pipeline of the WCOB is

flowing in two parallel branches: one in which the magnitude of the correction is determined (branch b) and another

one in which the orientation of the correction is determined (branch a). The two branches merge together in (step

9) to determine the final CoF estimate. Starting from (branch b), in (step 4b) optical observable of the primary are

computed such as the area, centroid, eccentricity, and length of the major axis from the cropped portion of the image.

As illustrated in Figure 3 using the datapoints of the ��0 database, a correlation exists between the eccentricity of the

asteroid and the PA. To exploit it, a second-order polynomial is fit to the data in Figure 3 in the least square sense so that

the PA can be computed as (step 5b):

%�(G) = ?2G2 + ?1G + ?0 (2)

where ?0, ?1, and ?2 are the polynomial coefficients evaluated from the fitting, while G is the eccentricity of the blob of

pixels associated with the asteroid. The polynomial coefficients used are reported in Appendix A.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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3

Figure 3 PA vs Eccentricity for all datapoints of ��0 (blue), of the PA function (solid red), and 3f value
(dashed red).

As illustrated in Figure 3, the PA estimated with Equation 2 would be capable to provide a rough estimate which is more

precise at higher PA values. The fit error follows a Gaussian distribution with mean ` = 0 deg and standard deviation

f = 6.383 deg. A fine estimate of the PA could be performed with the use of data from additional sensors, however, in
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this work only imaging data is considered available. Similar to what has been done for the eccentricity-PA relationship,

it is observed in Figure 4 that a correlation exists between the PA, MajorAxisLength (which is the length in pixel of the

major axis associated to the blob of pixels of the primary), and the distance in pixel between the CoB and CoM for the

datapoints of the ��0 database. This is exploited by the means of a fifth-order polynomial surface which is once again

fit using a least squares method:

" (G, H) =
∑

8 = 0, · · · ,5
9 = 0, · · · ,5
8 · 9 ≤ 6

?8 9G
8H 9 (3)

The ?8 9 coefficients used are reported in Appendix A. In (step 6b), by using Equation 3, the magnitude correction term

of the WCOB method is estimated.

Figure 4 CoM-CoB offset as function of the length of the major axis and PA. The black surface represents the
magnitude correction fit.

Moving to (branch a), in (step 4a) the cropped grayscale image around the region in which the primary is detected is

considered instead of the binary mask. A filter is applied in (step 5a) to exacerbate differences between the soft and

sharp gradient respectively over the terminator and edge of the asteroid. To do so, in this work a Sobel filter is used.

In (step 6a) the activation map of the filter is binarized using an arbitrary threshold (f 5 , 80% the maximum value

detected in each activation map). The CoB of the binary mask of the activation map is then computed as the edge CoB

(eCoB) and used to provide a direction about lighting conditions. In (step 7a) the eCoB-CoB orientation is computed.

Once again, as illustrated by comparing the eCoB-CoB orientation with the CoB-CoM one (which represents the ideal
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orientation to use for the correction) a rough correlation between the two exists, as it is possible to see in Figure 5.

(a)
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Orientation(x)

3

(b)

Figure 5 (a) Output of the Sobel filter on Didymos with the CoM (green), CoB (yellow) and eCoB (red)
highlighted. (b) Correct orientation vs estimated one for all points in ��0 (blue), of the Φ function (red) and
3f value (dashed red).

Once again, by using a fitting function is possible to relate the estimated orientation with the ideal one. A sum of sines

function is found to perform best for the fit in (step 8a):

Φ(G) = 01B8=(11G + 21) + 02B8=(12G + 22) + 03B8=(13G + 23) + 04B8=(14G + 24) (4)

The coefficients for this curve can be found in Appendix A. The fit error follows a Gaussian distribution with mean

` = 0.758 deg and standard deviation f = 33.895 deg, as illustrated in Figure 5. The last fundamental step is performed

in (step 9) when the estimated magnitude and correction are combined to provide a CoF estimate using the following

equation:


�>�G

�>�H

 =

�>�G

�>�H

 + F × " (%�(4), "0 9 �G8B!4=6Cℎ) ×

2>B(Φ(4�>�, �>�))

B8=(Φ(4�>�, �>�))

 (5)

where F is a weighting factor that can be used to tune the correction term. It is immediate to understand that when

F = 0 the WCOB degenerates into the COB method. In this work, a value of F = 1 is used for all geometric conditions.

It is important to remark that as in the COB and CHCOB methods, the WCOB method uses optical observable and

variables which are translation and rotation invariant.
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D. Neural Network

The way the WCOB works is by defining relationships existing between raw and high-level features and using the latter

in nonlinear equations to generate CoF and PA estimates. As illustrated in Section 2, a lot of effort is put into designing

an image processing pipeline to do so and a lot depends on the ability of the designer to spot trends and relationships

as well as experience in defining the algorithm steps. A different approach could be to use the capability of a Neural

Network (NN) as a universal function approximator to find relationships without explicitly defining or constraining them.

Both approaches are data-driven, while the former relies on the ability of the designer, the latter lets the relationship be

discovered through a machine learning approach. With the NN hyper-parameters being set, the weights and bias of the

network are optimized through back-propagation given that labeled input-output relations are provided.

A sketch of the NN method is illustrated in Figure 6. The cropped grayscale image of D1 identified by an object

recognition algorithm is binarized using the Otsu method. By applying a set of traditional IP methods a feature vector

representing 12 properties associated to the blob of pixels of D1 is generated. The properties considered are illustrated

in Figure 6. The feature vector is then used as input of a NN architecture which outputs the CoF as well as the PA. Note

that to keep the method rotation and translation invariant, the coordinates of the bounding box (ΓG and ΓH) are not

considered in the feature vector and that the �>� components are scaled with respect to them. The advantage of this

approach is that the input feature vector is computed with traditional and well known IP methods, which are guaranteed

to be robust and explainable. Moreover, since the NN uses a similar set of parameters as the WCOB method, it is

possible to understand if there exist variables and trends that have not been identified by the designer which can be

spotted through training of the NN.

Binarization Traditional IP
- CoFx
- CoFy

- PA

OUTPUTNN LAYERS

Figure 6 Sketch of the architecture of the NN method.

To train and validate the NN, the ��0 database is divided into a 80/20% partition. Three different NN architectures are

instantiated: ##1, ##2, and ##3. The first one is copied from the one between the fully connected and output layers of

the Convolutional Neural Network (CNN) described in the next section. The second one has a deeper architecture and
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departs in terms of complexity to its convolutional counterpart. The third and last one has a much deeper architecture

that contains approximately the same amount of parameters of the CNN. The three architectures are summarized in

Appendix B, together with the performances achieved during training and validation.

E. Convolutional Neural Network

The CNN is a type of deep architecture that exploits sequences of convolution layers and neural network layers to extract

and synthesize data from images. CNNs embed the capability to correlate spatial information in the image’s pixels

intensity with the use of kernels whose weights and bias are determined through training. A representation of the

CNN method is illustrated in Figure 7. Differently from the NN, the CNN acts directly on the grayscale images of

the databases. A feature vector representing the image is not defined a priori and it is the task of the convolutional

layers of the CNN to synthesize it for the NN head in the fully connected layer. Before the CNN is applied to the raw

images, a pre-processing step is necessary to prepare the input data. Indeed, images are generated with ideal pointing

and with a resolution set as the one of the NavCam. The first is an issue in terms of label variability. Since the CoF

label would have the same value equal to the sensor center for any given image, the CNN could simply learn to output

a constant value , without actually learning from the data. The second is an issue for the computational cost of the

training. To overcome both, images are cropped and resized to 128 × 128 pixels using the bounding box Γ associated

with the asteroid. During pre-processing, the CoM and CoB labels are treated accordingly and defined with respect to Γ

instead. This provides variability of the labels during training and at the same time allows for the output of the CNN to

be scaled back to NavCam resolution for comparison with the other methods.

INPUT OUTPUTCONVOLUTIONAL LAYERS NN LAYERS

- CoFx
- CoFy

- PA

FULLY
CONNECTED

Convolution + ReLU + Pooling Flattening

128

12
8

Figure 7 Sketch of the architecture of the CNN method.

The same split used to train and validate the NN is used for the CNN. The architecture is summarized in Appendix B,

together with the performances achieved during training and validation. Although the CNN has not specifically been

trained to be rotation invariant, this property could be introduced with data augmentation simply by generating rotated
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images in the training and validation sets or with an offset of the orientation in the pre-processing step before providing

the data to the CNN.

III. Case study

A. Milani mission

ESA’s Hera mission will deploy two CubeSats in the proximity of the Didymos binary system in 2027: Juventas [6] and

Milani [7, 8]. The primary, D1, is expected to be an irregular spheroid with an estimated diameter of 780 m while the

secondary, D2, is modelled as a triaxial ellipsoid with longest axis spanning 170 m [7]. The Milani objectives are both

scientific and technological: to map and study the surface composition of D1 and D2, and to demonstrate CubeSat

technologies in deep space. These includes Inter-Satellite Link (ISL) with Hera and autonomous OpNav capabilities.

Milani is designed as 6U CubeSat with orbital maneuvering capabilities and attitude control. The current design foresees

a duration of 73 days, and is divided into four different phases: release (REL), far-range phase (FRP), close-range

phase (CRP), and experimental phase (EXP). Within these phases, Milani shall be satisfying a series of payload-driven

constraints for scientific acquisition [7]. The relevant end-to-end mission profile of Milani is shown in Figure 8.
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Figure 8 Milani’s range (a) and phase angles (b) w.r.t. D1 and D2, and apparent size of D1 and D2 (c).
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In this work, Milani’s trajectory during the FRP and CRP is considered as a test case for autonomous OpNav. In Figure

9 the trajectories of these two phases are illustrated in the DidymosEquatorialSunSouth (DESS) centered in the system

barycenter.

(a)
(b)

Figure 9 Milani operative orbits in the FRP (a) and CRP (b). The cyan point and arrow indicate the beginning
of each phase.

The orientation of the axis of the DESS is defined such that the Z-axis points to the South pole of D1, which is assumed

perpendicular to the equatorial plane described by the orbital motion of D2 about D1. The X-axis points towards the

Sun projection in the equatorial plane, and the Y-axis complete the right-hand set. As it can be seen from Figure 8, the

Milani range to the asteroids is in the order of 8-14 km during the FRP, and in the order of 2-11 km during the CRP

(Figure 8a) while the Phase Angle (PA) never exceeds 95 deg (Figure 8b). Moreover, the apparent size of the bodies

exceeds the NavCam’s FOV for a limited amount of time during the CRP (Figure 8c). Two representative images of the

system are illustrated in Figure 10 from 4 km and 14 km.
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(a) (b)

Figure 10 Synthetic images of Didymos bodies observed from (a) 4 km and (b) 14 km with a 21 × 16 deg FOV
NavCam.

The Milani nominal navigation strategy is based on a ground-based approach that uses radiometric tracking with Hera

and optical information from D1 and D2 [7]. However, the mission will also perform an OpNav experiment involving

the validation of onboard image processing and filtering methods.

In this work, the Milani test case is considered for the data-driven IP methods for different reasons. First, the system will

be visited twice before the start of the mission (first by DART and a then by Hera), and therefore a rough shape model

will be available to incorporate synthetic and/or real images for training. Second, the Didymos binary system allows

the characterization of a robust IP method in terms of disturbance of the secondary over the primary. Third and last,

there is a need for a lightweight but accurate IP method for the onboard navigation of the CubeSat, which may not be

satisfied by a simple centroiding technique given the large excursion in terms of range and phase angle of the nominal

trajectories. In addition to this, computational times shall be considered as well for practical implementation. Amongst

the IP methods considered, it is expected that the evaluation cost would increase from the simplest (�$�, ���$� and

,�$�) to the more complex ones (##B and �##), the latter requiring substantially more evaluations than the former.

This analysis however is out of the scope of this work and is left for future iterations.

B. Results

In this section, the results of the IP methods presented are evaluated over two databases representative of the foreseen

nominal trajectory for the Milani mission: these are the FRP and CRP. The two databases are constituted respectively

by 12, 102 and 12, 584 images and are obtained by sampling the Milani trajectories every 150 s. The three databases

used in this work are represented in Figure 11. The NavCam used to generate the databases has a 21 × 16 deg FOV and

a sensor 2048 × 1536 pixels wide.

To simplify the plot readability, a jet color-code mapping is used from blue to red in all images passing from COB,

CHCOB, WCOB, ##1, ##2, ##3, and CNN. The metrics used to evaluate the performances are defined as follow:
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(a) (b)

Figure 11 ��0 cloud of points generated with SIPTO for training/validation (blue), and for testing (red and
green, representing FRP and CRP respectively).

Y�>� = |�>" − �>� | (6)

Y%� = %�CAD4 − %�4BC (7)

Y< = 2ACAD4 · tan
(
��$+

2
· Y�>�

)
(8)

where Y�>� represents the norm of the error in pixel between the estimated CoM and the real one, Y%� is the error

between the real phase angle and the one estimated from the image, and Y< represents the error between the real

and estimated CoM in meters computed in the image plane given the true range at which the image is taken and the

Instantaneous FOV (��$+) of the NavCam. The same set of plots are now presented for the performance analysis in

the FRP and CRP databases.

1. Far Range Phase

The Y�>� and Y%� histograms in Figure 12 show in a simple way the global performances of all methods and illustrates

the tendency passing from the COB to the CNN to decrease the mean and standard deviation of the probability

distributions.
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(a) (b)

Figure 12 Histograms of the Y�>� (a) and of the Y%� (b) for all IP methods in the FRP database.

It is possible to see that the performances can be subdivided into three main groups. First, the COB and CHCOB are

roughly represented by uniform distributions across the interval from 0 to 50 pixels for the Y�>� , while the Y%� is not

generated with these methods. Second, the WCOB, ##1, ##2 and ##3 are fit by W-distributions for the Y�>� while

Gaussian distributions are used for the Y%�. In the legend of Figure 12 it is possible to see the associated shape and rate

parameters (U, V) or mean and standard deviation (`, f) of the various distributions. The methods of the second group

show the tendency to re-organize the Y�>� into distributions with lower mean and standard deviation when compared to

the COB and CHCOB. This is a direct consequence of the scattering laws being applied, implicitly or explicitly. This

is valid for the third category as well, represented by the CNN, which is visually much more accurate than all other

methods considered. The performance metric are also represented in numerical form in Table 1.

To appreciate the CoF accuracy decomposed by components, the error ellipses of the various methods are illustrated in

Figure 13 using a 99% confidence level. From this figure it is possible to appreciate even more the higher accuracy

passing from the COB to the CNN method. It is also interesting to appreciate from the COB and CHCOB how the

ellipses would naturally have a larger size from the G component of the sensor (which is the one most affected by the

PA) and how the WCOB and AI methods act by decreasing the ellipses size and orientation, which for the case of the

WCOB is accompanied by ∼ 90 deg rotation. The parameters defining the error ellipses in Figure 13 are reported in

Table 1, namely: 0, 1, \, -0 and .0 represent the the major and minor axis, the major axis orientation, and the ellipse

geometrical center.
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Figure 13 Error ellipses of the CoF at 99% confidence level for all IP methods in FRP database.

The Y�>� and Y%� are also reported as function of the phase duration in Figure 14. Only 7 days are displayed for

clarity, owing to the repetitiveness of the pattern. By comparing Figure 14 with the range and PA curves in Figure 8 it is

possible to see that the COB and CHCOB achieve the worst performances at high PA (which also coincide with a higher

distance from D1).

Figure 14 Performances of the CoF and PA estimates of the different IP methods in the FRP database with
range and PA as function of time.

18



Table 1 Performance metrics of all IP methods in the FRP database.

Metric COB CHCOB WCOB TT1 TT2 TT3 ITT

Y�>�

` [pxl] 26.829 23.632 9.838 15.607 12.230 13.430 2.611

f [pxl] 17.030 15.305 6.369 10.708 9.091 9.444 1.724

0 [pxl] 93.461 82.720 29.560 54.770 44.292 48.063 8.219

1 [pxl] 21.690 19.842 20.616 21.130 20.568 22.564 5.177

\ [deg] 196.997 196.699 101.473 189.647 191.158 197.172 181.296

-0 [pxl] -2.429 -2.082 0.841 3.022 3.568 -0.630 -0.581

.0 [pxl] -2.129 -1.662 0.420 -1.408 0.780 2.032 0.270

Y<

` [m] 57.320 50.544 20.163 32.202 24.838 27.114 5.283

f [m] 40.788 36.614 13.792 23.452 18.987 19.488 3.590

Y%�

` [deg] n.a n.a -1.417 -2.447 -2.218 -1.141 -0.070

f [deg] n.a n.a 7.040 5.228 5.193 5.348 1.560

This is expected and motivates the need for scattering laws. It is possible to see how the methods developed from the

WCOB to the CNN thrive in terms of performances in these conditions. However, it is possible to appreciate an inverse

trend for low values of PA, where the best performing methods are the COB, CHCOB, and CNN. These methods locally

outperform the others around day 2 and 5.5, which are portions of the Milani trajectory associated with low values of

%�. In these conditions, it seems that the correction performed in the WCOB and NN is counterproductive, making the

CoF estimate deviate as high as 30 pixels. This has been observed directly on the WCOB to be driven mainly by two

sources of error. The first is due to an error in the PA estimate, which is affected by larger noise when low a PA is

considered, as illustrated in Figure 3. The second is given by an orientation error which is caused by a much softer

difference between terminator and edge region at low PA, which causes the branch b of the WCOB to not properly

assess the correct orientation. Since in these cases both the magnitude and orientation terms of the CoF correction

are highly degraded, the CoF estimate is highly inaccurate in these conditions. Interestingly, this drawback seems to

impacts both the WCOB as well as the NN method but not the CNN one, hinting at the fact that it may be introduced

by the image descriptors used and that it can be addressed with the use of further spatial information from the image.

Lastly, it is highlighted that the WCOB can be easily adapted to this scenario by setting a weighting factor F equal to 0

below a predetermined value of PA.

19



Another interesting phenomenon is observed in Figure 14. Looking at it carefully, for example around days 1.89, 3.29,

4.25 and others, it is possible to identify isolated points with suddenly unstable performances. These are caused by the

perturbing effect in the images of D2. These perturbations are observed to be small whenever in the image D2 spans

entirely over D1, casts shadows, or in both cases. On the other hand, they are observed to have a large impact on all

methods when D2 is touching the edge of D1. Both these cases are illustrated in Figure 15. The latter is because the

object recognition algorithm is not capable to distinguish between D1 and D2 and in these cases the image properties

associated with D1 also encompass the blob of pixels of D2, which is offsetting them. This is true for all methods but

seems to be less severe for the CNN, which may have learned through training to better handle these cases.

Eventually, to have a global view of the best-performing IP method, the COB, WCOB, NN (represented by the

##2 instance), and CNN are compared in terms of the smallest Y�>� . In Figure 16 it is possible to appreciate the

best-performing methods as function of the range from D1 and PA. As discussed before, the COB is considered the best

at lower PA, although its performance is contested by the CNN in this interval. Globally, the COB is the best for only

3.40% of the points. The WCOB and NN are found to be the best especially in the low to medium and medium to

high intervals of PA, covering respectively the 7.30% and 5.14% of the points. Finally, the CNN is considered the best

performing method across a wide range of conditions since 84.17% of the points is performed with the smallest error

with this method.

(a) (b)

Figure 15 Examples of D2 disturbances when (a) D2 eclipses D1 and (b) D2 shape touches the edge of D1.

2. Close Range Phase

In this section, the analysis performed before for the FRP is now presented for the CRP database. Only the relevant

differences in terms of performances are given. Differently from the FRP, the CRP of the Milani mission reaches ranges

below 4 km, which is considered the lower limit in the ��0 database. For this reason, the performances are illustrated

in detail for the points above 4 km, while they are briefly examined for those below 4 km, 1006 in total, as an interesting
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Figure 16 Scatter-plot of the method with the smallest Y�>� as function of the range and PA in FRP.

example of applications of data-driven methods applied outside their design parameter space.

The Y�>� and Y%� histograms in Figure 17 show in a simple way the global performance of all methods. The trends

identified in the FRP database are observed also in this case. The only difference can be seen in the range of Y�>�

which spans a larger interval as a consequence of this phase taking place closer to D1 than the FRP. It is also observed

that the CNN distribution is closer to the ones of the NN and WCOB than in Figure 12. Once again, all data used to plot

the histograms in Figure 17 are represented in numerical form in Table 2.

The error ellipses of the various methods are illustrated in Figure 18 using a 99% confidence level. As for the CRP case,

it is interesting to see how the ellipses would naturally have a larger size with the COB and CHCOB in the G component.
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(a) (b)

Figure 17 Histograms of the Y�>� (a) and of the Y%� (b) for all IP methods in the CRP database.
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Figure 18 Error ellipses of the CoF at 99% confidence level for all IP methods in CRP database.

In this case however, the COB and CHCOB ellipses develops predominantly over the region with G < 0. This is a direct

consequence of the CRP trajectory, which is not symmetrical around the X-axis of the DESS reference frame, as seen in

Figure 10. The orientation of the error ellipses of all other IP methods has retained the same orientation of the FRP

database. In CRP however, the NN methods have larger ellipses than the COB and CHCOB.

The Y�>� and Y%� are also plotted as function of the phase duration in Figure 19, the same considerations drawn from

Figure 14 hold true in this case. The points below 4 km are omitted in Figure 19 for clarity as they belong to a region

outside the one considered for training. By comparing the performances above and below 4 km in Table 2 and Table 3

it is possible to see that in the latter case the WCOB and the NN are highly degraded while the COB, CHCOB, and

CNN are not. The COB and CHCOB perform reasonably well since the points closer to D1 are also associated with

the lowest PA and the CoF estimate in these methods is still retaining accuracy due to the fairly regular shape of D1.
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On the other hand WCOB, NN and CNN are all data-driven approaches, thus it is expected that they would suffer

degraded performances when tested outside their design range. This is true for the WCOB and NN, but surprisingly it is

not the case for the CNN, which actually is confirmed the best also below 4 km. This behavior is explained by the

pre-processing step used in the CNN method for the cases in which D1 is fully resolved in the FOV and below 4 km. In

these conditions, when D1 edges are still not cut by the FOV, the scaling and resizing of the images around the bounding

box is a determining factor in having the D1 appear in the image as seen from further away. A similar concept called

"telescopic range" has been used actively as means to extend the functioning interval of data-driven algorithms in [35].

This phenomenon is responsible for the good performances of the CNN in these ranges.

Figure 19 Performances of the CoF and PA estimates of the different IP methods in the CRP database with
range and PA as function of time. Points below 4 km are omitted.

Finally, to have a global view of the best-performing IP method, the COB, WCOB, NN (represented by the ##2

instance), and CNN are compared in terms of the smallest Y�>� . In Figure 20 it is possible to appreciate the best

performing method as function of the range from D1 and PA, the first limited to values above 4 km. Similar results to

the ones in FRP are obtained. Globally, the COB is the best for only 3.34% of the points. The WCOB and NN are

found to be the best for 7.82% and 9.56% of the points respectively. Finally, the CNN is considered the best performing

method across a wide range of conditions since 79.28% of the points achieve the smallest error with this method.
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Table 2 Performances metrics of all IP methods in the CRP database for the points above 4 km.

Metric COB CHCOB WCOB TT1 TT2 TT3 ITT
Y�>�
` [pxl] 49.496 43.480 15.860 25.940 20.944 25.064 4.562
f [pxl] 27.594 24.680 10.797 20.575 18.396 23.341 2.701
0 [pxl] 86.633 78.051 50.519 87.017 87.387 105.846 13.447
1 [pxl] 28.978 25.754 29.097 19.845 24.350 29.766 7.067
\ [deg] 185.724 186.542 92.405 180.461 182.927 182.629 182.024
-0 [pxl] -47.732 -41.824 -1.413 -19.072 -10.227 -15.978 -0.864
.0 [pxl] -5.193 -4.115 4.401 -1.854 1.515 1.024 2.100

Y<
` [m] 79.802 70.123 24.046 39.913 31.389 38.246 6.737
f [m] 51.835 46.211 18.255 34.834 29.083 37.877 4.371
Y%�

` [deg] n.a n.a -0.542 -1.709 -1.289 -1.403 0.408
f [deg] n.a n.a 6.109 4.624 4.491 4.806 1.522

Table 3 Performances metrics of all IP methods in the CRP database for the points below 4 km.

Metric COB CHCOB WCOB TT1 TT2 TT3 ITT
Y�>�
` [pxl] 28.041 24.073 85.318 54.939 156.873 158.551 10.196
f [pxl] 23.388 20.190 98.285 49.678 114.699 105.920 7.785
0 [pxl] 73.994 67.350 297.627 146.243 299.376 277.838 45.570
1 [pxl] 32.008 28.192 78.603 43.389 43.549 37.531 14.762
\ [deg] 171.304 176.778 168.547 199.764 45.998 220.227 173.671
-0 [pxl] 24.528 19.927 76.704 49.916 118.960 118.682 -7.394
.0 [pxl] -5.114 -3.385 -14.994 13.009 99.920 104.334 1.978

Y<
` [m] 15.812 13.615 46.793 31.043 89.651 91.001 6.013
f [m] 11.939 10.378 50.839 26.086 59.136 54.005 4.415
Y%�

` [deg] n.a n.a -0.701 3.405 -0.752 1.490 -1.043
f [deg] n.a n.a 6.759 7.266 5.663 6.652 2.292
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Figure 20 Scatter-plot of the method with the smallest Y�>� as function of the range and PA in CRP.

IV. Neural networks explainability
In this section an attempt is made to explain the rationale behind the functioning of the NN methods. This analysis

is motivated by the need to better understand which inputs are meaningful to generate the output. This is useful to

understand the underlying IP pipeline of the NN method but also as a way to understand whether certain relationships

and parameters neglected in the design of the WCOB method could play a role in the generation of the output. This

analysis is performed on the ##2 network, representative for all ## methods considered.

To do so, SHAP [43] values are used. These implement a game theory approach which breaks down the contribution

given by each player to the results of a game. Analogously for the case considered in this work, SHAP values quantify

the contribution of each feature on the model prediction, independently from its complexity. They do so following

a formulation and statistical properties which are discussed in detail in [43]. In a nutshell, SHAP values give an

interpretation of the impact of a given feature exploring all the possible model predictions generated by a coalition

between such feature and the remaining ones. Doing so for all the possible combinations however would not be tractable,

so approximations and samplings are necessary as explained in [43]. The SHAP values can then be used as a proxy

to visualize the impact of a given feature on the model prediction, the higher is the SHAP value in magnitude for a

particular feature, the higher is its effect in the output.

The SHAP values of a sample of 2500 random cases from DB0 of the ##2 predictions are computed with a kernel

explainer. From Figure 21 it is possible to see from a global perspective the impact of each feature looking at the mean

of of the absolute SHAP values.
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Figure 21 Stacked histogram of the mean absolute SHAP values of the NN output for each element of the input
feature vector.

In particular, it is interesting to note that the PA is mostly driven by Γℎ, eccentricity and length of the minor axis. Of

these features, only the eccentricity is range invariant. In contrast to the WCOB, the NN seems capable to synthesize a

more accurate PA estimate when combining the eccentricity with the height of the bounding box and the minor axis

length. This hints to the fact that it would be possible to have a slight improvement in the PA estimate than the one

of the WCOB when considering multiple optical observables. The complexity of such a new formulation has to be

balanced against the expected improvement. On the other hand, the �>� estimate is driven in the G component by

the �>�G and Γℎ while in the H component by �>�H and Γℎ. This hints to a possible relationship found by the NN

between �>� coordinates with �>� coordinates and Γℎ. The NN may have learnt to correlate a correction between

�>� and �>� and to scale it properly as a function of the range from the body by exploiting Γℎ as a proxy for the range.

Also this case offers a reflection for a possible change in the features selected in the WCOB method. Alternatively, the

SHAP values are illustrated case by case for the three output of the ##2. In Figure 22 it is interesting to observe the

correlation effects given by combinations of low-high features and low-high SHAP values. For example, it is possible

to observe how the �>�G and �>�H are largely influenced by the �>�G and �>�H respectively. The former however

show polarization between SHAP values and feature values: low values of the �>�G tends to output low values of �>�

and vice-versa. However the same is not true for the �>�H , which make sense since the geometry of the problem (and

consequently the PA) is affecting the estimate mostly around the �>�G component. Another interesting effect to take

note of is the behaviour of Γ; and Γℎ for the �>�: in both components, high values of Γ; are related to low values of the

�>� components, while high values of Γℎ are related with high values of the �>� components.
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(a) (b)

Figure 22 SHAP values of the input features of the NN method for the �>�G (a) and �>�H (b) outputs, colored
by the feature’s value.

Figure 23 SHAP values of the input features of the NN method for the PA output, colored by the feature’s
value.

Finally, the SHAP values are analyzed for the PA estimate in Figure 23. It is very interesting to observe that the major

contribution to the output are in order Γℎ, eccentricity, length of the minor axis, and perimeter (as seen in Figure 21).

All of these parameters show a strong polarization between feature values and SHAP values. Of these quantities, the

eccentricity is the only one which is range invariant. High values of eccentricity corresponds to high values of PA and
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vice-versa, which is the same sort of relationship exploited in the WCOB method (see Figure 3). It is then interesting to

observe that also Γℎ, length of the minor axis and perimeter could be exploited efficiently in the PA estimate, as high

values of PA seems to be correlated with low values of perimeter and minor axis length and higher values of Γℎ and

vice-versa. All these quantities can be considered as a proxy of the eccentricity, although they are not range dependant.

V. Conclusion
In this work, five different IP methods have been assessed for possible applications for a CubeSat mission around a

binary system. The Didymos binary asteroid system observed by the Milani mission has been exploited as a use case.

All tuning parameters have been set over a global database, while they have been tested on two databases representative

of the two main phases of the Milani mission.

The COB and CHCOB are used as the baseline for a traditional IP approach. All other methods perform better than

these, mainly because scattering laws are put in place explicitly or implicitly to tackle down the known issues related

to these traditional approaches. The WCOB, NN, and CNN are all data-driven methods. However, while the WCOB

bases its foundation on traditional IP techniques, the NN and CNN are based on the machine learning paradigm. In

the WCOB a scattering law is empirically derived from data and applied to the COB estimate. This method has

commonalities between AI and traditional approaches and its one of the main contributions of this work. It differs

from the first one because the optical features extracted are fully known and because the interpolating functions used

are expressed by simple functions. However, similarly to AI methods, being a data-driven approach it needs data to

tune its hyperparameters. An interesting result is that this method performs at the same level as NN methods. This

means that the WCOB presented in this work is a traditional method (and fully explainable) capable to unleash the

performances of a NN which operate with a similar set of input. Moreover, a brief explainability analysis of the NN

method suggests that the proper set of variables have been identified to design the method and that through the usage of

the highly complex nonlinear evaluation functions of a deep-learning NN only a marginal improvement is expected.

The WCOB method being fully explainable means that it can be deployed with much more confidence than a NN on a

flying mission because its main blocks are well understood, robust, and known in the literature. On the other hand, if

much higher accuracy is sought, the CNN is well capable to outperforms all other methods. This is because the CNN

capability to extract spatial information is a key functionality in improving the accuracy of the optical observable.

The difference in performances between WCOB, NN, and CNN are explained by the type of input and methods adopted.

The NNs work with explicit features determined from traditional IP, the WCOB uses a subset of these and one filter,

while the CNN uses a large sample of implicit features and filters which are not defined a-priori but determined through

training. The NN proves that filters are not needed to have good performances if highly complex evaluation functions

are used. On the other hand, the CNN is designed with a large number of filters to extract data from images. With such

capability in place, performances are boosted above the ones of the NN and WCOB. In the middle, there is the WCOB
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method, which demonstrates that traditional IP functions, one filter, and few features are enough for good results. In the

current WCOB implementation, a single filter is used on the image, future work would go into the direction of including

multiple filters to attempt boosting the performance towards those of the CNN. All methods illustrated in this work can

be adapted easily to different shapes, an analysis that compares the performance of the methods also across different

shape profiles would also be valuable. Additional output useful for state estimation can also be included such as the

range from D1. Finally, variants of the WCOB with different weighting parameters F shall be investigated.
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Appendix - A
In this appendix the 3 function that generates the PA, Magnitude and Orientation estimate are detailed.

Phase angle function

The output of the %�(G) function is in deg, the input G is adimensional and is object eccentricity.

%�(G) = ?2G2 + ?1G + ?0 (9)

?0 = 10.31; ?1 = 12.42; ?2 = 92.15;

Magnitude function

The output of the " (G, H) function is in pxl, the input G and H are respectively in deg and pxl and are the phase angle

and the major-axis length

" (G, H) =
∑

8 = 0, · · · ,5
9 = 0, · · · ,5
8 · 9 ≤ 6

?8 9G
8H 9 (10)

?00 = 120.8; ?10 = −7.647; ?01 = −1.013; ?20 = −144.9; ?11 = 0.3552; ?02 = 0.003179; ?30 = 144.2; ?21 = 0.3701;

?12 = −0.001161; ?03 = −4.6674 − 06; ?40 = −59.36; ?31 = −0.2142; ?22 = 4.8414 − 05; ?13 = 1.1334 − 06;

?04 = 3.2924 − 09; ?50 = 11.18; ?41 = 0.02029; ?32 = 8.4124 − 05; ?23 = −1.2784 − 07; ?14 = −3.4714 − 10;

?05 = −9.0424 − 13;

Orientation function

The output of the Φ(G) function is in deg, the input G is also in deg and represent an orientation angle between the CoB

and the eCoB.

Φ(G) = 01B8=(11G + 21) + 02B8=(12G + 22) + 03B8=(13G + 23) + 04B8=(14G + 24) (11)

01 = 553.6; 11 = 0.008099; 21 = −0.5278; 02 = 313.3; 12 = 0.0112; 22 = 2.154; 03 = 9.686; 13 = 0.06434;

23 = 1.644; 04 = 16.5; 14 = 0.03558; 24 = 2.855;
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Appendix - B
The NN and CNN architectures used in this work are reported in this section using the Tensorflow 2.5.0 standard

together with the training and validation performance.

Table 4 Architecture of the ##1 considered in this work. The total number of parameters is 3, 139, all of which
are trainable.

Layer (type) Output Shape Param #
input (InputLayer) (None, 14) 0
dense_1 (Dense) (None, 64) 960
drop (Dropout) (None, 64) 0

dense_2 (Dense) (None, 32) 2080
dense_3 (Dense) (None, 3) 99

Table 5 Architecture of the ##2 considered in this work. The total number of parameters is 21, 347, all of
which are trainable.

Layer (type) Output Shape Param #
input (InputLayer) (None, 14) 0
dense_1 (Dense) (None, 32) 480
dense_2 (Dense) (None, 64) 2112
dense_3 (Dense) (None, 128) 8320
drop (Dropout) (None, 128) 0

dense_4 (Dense) (None, 64) 8256
dense_5 (Dense) (None, 32) 2080
dense_6 (Dense) (None, 3) 99

Table 6 Architecture of the ##3 considered in this work. The total number of parameters is 1, 002, 947, all of
which are trainable.

Layer (type) Output Shape Param #
input (InputLayer) (None, 14) 0
dense_1 (Dense) (None, 64) 960
dense_2 (Dense) (None, 128) 8320
dense_3 (Dense) (None, 256) 33024
dense_4 (Dense) (None, 512) 131584
dense_5 (Dense) (None, 1024) 525312
drop (Dropout) (None, 1024) 0

dense_6 (Dense) (None, 256) 262400
dense_7 (Dense) (None, 128) 32896
dense_8 (Dense) (None, 64) 8256
dense_9 (Dense) (None, 3) 195
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Table 7 Architecture of the CNN considered in this work. The total number of parameters is 1, 438, 659, all of
which are trainable.

Layer (type) Output Shape Param #
input (InputLayer) (None, 128, 128, 1) 0
conv_1 (Conv2D) (None, 128, 128, 32) 320

pool_1 (MaxPooling2D) (None, 64, 64, 32) 0
conv_2 (Conv2D) (None, 64, 64, 64) 18496

pool_2 (MaxPooling2D) (None, 32, 32, 64) 0
conv_3 (Conv2D) (None, 32, 32, 128) 73856

pool_3 (MaxPooling2D) (None, 16, 16, 128) 0
conv_4 (Conv2D) (None, 16, 16, 256) 295168

pool_4 (MaxPooling2D) (None, 12, 12, 256) 0
flat (Flattern) (None, 16384) 0

dense_1 (Dense) (None, 64) 1048640
drop (Dropout) (None, 64) 0

dense_2 (Dense) (None, 32) 2080
dense_3 (Dense) (None, 3) 99

Training and validation

In Figure 24 the Mean Squared Error is reported for ##1, ##2, ##3, and �## together with the smallest validation

loss achieved during training (green point). These occur respectively at 459, 476, 358, and 53 epochs. To address

overfitting, the sets of weights and biases of the networks at these epochs are the ones used in inference on the test sets.

Table 8 Training hyper-parameters for the ## and �## .

Hyper-parameters TT1 TT2 TT3 ITT
Batch size 32 32 32 32
Optimizer Adam Adam Adam Adam
Dropout 0.05 0.02 0.01 0.05

Activation function ReLu/Sigmoid ReLu/Sigmoid ReLu/Sigmoid ReLu/Sigmoid
Error metric MSE MSE MSE MSE

Epochs 500 500 500 60
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Figure 24 Training (blue) and Validation (red) history of the Mean Squared Error metric for ##1 (a), ##2
(b), ##3 (c), �## (d).
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