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Abstract Data analysts predict that the GPU as a Service (GPUaaS) market will
grow from US$700 million in 2019 to $7 billion in 2025 with a compound annual
growth rate of over 38% to support 3D models, animated video processing, and gaming.
GPUaaS adoption will be also boosted by the use of graphics processing units (GPUs)
to support Deep learning (DL) model training. Indeed, nowadays, the main cloud
providers already offer in their catalogs GPU-based virtual machines pre-installed with
the popular DL framework (like Torch, PyTorch, TensorFlow, and Caffe) simplifying
DL model programming operations.

Motivated by these considerations, this paper studies GPU-deployed neural net-
works (NNs) and tackles the issue of performance prediction, particularly with respect
to NN training times. The proposed approach is based on machine learning and ex-
ploits two main sets of features which describe, on one hand, the network architecture
and the hyper-parameters, on the other, the hardware characteristics of the target de-
ployment. Such data enable the learning of multiple linear regression models, which,
coupled with an established feature selection technique, become accurate prediction
tools, with errors below 11% on average.

An extensive experimental campaign, performed both on public and in-house pri-
vate cloud deployments, considers popular deep NNs used for image classification and
speech transcription and shows that prediction errors remain small even when extrap-
olating outside the range spanned by the input data. This has important implications
for the models’ applicability: in this way, it is possible to investigate the impact on
the performance of different GPUaaS deployment or hardware upgrades even without
conducting an empirical investigation on the specific target device or to evaluate the
changes in training time when the number of inner modules in the deep neural networks
varies.

M. Lattuada, E. Gianniti, D. Ardagna
Politecnico di Milano
E-mail: name.lastname@polimi.it

L. Zhang
Amazon E-mail: lzhangza@amazon.com



2 Marco Lattuada et al.

1 Introduction

As the amount of data to process increases, the main purpose of the GPU has changed.
Initially, the GPU was developed for high-performance graphics work. Since 2000,
GPUs are widely used to support high-performance data processing and simulations
and there are several studies dealing with GPU adoption in cloud computing Jun et al.
(2018). GPU as a Service (GPUaaS) is a recent novel option offered by cloud providers
among their infrastructural services to access GPUs on an on-demand pay-per-use
basis. According to data analysts, GPUaaS market’s value will grow from US$700
million in 2019 to $7 billion in 2025 with a compound annual growth rate of over
38% Global Market Insights (2019) to support 3D models, animated video processing,
gaming, and deep learning (DL).

In recent years, with the increasing attention to artificial intelligence, studies on
DL have indeed become more and more popular. DL workloads usually need to use
GPUs to accelerate their execution since, e.g., model training can obtain from 5 up
to 40× time improvement when compared to CPU deployments Bahrampour et al.
(2015); Madougou et al. (2016).

Nowadays, DL methods are fruitfully exploited in a wide gamut of products across
industries, ranging from medical diagnosis to public security. Among them, neural net-
works (NNs) are the most popular technique, whose different variants aim at solving
different classes of problems. For example, convolutional neural networks (CNNs) were
successfully adopted for image recognition and classification tasks Krizhevsky et al.
(2012). More complex architectures, such as recurrent neural networks (RNNs), have
also been proposed to cope with the time dimension. RNNs exhibit a dynamic behav-
ior and are widely used today for speech recognition or machine translation Khomenko
et al. (2017). At the same time, with the emergence of more and more deep learning
frameworks such as Torch Torch (2018), PyTorch PyTorch (2018), TensorFlow Tensor-
Flow (2018), and Caffe Caffe2 (2018) the use of GPUs is no longer a cumbersome task,
making more and more people begin to write GPU-based programs.

The main cloud players are offering today GPU-based virtual machines (VMs)
where DL frameworks are already available Amazon (2018a); Google (2018b); Microsoft
(2018). The use of cloud platforms is beneficial for end-users since they can access opti-
mized instances on demand, thus distributing their workloads across different numbers
and types of GPUs. In some cases, advanced services (like Amazon Rekognition Ama-
zon (2018b) or Google AutoML Google (2018a)) allow end-users to easily add image
and video analyses to final applications starting only from labeled images, without
the need to even define a model and without any DL expertise. For these reasons, the
public delivery model is expected to dominate the market in 2024. However, consumers
will likely adopt private and hybrid clusters too, due to their security features Global
Market Insights (2019).

In spite of the widespread adoption of DL systems, still there are few studies inves-
tigating how, for instance, the training time changes when running on different GPUs
or by varying the number of training iterations or the batch size Bahrampour et al.
(2015); Hadjis et al. (2016). DL applications are characterized by a large number of
design choices that often do not apply readily to other domains or hardware configura-
tions, up to the point that even advanced users with considerable DL expertise fail at
identifying the best performing configuration settings Hadjis et al. (2016). On one side,
performance modeling can help cloud providers to establish service level agreements
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with end-users. On the other side, performance modeling can allow cloud end-users to
predict the budget to train or run production DL models in the cloud.

This paper proposes an approach to learn performance models for NNs running on
multiple and heterogeneous GPU systems. The main metric under investigation is the
NN training time, but the approach can be easily extended to estimate the forward
time for a DL model deployed in production Gianniti et al. (2018b).

The final goal is to lead cloud users to predict: (i) the training time as a function
of the number of iterations and batch size, (ii) how the training time would change
by selecting different types or number of GPUs, and (iii) what would be the impact
on the training time of adopting more complex networks based on a fixed structure.
This last aspect is of paramount importance, since modern DL networks (e.g., VGG Si-
monyan and Zisserman (2014), ResNet He et al. (2015), and Inception Szegedy et al.
(2015)) have the same basic structure. The number of inner modules (which are usually
replicated to improve the DL model’s accuracy) is adjusted to fine-tune training and
cross-validation errors, so as to obtain production quality models.

In particular, this paper proposes machine learning (ML) models based on linear
regression, able to learn a performance model from a collection of experimental runs
of the target DL networks. Three popular CNNs for image classification and one RNN
targeting speech recognition, for which the training on multiple GPUs is particularly
challenging from the performance modeling perspective, have been considered. More-
over, multiple frameworks (TensorFlow TensorFlow (2018), the most widely used, and
PyTorch, the fastest growing in the NNs community den Bakker (2017)) and hetero-
geneous GPU environments, including both multiple VM instance types offered by a
public cloud provider and in-house servers representative of private cloud deployments,
have been considered.

To improve the performance model’s generalization capabilities (for instance, to
predict the performance of a particular GPU model when the profiling data used for
learning is collected on different GPUaaS deployment or in-house hardware), feature
engineering and selection are performed by relying on the stepwise method, widely used
in statistics Draper and Smith (1966).

As empirical analyses will demonstrate, small scale profiling experiments are enough
to obtain accurate performance models, which are able to extrapolate the training
time estimation with a batch size of different scale, or with more powerful hardware,
mitigating the profiling cost of this approach.

In the experimental campaign, the four NN models have been run on six different
VM instance types on Microsoft Azure and on two different in-house servers. Overall,
four different NVIDIA GPU models widely used at the time of writing have been
analyzed. An extended analysis of the most important features to be included in the
ML models is also provided.

Our results show that performance models are accurate enough to predict the
training time under a number of scenarios of practical interest and allow users to
estimate, e.g., how training time changes by changing GPU type or number, or changing
the network’s inner modules number, overall yielding relative errors about 27% in the
worst case.

This paper is organized as follows. Section 2 reviews related work. Section 3 de-
scribes what are the inputs of the proposed performance models and how they are
built. Section 4 presents the experimental setup adopted for training the performance
models, whose validation is presented in Section 5. Conclusions are finally drawn in
Section 6.
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2 Related Work

DL popularity is steadily increasing thanks to its impact on many application do-
mains (ranging from image and voice recognition to text processing) and has received
a lot of interest from many academic and industrial groups. Advances are boosted by
enhancements of the deep network structure and learning process (e.g., dropout Sri-
vastava et al. (2014), network in network Lin et al. (2013), scale jittering Vincent et al.
(2010)) and by the availability of GPUs, which provide up to 40× reduction over CPU
systems Bahrampour et al. (2015).

Over the last few years, several frameworks have been developed and are constantly
extended to ease the development of DL models and to optimize different aspects of
training and deployment of DL applications. The work in Bahrampour et al. (2015)
provides a comparative study of Caffe, Neon, Theano, and Torch, by analyzing their
extensibility and performance and considering both CPUs and GPUs. The paper pro-
vides insights into how performance varies across different batch sizes and different
convolution algorithm implementations, but it does not provide means to generalize
performance estimates to different settings.

Since common NNs are deployed on GPUs, it is important to understand how such
hardware can influence performance, but unfortunately only a few studies are available
in the literature.

Jia et al. (2012) propose the Stargazer framework to build performance models
for a simulator running on GPU, so as to correlate several GPU parameters to the
simulator execution time. Given the daunting size of the design space (which considers
very low level parameters like the number of thread blocks concurrently running on one
core or how many intra- and inter-warp memory requests may be coalesced into one
memory access), they exploit sparse random sampling and iterative model selection,
thus creating step by step an accurate linear regression model. Another approach to the
issue is proposed in Liu et al. (2007), where the authors elaborate a detailed analytical
model of general purpose applications on GPUs. The proposed model consists of three
general expressions to estimate the time taken for common operations, according to
their dependence on data size or computational capabilities.

Similar analytical modeling approaches Baghsorkhi et al. (2010); Zhang and Owens
(2011); Hong and Kim (2009); Song et al. (2013) rely on micro-architecture information
to predict GPU performance. As GPU architectures continue to evolve, the main issue
of analytical models is that a minor change in the architecture may require extensive
work to adapt the model to hardware enhancements Dao et al. (2015).

Given the complexity of GPU hardware (due to the large number of processors, the
thread context switching mechanism, and the on-board hierarchical memory subsys-
tem), recently black box approaches based on ML are favored over analytical models.
Indeed, black box approaches can derive performance models from data to make pre-
dictions without a priori knowledge about the internals of the target system. On the
other hand, ML models Dao et al. (2015); Barnes et al. (2008); Bitirgen et al. (2008);
Kerr et al. (2010); Lu et al. (2017); Gupta et al. (2018); Peng et al. (2018); Dube et al.
(2019) require to perform an initial profiling campaign to gather training data to learn
the mapping among the features of an application and its execution time. An overview
and quantitative comparison among recent analytical and ML-based model proposals
is reported in Madougou et al. (2016).

The contribution closest to this work can be found in Dao et al. (2015). The work
considers the OpenCL benchmark suite and obtains ε-SVR models able to predict each
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OpenCL kernel performance with an average 5–10% error. However, the approach
is rather low-level since it requires to instrument each kernel’s code and to identify
through an ad-hoc profiling activity low-level features such as the maximum number of
active work groups, the number of registers used per work item, the number of branches
and divergent branches per work item. In this paper, the achieved accuracy is similar to
Dao et al. and is obtained by processing only DL application framework logs. Moreover,
the maximum error obtained is also significantly lower, about 27% in the worst case,
while more than 70% error is obtained by Dao et al. On the other hand, the proposed
approach focuses on estimating NNs training time, while the usage of low-level features
allows the technique proposed by Dao et al. to predict the performance of other classes
of applications.

Kerr et al. (2010) profile and build models for a range of applications, run either on
CPUs or GPUs, exploiting the Ocelot framework Diamos et al. (2010). Relying on 37
performance metrics, they exploit principal component analysis and linear regression in
order to highlight those features that are more likely to affect performance on heteroge-
neous processors. The approach is rather general since the Ocelot infrastructure allows
for simulating GPUs, gathering performance metrics, and instrumenting kernels. The
work models CUDA kernels’ performance using only metrics that are available before
a kernel is executed. Unfortunately, the Ocelot infrastructure is not actively developed
anymore, limiting its support to old GPU generations. Along the same lines, Luk et al.
(2009) describe Qilin, a technique for adaptively mapping computation onto CPUs or
GPUs, depending on the application as well as system characteristics. With this ap-
proach, the authors show an improved speedup with respect to manually associating
jobs and resources. Finally, Gupta et al. (2018) propose an online modeling approach to
predict the single frame processing time starting from GPU frequency and performance
counters for mobile devices.

In the DL area, Hadjis et al. (2016) present solutions to minimize the total training
time of CNNs, given the network architecture of the DL model, the data set used for
training, the set of available computational resources and their throughput, and the
network speed. The framework is able to identify the optimal split of the DL model
across multiple compute groups and the optimal number of servers per group. They
also propose a solution to improve the stochastic gradient descent (SGD) momentum
update to compensate the staleness introduced by the adoption of multiple compute
groups. However, their system cannot predict a priori the execution time of a given
number of iterations nor the training time in experiments with different batch size.

A higher level approach, which considers matrix multiplication computation time
as the core feature, is presented in Lu et al. (2017), where the authors focus on the
deployment of CNNs on mobile devices. According to this consideration, they focus only
on the forward pass, whose overall execution time is predicted starting from an estimate
of the time taken by matrix multiplications when the CNNs are deployed on a CPU
or a GPU. This approach entails extracting tensor sizes from network specifications
and associating them to their expected response times, according to platform-specific
benchmarks. In the end, the approach is more accurate when CPUs are considered
(the percentage error they obtained is in the range 6–15%, while they obtain 16–
21% for the GPU case). Similarly, in our previous work Gianniti et al. (2018b), we
derive linear regression models for estimating CNN training times by relying on the
layers computational complexity in terms of simple primitives available on GPUs. This
enables performance prediction even on networks never taken into account during the
learning phase. However, our initial study is limited to CNNs trained on a single GPU
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with the Caffe framework. In a more recent work Gianniti et al. (2019), we compared
our per layer model in Gianniti et al. (2018b) with a pure black box ML end-to-
end model but the study was still limited to a single DL framework and could not
generalize prediction to different GPU hardware. Finally, the work in Dube et al.
(2019) proposed AI Gauge, a framework based on ML where models are continuously
calibrated processing job traces. The proposed models achieve less than 10% relative
error on average, but, however, are limited to single GPU deployments.

The main novelty of this paper with respect to previous literature contributions
lays in the generality of the proposed models and in their extrapolation capability.
Each NN training is associated with a single model that allows users to predict the
execution time on new target architectures. Different from previous approaches, the
proposed performance models do not require profiling nor simulation of the application
on the new target architecture: GPU data sheets provide all the relevant information.
Moreover, several scenarios of interest can be investigated with good accuracy and
limited profiling, such as evaluating how the training time changes by changing the
number of iterations and batch size or by varying the number of inner modules in the
networks.

3 Models Training

To estimate the execution time required for training an NN, a linear model that corre-
lates some features of the training process with its execution time is considered. The
model is built using multiple linear regression: Madougou et al. (2016); Lee et al. (2007)
show how linear regression-based approaches usually perform better than other solu-
tions (for instance, neural networks) in terms of accuracy for modeling the performance
of massively parallel applications.

This section is organized as follows. Section 3.1 overviews the set of NNs consid-
ered in this study. Section 3.2 describes the initial set of features, which are considered,
combined, augmented, and finally selected according to the approach described in Sec-
tion 3.3. Lastly, Section 3.4 introduces the analyses devised to evaluate the performance
prediction models’ generalization capabilities.

3.1 Types of Neural Networks

In the following, three CNNs and one RNN will be considered, namely, AlexNet Krizhevsky
et al. (2012), VGG Simonyan and Zisserman (2014), ResNet He et al. (2016), and the
Baidu DeepSpeech network implemented by Mozilla Foundation (2019b). These three
CNNs for image classification tasks have been selected since they have been widely
studied, brought important advancements in general network architecture, and are fre-
quently used in transfer learning applications, when the time to train a network and/or
the labeled training images are limited Csurka (2017). Moreover, since their architec-
tures are heterogeneous, they can be considered representative samples of the variety
of architectures used in practice for image classification and video processing.

The Mozilla DeepSpeech implementation for audio file transcription has been se-
lected as a relevant representative of the RNN architecture family, since it implements
several optimizations with respect to the initial Deep Speech version 1 Hannun et al.
(2014) and version 2 Amodei et al. (2015) papers, including the introduction of long
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short term memory (LSTM) cells in the recurrent layer, it is able to achieve close
to human accuracy and it can be used in production to determine transcripts from
streaming audio with off-the-shelf hardware Morais (2019).

AlexNet is particularly important from the historical perspective, since in 2012
it won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) achieving
a top five test error rate of 15.4%, while the next best entry achieved an error of
26.2%. This result was a very significant improvement and since then CNNs became
commonplace in the competition. AlexNet introduced rectified linear units as nonlinear
functions rather than the hyperbolic tangent, thus achieving a significant reduction in
training time, and has a relatively simple layout compared to modern architectures, as
it includes only five convolutional, five pooling, five dropout, and three fully connected
layers. Nowadays, AlexNet can be considered representative of small CNNs. A small
complexity has not only a significant impact on the throughput of the CNN and so on its
overall training time. The training process, indeed, is composed of two activities: data
loading and weights update. At each iteration, images are loaded into GPU memory and
then weights are updated according to the training algorithm, e.g., SGD or Adam. In
complex deep CNNs, the data load delay is negligible with respect to the actual training
process. On the contrary, in the case of AlexNet, this contribution is significant and it
has to be taken into account.

VGG was proposed at ILSVRC 2014 and provided a 7.3% error rate, even if it did
not win the accuracy competition. The main characteristic of VGG is to adopt a fixed
module based on an architecture with very small (3×3) convolution filters, which is then
replicated up to 19 times. VGG demonstrated that a significant improvement on the
prior-art configurations can be achieved by pushing the network depth. As a drawback,
the number of parameters grows up to more than 140 million, significantly increasing
the required memory. A year after, a new record in terms of the error rate (only
3.6%, similar to humans performance He et al. (2016)) was achieved by ResNet. The
most important innovation introduced by ResNet is the adoption of residual networks,
which demonstrated easier to be optimized and can gain accuracy from considerably
increased depth (the best performance was achieved by stacking up to 152 layers).
Despite the incremented accuracy, the number of parameters in ResNet is smaller than
VGG’s (about 60 million for the version with 152 layers). This significantly reduces its
memory usage and makes it suitable for training on smaller GPUs, as Section 4 shows.

A common characteristic between VGG and ResNet is to exploit a repeated basic
structure, whose number of replicas can be increased to improve the DL model accuracy,
thus obtaining production quality models. The layers across VGG and ResNet follow
two main design rules He et al. (2016): (i) for the same output feature map size, the
layers have the same number of filters; and (ii) if the feature map size is halved, the
number of filters is doubled so as to preserve the time complexity per layer. In this
way, modern nets are characterized by layers requiring about the same computational
effort.

Finally, the Mozilla open source implementation of the Deep Speech network has
been chosen since, even if it is optimized for multi-GPU training, the adopted communi-
cation and synchronization scheme makes the performance modeling more challenging.

Deep Speech includes five layers: the input audio file is fed into three fully con-
nected layers, followed by a bidirectional RNN layer based on LSTM, and finally a
fully connected layer. The main limitation introduced by the recurrent layer is that its
hidden units are computed sequentially: the RNN forward propagation requires to be
computed from the first time-slice of the input audio and each forward computation
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step depends on the previous one. Instead, backward propagation starts computing
from the last time-slice, with an inverse dependency. The solution proposed in Han-
nun et al. (2014) to train the Deep Speech network is to divide the recurrent layer by
the time dimension, after that it is possible to switch the roles of the GPUs at half
time T/2 of the audio speech and to exchange the intermediate activations. In this
way, half of the GPUs that started the computation of the forward RNN propagation
will end up computing the backward propagation, and similarly for the other GPUs,
avoiding massive data transfers. Furthermore, the network model weights are stored in
the CPU memory and a synchronous gradient optimization scheme is adopted. Once
a mini-batch is sent to each GPU, GPUs compute their contribution to the gradient,
which is sent back to the CPU. The CPU waits until all the working GPUs end the
computations on top of their mini-batches and, finally, computes the mean gradient
and updates the model, thus introducing a strict synchronization barrier. Since audio
clips are characterized by different length, this latter synchronization step leads to per-
formance degradation due to an unbalanced load of individual GPUs (at every step the
CPU has to wait for the slowest GPU). Moreover, the language model is also introduced
in the deep network by introducing the CTC (Connectionist Temporal Classification)
decoder initially proposed in Maas et al. (2014).

3.2 Initial Feature Set

The training time of an NN is mainly characterized by two sets of features: a set
describing the characteristics of the training process to be executed and a set describing
the characteristics of the hardware that will perform such a process. The features
belonging to the former group are:

– I: The number of iterations executed during the training.
– B: The number of training examples processed during an iteration, i.e., the batch

size; in case of more than one GPU, the batch size identifies the overall number
of training examples processed by all the GPUs (following the strong scale ap-
proach PyTorch (2018)).

The main aim of this work is to provide a methodology to predict the performance
of the analyzed application when executed on new hardware. For this reason, a dif-
ferent performance model is built for each pair of framework-trained NN, and, in the
scenarios where the topology of the network is fixed, it is not necessary to add any
features describing the structure of the network, since this will be the same in all the
experiments used to build the model and estimated by means of it. Moreover, since
the implementations of CNNs rely on fixed size images, obtained by cropping original
images, the image size is not added as a model feature. On the contrary, in the sce-
narios where the topology of the network is not fixed, additional features are added to
describe it. In particular, for what concerns the scenarios with ResNet with variable
depth, an additional feature is added to describe the structure of the trained CNN: N ,
i.e., the number of inner modules of the deep net.

The above-listed features describe the characteristics of a NN training process inde-
pendently from the hardware on which it will be run. Training a different performance
model for each target GPU could potentially increase the accuracy of the estimate, but
would prevent prediction on new hardware. On the contrary, a single model that in-
cludes features describing the hardware is used to predict NN training time on different
GPUs. The features used to describe hardware characteristics are:
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– P : The computational power of the used GPUs, measured in single precision
GFlops/second.

– G: The number of GPUs used.
– T : The number of CPU threads used to load in parallel the training examples of a

mini-batch to GPU memory.
– D: The disk delay, measured as the time required to load 120 k files of 192 kB from

disk into the memory of a GPU. With respect to the nominal speed of the disk,
this value has two main advantages: (i) it better takes into account the disk access
pattern of the initial data load step, which is performed before the deep net training
starts; (ii) it can be collected by means of a simple benchmark, without requiring
detailed knowledge of the hardware. Moreover, note that obtaining detailed storage
and I/O hardware characteristics in case of cloud deployments may, indeed, not be
possible.

The described D requires direct access to the target platform. Since this is not
always possible, approximations can be obtained by considering VMs of the same family
or by considering nominal characteristics of the target hardware. For example, if the
information about the D measured on a Microsoft Azure NC6 VM is available and the
D of a Microsoft Azure NC12 (which differs from the former for the number of CPUs
and GPUs) is not, the latter value can be approximated to the former.

3.3 Feature Selection

Some of the previously mentioned features can be expected to directly contribute to
the observed deep net training execution time. For instance, increasing the number
of performed iterations intuitively suggests an increase also in the NN training time.
On the other hand, there are some metrics that more appropriately should appear
in their reciprocals: for example, G and T (which represents the number of parallel
executors in charge of a training process) are likely to produce terms that depend on
their inverse Gianniti et al. (2018a). In this paper, the feature set is augmented with
all the reciprocals of the original features, so as to cater both for those parameters
that intuitively contribute in this way and for possible second-order effects, which may
be harder to anticipate. In principle, it would be possible to use arbitrary nonlinear
transformations of the original features in creating the complete set, such as higher
degree powers or elementary functions. In this research work only measures coming
from the system and their reciprocals are considered. This choice is aimed at bounding
the size of the initial available feature set. The attained accuracy justifies this choice a
posteriori.

Alongside adding reciprocals, another relevant approach to augmenting the feature
set is the use of interaction terms. As a motivating example, the product I · B yields
the total number of processed training examples, hence a relevant contribution for an
accurate performance prediction model. In line with this method, the feature set is
also extended with crossover terms. Each term can contain any combination of orig-
inal features and reciprocals under the constraint that every monomial has at most
degree 1 in every variable. This constraint comes from the previously mentioned choice
of not using any higher degree powers. Additionally, combined terms cannot contain
both a feature and its reciprocal, so as to avoid adding redundant information and/or
introducing numerical issues.
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In order to obtain reasonably sized models, this paper applies a simple feature se-
lection technique based on the statistical properties of linear regression. Draper and
Smith (1966) outline an approach that tries to merge the basic forward selection and
backward elimination schemes, thus achieving the best of both worlds. On one side,
backward elimination starts with the full set of features and iteratively drops the least
significant term from the regression equation, eventually stopping when all the remain-
ing coefficients are significant at a given confidence level. In a dual fashion, forward
selection starts with an empty model and iteratively adds the most promising features
one at a time, until the latest addition results to be not significant enough. In both
cases, the decision is made based on the p-value of single coefficient t-tests, where
at each iteration the least significant (respectively, last added) feature is compared
to a predefined threshold. Since both methods are somewhat impaired by their greedy
approach, Draper and Smith suggest to start with an empty model and proceed in com-
bined steps that try both to add a feature and to remove one, until neither succeeds
at the preliminarily set up confidence levels Draper and Smith (1966).

The decision of adopting this stepwise selection technique is driven by its simplicity,
despite the lack of a validation set. Nonetheless, the experimental results suggest that
this fact does not harm accuracy. In particular, Section 5.4 shows how the final models
retain good generalization capabilities.

3.4 Extrapolation Analyses Setting

A most relevant aspect of this research work is investigating the performance prediction
models’ generalization capabilities. It is of the utmost importance quantifying to what
extent the equations obtained via linear regression remain accurate if applied outside
of the feature range spanned by training data. This aspect has a significant practical
implication: generalizable models enable accurate performance prediction in conditions
that users may not be able, or willing, to empirically investigate. This section elaborates
on extrapolation scenarios.

The most obvious scenario is the extrapolation on the number of iterations, I,
which simply corresponds to training a NN for more epochs. Such information helps in
scheduling jobs on a shared infrastructure or can be used, conversely, to tune the num-
ber of epochs so as to fit a given time window. Similarly, extrapolating on the number
of inner modules, N , allows for fine-tuning the network depth of the architectures that
can be parametrized in this sense, such as ResNet and VGG.

Another set of features can have an even higher economic impact, as their interpre-
tation is linked with hardware changes in the deployment of interest. For instance, since
it is common practice to use the largest batch size that fits on the GPUs at hand, in
order to reach the optimal parallelism, extrapolating on B corresponds to using differ-
ent GPUs with larger memory. Along the same lines, extrapolation on computational
power P means switching to GPUs with a higher nominal speed in GFlops/second. In
the end, extrapolating on the number of data loading threads T or of GPUs G relates
to the installation of more, respectively, CPUs or graphics cards.
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Table 1: Characteristics of the target machines

Computational
Machine Type (v)CPUs Mem. [GB] GPU type Power [GFlops/s] N. GPUs
Azure Standard_NC6 6 56 K80 5591 1
Azure Standard_NC12 12 112 K80 5591 2
Azure Standard_NC24 24 224 K80 5591 4
Azure Standard_NV6 6 56 M60 7365 1
Azure Standard_NV12 12 112 M60 7365 2
Azure Standard_NV24 24 224 M60 7365 4
In-house server 1 20 48 Quadro P600 1195 2
In-house server 2 40 256 GTX 1080Ti 11339 8

4 Experimental Setup

This section describes in detail the experimental setup for collecting data and the set
of conducted deep net profiling experiments. To enforce the generality of the proposed
approach, different open source frameworks and multiple NNs have been considered.
The adopted frameworks are PyTorch 0.3.1 Paszke et al. (2017); PyTorch (2018) and
TensorFlow 1.8.0 Abadi et al. (2016); TensorFlow (2018), while the trained CNNs are
AlexNet Krizhevsky et al. (2012), ResNet-50 He et al. (2015), and VGG-19 Simonyan
and Zisserman (2014), whose implementations are already available within the consid-
ered frameworks. As a representative of RNNs, the DeepSpeech Hannun et al. (2014)
implementation provided by Mozilla has been selected. The implementation is available
only for TensorFlow, while a corresponding PyTorch implementation is not available.

The experiments have been run on four different types of machines, whose charac-
teristics are summarized in Table 1:

– Microsoft Azure NC : They are the cheapest Microsoft Azure VMs based on GPUs,
including up to four K80 GPUs.

– Microsoft Azure NV : Microsoft Azure machines based on up to four M60 GPUs.
– In-house server 1 : An in-house server that includes an Intel Xeon Silver 4114 and

two Quadro P600 GPUs.
– In-house server 2 : An in-house server based on two Intel Xeon E5-2630 v4 and 8

Geforce GTX 1080Ti GPUs.

VGG-19 cannot be trained on the in-house server 1 since its parameters do not
fit in GPU memory. To test the generalization capabilities of the performance models
when the number of inner modules is varied, ResNet1 has been considered as reference
deep network and the number of inner modules has been varied between 1 and 10.

The addressed scenario for CNNs is the classification of images belonging to the
ImageNet Deng et al. (2009) database. The images are cropped to 32x32 pixel when
used as input of the ResNet with variable number of inner modules and to 224x224 in
all the other scenarios. To speed up the experimental campaign, the set of analyzed
images is a subset composed of around 120,000 items evenly partitioned into 100
classes. DeepSpeech has been trained by considering 512 samples from the Common
Voice open source corpus Foundation (2019a) including English language voice records.

As in other research studies, each experiment has been run immediately after pre-
liminary one-epoch-long experiments and (see, e.g., Hadjis et al. (2016)) the execution

1 An implementation of ResNet with a variable number of inner modules is available at
https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10.

https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10
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time of the first 20 iterations has been excluded from each experiment’s total time,
because they can take significantly longer to complete than the subsequent iterations.
It is worth noting that their removal does not affect the significance of the trained
performance models, since in real scenarios the first 20 iterations are negligible with
respect to the full training, which runs for several thousands of iterations. To remove
other possible “warm-up” effects, each experiment performed on cloud VMs has been
repeated at least three times and the data about its first run discarded. In this type
of scenario, indeed, the whole first epoch can have a significant time delay caused by
the retrieval of the training examples used during training, which may not be immedi-
ately available on the VM’s local disk. Even in this case, the impossibility of correctly
estimating the first epoch of a training procedure is not a significant limitation, since
this is only a limited fraction of the overall deep net training process. Moreover, to
reduce the overall execution time of the experimental campaign, the upper bound of
the number of epochs has been set to three. To verify that the data collected on the
first three epochs can be effectively used to build general models able to predict the
execution time of real training processes with thousands of epochs, some ad-hoc long-
running experiments have been performed. In particular, for each framework, for each
network, and for each type of GPU but GTX 1080Ti, a long experiment (at least 24
hours) has been run. Long runs on GTX 1080Ti could not be performed because of the
limited availability of in-house server 2.

To increase the number of available samples, for every run on the target system,
timing data is also collected after 25%, 50%, and 75% iterations, respectively. In
this way, four data points are extracted from every single run. Finally, to mitigate
the effects of system perturbation (for example, running of operating system services)
on the collected data and to improve the accuracy of the generated models, all the
experiments whose execution time is shorter than 10 seconds have been removed from
the data sets.

Different ranges of batch size have been considered for different networks and for
different machines, since GPU devices with larger memory support training with larger
batch sizes. A strong scale approach has been adopted: the batch size identifies the over-
all number of training examples processed, possibly across multiple GPUs, during an
iteration PyTorch (2018). The largest batch size is 8,192 for AlexNet, 512 for ResNet-
50 and VGG-19, and 4,096 for DeepSpeech, when running on 8 GTX 1080Ti. Several
values of numbers of CPU threads have been analyzed for the AlexNet experiments,
while only up to 8 CPU threads have been used in the training of ResNet-50, VGG-19,
and DeepSpeech since varying the thread numbers did not significantly influence the
forward or backward times of these NNs. The overall number of deep net trainings is
about 10,400 with an overall execution time of more than 5,500 hours. For the sake of
completeness, the size of the training set for each investigated scenario is reported in
the appendix. Note that the reported numbers refer to available samples. The number
of corresponding runs is roughly one fourth, i.e., for each experiment four samples are
generated as previously described. Some of the generated samples, however, have been
discarded because shorter than 10 seconds.

Finally, the accuracy of the models is evaluated considering their mean absolute
percentage error (MAPE) on the test set:

MAPE =
100%

S

S∑
k=1

∣∣∣∣yk − ŷk
yk

∣∣∣∣ (1)
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Table 2: Relative percentage difference between average iteration time of initial epochs
and average iteration time over the whole long running experiment

N. Initial GPU Type
Network Framework Epochs P600 K80 M60

AlexNet
PyTorch 1 0.73 7.42 9.25

3 0.18 1.52 1.38

TensorFlow 1 0.18 7.14 4.76
3 0.12 7.40 4.80

ResNet-50
PyTorch 1 0.08 1.02 0.24

3 0.49 0.20 0.01

TensorFlow 1 0.33 0.27 0.62
3 0.31 0.09 0.82

VGG-19
PyTorch 1 - 2.71 0.78

3 - 1.50 0.22

TensorFlow 1 - 4.00 3.62
3 - 3.91 3.72

DeepSpeech TensorFlow 1 0.48 3.43 6.09
3 0.79 2.81 3.36

where

– S is the number of samples in the test set.
– yk is the training time measured on the operational system.
– ŷk is the predicted training time from the learnt model.

5 Experimental Results

In this section, the results obtained in training the performance models for the dif-
ferent networks and for the different frameworks will be presented. It is worth noting
that, in order to have models suitable to be exploited in what-if performance analyses
and capacity planning, their prediction error should be small. As from the common
practice Lazowska et al. (1984), we will consider a model accurate if its MAPE is lower
than 30%.

Before presenting accuracy results obtained with the built models, Section 5.1 an-
alyzes if data collected on the initial epochs of a training can be effectively used to
predict long-running experiments. Next, Section 5.2 presents the results of the trained
models in predicting the performance of a specific network when a single framework
is considered, but multiple types and numbers of GPUs are available. Section 5.3 ana-
lyzes more in depth the trained performance models properties and shows the accuracy
loss when one of the features identified in Section 3.2 is removed from the input data.
Section 5.4 presents the results obtained when the trained models are used to perform
extrapolation on batch size, number and type of GPUs, and depth of the network.
Finally, Section 5.5 analyses the results we achieved and discuss the limitations of our
approach.

5.1 Long Runs Analysis

In this section the data collected on the long runs described in Section 4 is presented.
The aim of this ad-hoc set of experiments is to verify that the execution time of
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Figure 1: Execution time of iterations of ResNet-50 on TensorFlow with 4 K80.

individual epochs is stable so that the models trained by using data on a few epochs
can be effectively used to predict performance of long-running deep net trainings.

As an example, Figure 1 plots the execution time of each ResNet-50 iteration on
TensorFlow with four K80 over 24 hours. The execution time of most of the iterations
is in the range 1.09 to 1.13 seconds, while the maximum execution time is 1.27 seconds.
Table 2 presents the difference between the average execution time of an iteration in
the whole long-running experiment and the average execution time of one iteration
computed either on the first epoch or on the first three epochs. Because of limited time
slots accessibility, results on the in-house server 2 could not be collected for multiple
day executions. On the in-house server 1 the difference between the time of the initial
epochs and the average execution time of epochs for long experiments is very small (less
than 1%). Results obtained on the Azure VMs are characterized by a larger difference,
but in all the scenario the difference is below 10%. Moreover, when the number of
initial epochs is 3, the difference is reduced to less than 8%, so short experiments
data can be effectively used to train models to predict real scenario deep net training
execution times. It is worth noting that possible “warm-up” issues have been removed
by the preliminary one epoch long experiments.

By analyzing individual deep nets, it can be noticed that the difference for ResNet-
50 and VGG-19 is not larger than 4%, while, on the contrary, AlexNet differences
are more significant, up to 9.25%. This is caused by the impact of data loading on
AlexNet, which has been described in Section 3.1: since this is more subject to system
perturbations, its variance is more relevant, resulting in larger differences among the
epochs execution time.
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Figure 2: Real vs. predicted values for AlexNet/TensorFlow

5.2 Hold-out Results

Hold-out models are trained by exploiting the data of all the performed experiments
with a given framework and a given network on different numbers and types of GPUs.
The set of available experiments have been randomly split into a train set (containing
80% of the samples) and a test set (including the remaining 20% of the samples).
The set of initial features includes all the ones described in Section 3.2. Features are
then augmented and selected by the stepwise algorithm presented in Section 3.3. Per-
formance models accuracy is evaluated using MAPE.

As an example, Figure 2 shows the execution times measured on the target systems
for the TensorFlow implementation of AlexNet on the test set versus the predicted
execution time. The diagonal represents exact estimations: the farther a point is from
this line, the worse is the performance model prediction. Moreover, the points that lie
below the line represent overestimated execution times, while, on the contrary, points
that are above are representative of optimistic predictions. The obtained MAPE is less
than 11%: as can be noticed, most of the AlexNet training times are quite accurately
estimated and there is not any bias towards their over or underestimation. Figure 3
shows instead the results obtained in a different scenario: ResNet-50 trained by means
of PyTorch. In this case, the error is quite small (less than 3%) since most of the
experiments are very accurately estimated. Overall, these results are very good and
are promising for investigating extrapolation scenarios.

For the sake of brevity, a summary of the results obtained on the different NNs
is reported in Table 3. The rightmost columns present the MAPE obtained on the
test set with different frameworks and networks. The results obtained with the two
frameworks are quite similar: estimating the training time for the AlexNet network is
more difficult than the others because of the data load effect described in Section 3.1.
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Table 3: MAPE [%] on test set for different models

Number of used features
Network Framework All 15 10 5

AlexNet PyTorch 8.70 11.62 12.04 19.41
TensorFlow 10.95 13.07 14.61 19.22

ResNet-50 PyTorch 6.50 16.86 15.95 16.98
TensorFlow 6.43 13.75 13.44 22.05

VGG-19 PyTorch 5.24 11.72 12.04 15.10
TensorFlow 4.18 5.69 5.96 7.39

DeepSpeech TensorFlow 8.51 15.44 17.70 22.57

On the contrary, the regularity of the ResNet-50, VGG-19, and DeepSpeech networks
results in very accurate performance estimation models.

The All column of Table 3 reports the accuracy of the models built exploiting all the
features identified as significant by the stepwise feature selection algorithm described
in Section 3.3. The remaining columns present the accuracy obtained with a limited
number of features, namely, the top 15, 10, or 5 variables identified via the selection
algorithm.

Not all the added features provide the same amount of information for describing
the performance of NN training. Since the considered stepwise approach selects features
in an iterative way, it is possible to evaluate how the accuracy changes when adding the
features incrementally. Figure 4 shows how the prediction error of a model decreases
when the number of used features increases. It is worth noting that there are very
significant improvements in the accuracy of the model up to the sixth added feature.
After that, adding more features improves the model accuracy only slightly. Neverthe-
less, considering all the selected features instead of a limited number still results in a
significant accuracy improvement.
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Figure 4: AlexNet/PyTorch MAPE against varying number of features

The rightmost columns of Table 3 report the accuracy of the performance models
trained by limiting the number of used features to 15, 10, and 5. In particular, com-
paring the results achieved by the models exploiting all the features with respect to
the models built with only 5 features, one can observe the level of increased accuracy
provided by the other features. The smallest absolute gain is obtained on VGG-19 with
TensorFlow, where the MAPE decreases from 7.39% to 4.18%, while, on the opposite,
the largest absolute gain is obtained on ResNet-50 with TensorFlow, where the MAPE
decreases from 22.05% to 6.43%.

5.3 Features Relevance Analysis

In Section 3.2 the set of features useful to train NN performance models for the con-
sidered nets and frameworks have been identified and initial analysis of the trade-off
between models accuracy and size has been performed. This section analyzes the same
set of scenarios considered in the previous section, but performance models are trained
by excluding one feature (and all its derived terms) at a time, so as to assess the impact
of individual features on performance prediction accuracy.

For each network and for each framework, five different performance models are
trained. The first model is trained by removing the number of iterations (I) and all
the derived terms. The obtained error is very large (more than 75% in all the cases)
as expected since the number of iterations obviously has a major impact on the deep
net training time. Moreover, the number of iterations is definitely the feature with the
largest possible range. In the considered experiments, to reduce the overall experiment
time, this value has been limited to a few thousand. In real scenarios, its value can be
much larger (for instance, up to 600 k in the experiments described in He et al. (2015)),
so ignoring it in performance model training would result in a much larger error.
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Table 4: MAPE [%] on test set of models built excluding features

Features excluded during model training
Network Framework None I B G T P , D

AlexNet PyTorch 8.70 100.57 50.88 12.81 59.07 20.39
TensorFlow 10.95 135.80 73.47 33.88 21.23 32.81

ResNet-50 PyTorch 6.50 99.97 38.56 30.60 10.92 28.52
TensorFlow 6.43 78.29 44.71 30.56 8.57 41.52

VGG-19 PyTorch 5.24 84.97 33.46 20.56 6.15 52.62
TensorFlow 4.18 85.00 30.59 14.74 4.15 24.64

DeepSpeech TensorFlow 9.85 170.45 108.47 24.50 10.72 10.53

The range of the possible values of batch size (B) is instead mainly bound by the
maximum memory available on the GPUs and it differs according to the characteristics
described in Section 4. The results reported in the column B of Table 4 show how even
this feature (and its derived terms) are meaningful in describing the performance of
NN training. The performance models for DeepSpeech have the largest errors mainly
because these experiments are characterized by a wider range for this feature with
respect to other networks. The errors on AlexNet are larger than ResNet-50 and VGG-
19 since the batch size influences data loading time, which has significant relevance in
the training of this type of networks. The errors of the other models trained without
information about batch size is smaller, but still quite significant. Even in the best
case, removing this type of information decreases the accuracy of the model by more
than 5 times: in the case of VGG-19 implemented with PyTorch the prediction error
grows from 5.24% to 33.46%.

The third set of performance models are trained by removing the number of GPUs
(G) and present smaller prediction errors with respect to the first two classes of models.
The models for AlexNet are characterized by an even smaller decrement of accuracy.
This reduced increase in the error is motivated by two main reasons: the impact of
data loading and the set of experiments that has been considered. For the former
reason, because of the small computational complexity, the data loading time provides
a significant contribution to the overall training time of the network. The increment of
the number of GPUs does not provide any benefit on the loading time: on the contrary,
contention in accessing storage resources can decrease device efficiency. Concerning the
set of performed experiments, only a limited set of them fully utilize system resources
(i.e., use the maximum value of CPU threads, batch size, etc.). For example, in the
experiments exploiting two CPU threads to load data, most of the time is spent in
this process: incrementing the number of GPUs only speeds up a limited portion of the
entire training process, resulting in a very small overall performance gain.

For the same reason, the number of CPU threads (T and its reciprocal) used to load
training examples into GPU memory is a significant feature only for AlexNet. Since the
data loading time is a significant fraction of the overall time, incrementing the number
of CPU threads devoted to this aim can significantly improve the performance of the
training process. Training a performance model that does not take this aspect into
account results in a significant estimation error (62.19% for PyTorch and 21.23% for
TensorFlow). On the contrary, in complex networks like ResNet-50 and DeepSpeech,
the data loading time is less relevant, so the effect of using more CPU threads is less
significant and, as a consequence, the performance models trained without this feature
do not present a relevant accuracy decrease. Finally, for VGG-19, which is characterized
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by an even higher computational complexity, there is not any significant contribution
provided by the CPU threads data.

The last column of Table 4 reports the results of performance models trained with-
out considering the features describing hardware characteristics (i.e., P—GPU com-
putational power, and D—disk performance). In the experimental campaign of this
paper, these two features are highly correlated. Given a specific GPU type, in most
of the (virtual) machines, this is always associated with disks boasting the same char-
acteristics. Because of the correlation, in most of the cases removing just one of the
two features does not produce a significant degradation of the trained model accu-
racy. The accuracy of the performance model for DeepSpeech does not change when
hardware related features are removed. On all the considered GPUs but Quadro P600
computational power is not the bottleneck of the system. This can be expected since
the memory access and the CPU-GPU communication are usually the training pro-
cess bottlenecks Amodei et al. (2015), due especially to the beam search that involves
repeated lookups in the n-gram language model, most of which translate to uncached
reads from memory and to the update of the model performed at the end of each it-
eration. On the contrary, the relevant feature is the amount of available memory, but
this determines what are the experiments that can be run on a specific system (i.e.,
which is the maximum batch size) and not what is the execution time to perform the
training. The second smallest increment of errors occurs for AlexNet, mainly due to
the removal of D. It is worth noting that removing hardware-related features does not
introduce a very large error (20.71% for Pytorch and 32.81% for TensorFlow). The
reasons for this small increment are the same as previously described in the case of
removal of G. Moreover, the relative range of this feature is even smaller. In the target
machines considered for the experimental campaign, the gap between the slowest and
the fastest disk is less than two.

The model without disk information roughly assumes a disk with the average per-
formance among the considered ones, with a limited approximation with respect to the
actual data.

The errors of the models without hardware information for ResNet-50 and VGG-19
are larger and are mainly caused by the removal of the computational power feature
associated with the GPUs. For this type of feature, the range is larger: the most pow-
erful GPU considered in the experimental campaign is around 10 times faster than
the least powerful. This gap reflects on the error of the performance models trained
without P : In the worst case (VGG-19 on PyTorch) the error is 52.62%.

5.4 Extrapolation Results

The main aim of a performance model is to provide a means to predict an application
execution time (deep network training time in this paper settings) in setups for which
profiling data is not available. Two main scenarios can be of interest:

– The exploitation of new hardware, both in terms of cloud VMs or new in-house
servers.

– The training of new versions of a NN.

This section investigates the ability of the training performance models to accu-
rately estimate these new scenarios. In particular, the results will focus on the extrapo-
lation capability presented in Section 3.4. Extrapolation is performed in one dimension:
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Table 5: MAPE [%] on test set of batch size extrapolation models

GPU Type and Number
P600 K80

Network Framework 1 2 1 2 3 4

AlexNet PyTorch 11.12 5.33 1.74 3.33 1.81 0.66
TensorFlow 9.83 10.04 2.30 2.61 4.28 2.82

ResNet-50 PyTorch 10.64 11.97 0.76 7.83 3.09 4.53
TensorFlow 10.64 11.97 10.25 1.27 1.84 6.83

VGG-19 PyTorch - - 13.88 21.71 27.63 9.65
TensorFlow - - 18.20 0.92 1.16 10.58

DeepSpeech Tensorflow 6.69 5.25 22.46 15.82 3.14 4.41
(a) Results on P600 and K80

GPU Type and Number
M60 GTX 1080Ti

Network Framework 1 2 3 4 1 2 4 8

AlexNet PyTorch 7.53 14.00 6.58 16.73 0.43 1.62 1.15 4.16
TensorFlow 7.19 6.36 6.91 6.96 4.06 5.36 1.14 1.12

ResNet-50 PyTorch 3.60 20.04 9.58 4.64 12.62 11.93 20.63 4.29
TensorFlow 2.08 2.79 3.07 21.49 0.68 6.44 1.43 12.06

VGG-19 PyTorch 10.85 18.18 13.81 8.01 24.98 17.40 2.93 14.06
TensorFlow 7.34 5.06 2.74 6.92 22.88 6.37 24.12 23.56

DeepSpeech TensorFlow 19.08 12.98 7.09 7.11 5.80 9.63 13.87 5.93

Table 6: MAPE [%] on test set of GPU number extrapolation models

GPU Type
Network Framework K80 M60 GTX 1080Ti

AlexNet PyTorch 7.21 14.45 4.98
TensorFlow 24.75 17.27 8.77

ResNet-50 PyTorch 9.13 9.04 11.76
TensorFlow 24.58 18.29 6.54

VGG-19 PyTorch 11.78 15.98 24.13
TensorFlow 8.84 13.52 13.65

DeepSpeech TensorFlow 11.86 17.49 20.97

training data is used to learn a performance model to predict the execution time of
experiments characterized by a feature whose value is larger than all the values of the
same feature in the training data.

Table 5 presents the extrapolation accuracy of the performance models trained to
evaluate the effect of the batch size parameter. For each performance model trained
the largest value of the batch size is twice larger than the largest one included in the
training test. This corresponds to predicting the NN learning time on GPUs with an
available memory size twice larger than the already characterized devices. Several cases
show somewhat large errors, yet none are greater than 28%.

Tables 6 and 7 present some of the most interesting results. The use of target
architectures with the same number and family of GPUs, but with different amounts
of memory, is a realistic scenario in a limited number of cases, since generally cloud
providers do not allow users to tune the used VMs so deeply. On the contrary, the
number of available GPUs is one of the parameters that users can easily control, and
one of the most impacting on the overall performance and cloud usage cost. Table 6
reports the accuracy of the models trained for each combination of framework, network,
and type of GPU. Since in the available targets the maximum number of K80 and M60
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Table 7: MAPE [%] on test set of computational power extrapolation models

Used Features
Network Framework All 5

AlexNet PyTorch 7.27 27.10
TensorFlow 5.08 5.08

ResNet-50 PyTorch 18.09 20.74
TensorFlow 20.23 19.82

Deepspeech Tensorflow 11.72 10.14

is four, the models are trained by considering experiments with 1, 2, and 3 GPUs in the
training set, while the test set includes experiments run on 4 GPUs. On the contrary,
since the machine with GTX 1080Ti includes 8 graphic cards, training sets contain
experiments run on 1, 2, and 4 GPUs, while 8-GPU experiments are used as test
set. Extrapolation on the number of P600 is not possible since the available in-house
server 1 includes only two GPUs. In all the scenarios the accuracy is quite good, since
the maximum error is 24.75%, hence the models are able to predict the performance
benefit of adding new GPUs of the same type of the existing one within a reasonable
error margin. TensorFlow in most scenarios has a larger error, showing how the effects
of the implemented interactions between GPUs are more difficult to model compared
to PyTorch. Different from the previous types of extrapolations, the results obtained
with the GTX 1080Ti are more comparable with the ones of the other types of GPU
and in most of the cases they are even better.

Table 7 presents the extrapolation on the computational power feature: in this
scenario available data is used to estimate the NN performance on more powerful
unseen GPUs. In particular, data about experiments run on P600, K80, and M60 is
used to train performance models that are then validated on the data collected on
the GTX 1080Ti. It is worth noting that to perform such type of extrapolation, the
computational power (P ) of the new GPU is not the only necessary information. Indeed,
the target architecture is also characterized by disk speed (D): just as highlighted in
Section 5.3, there is a strong correlation between P and D, which basically comes
from the fact that cloud VM catalogs constrain the possible combinations of GPUs
and storage. The value of D can be estimated on the basis of (i) the target available
information, or (ii) approximated to the value of the most similar already analyzed
target (for example, the disk speed of an Azure VM can be approximated to the disk
speed of a VM of the same class for which real data is available), or (iii) retrieved
by performing a short profiling run that measures the data load time, as described in
Section 3.2. The presented results exploited the third approach. The obtained results
are quite good: the MAPE of the performance models is always below 20%. These
results show how using information collected on less powerful GPUs can be effectively
used to predict NN training time on better performing hardware without requiring
expensive experimental campaigns.

Table 8 lists the first five features selected by the stepwise method when training
performance models for this latter scenario investigating computational power extrap-
olation. The training time of AlexNet implemented on PyTorch heavily depends on
the loading time: for this reason, the most significant features are the interaction of
disk delay (D), batch size (B), and number of iterations (I). The larger each of these
values, the larger the images loading time, consequently the larger the overall training
time. On the contrary, in the TensorFlow implementation, the training time, although
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Table 8: The most significant features selected in computational power extrapolation
models

Network Framework Model MAPE

AlexNet PyTorch ID,IB,BD,B/(IPD),1/(IBPD) 27.10
TensorFlow ID/P,IBD,B/(PD),IB/D,IBPD 5.08

ResNet-50 PyTorch IBD,1/B,-IBPD,I/B,BPD/I 20.74
TensorFlow IB/P,BP/I,IP,I/BPD,IBPD 19.82

DeepSpeech TensorFlow IB,I/B,I/(BP),B/(GP),1/I 10.14

Table 9: MAPE [%] on test set of network depth extrapolation models

GPU Type
M60

Network Framework Max N. IMs 1 2 4
ResNet PyTorch 4 23.51 27.95 17.40
ResNet PyTorch 5 24.85 25.11 16.75
ResNet PyTorch 6 26.76 20.40 16.63
ResNet PyTorch 8 17.06 7.93 15.99

it still depends on the loading time (in fact, the second selected feature is IBD) also
depends on the computational power of the target system. The larger the inverse of
the computational power (i.e., 1/P , which is used in the most significant features),
the faster the training process. In the case of ResNet-50 on PyTorch, the first feature
(IBD) is still correlated to the loading time, but then there are two correcting factors.
The first one (1/B) depends on the batch size, while the second (−IBDP , which
means IBDP has a negative coefficient in the linear regression model) reduces the
effect of the first feature on the basis of the computational power. Indeed, even if the
computational power P instead of its reciprocal is used, the coefficient of this feature is
negative so that the larger P , the larger the reduction of the predicted execution time.
The most significant feature selected for predicting performance in case of ResNet-50
implemented with TensorFlow is IB/P . According to this feature, the overall training
time is directly proportional to the number of images to be processed and inversely
proportional to the computational power of the GPU. It is worth noting that, as also
discussed previously, there is a strong correlation between D and P . Finally, the train-
ing time of DeepSpeech is not significantly influenced by the computational power nor
by the disk speed. For this reason, the most significant features (i.e., IB and I) only
depend from the number of iterations I and from batch size B.

The last type of extrapolation analysis refers to a different scenario where the
structure of the trained CNN is varied. In particular, the ResNet is modified changing
the number of inner modules (IMs) N from 1 to 10 with step 1. The training set
is composed of experiments with number of IMs N from 1 to n, while the test set
is composed of experiments with number of IMs N from n + 1 to 10. Performance
models are trained and evaluated when n is equal to 4, 5, 6, and 8. Table 9 shows
the achieved results. Even in the worst scenario, where the training set is definitely
much smaller than the test set (see Appendix), the maximum MAPE is at most about
38%, since the execution time of the added layers is similar to the execution time of
the existing ones, as described in Section 3.1. As expected, the larger the maximum
number of IMs in the training set, the better the extrapolation capability of the model,
and so its accuracy. Nevertheless, even by limiting the training set to the experiments
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with up to 5 IMs (hence half of the maximum value, like in the other extrapolation
scenarios), the MAPE of the models is at most 25.11%. In this way, the user can
easily evaluate the effect on performance of incrementing the number of IMs in the
ResNet. It is worth noting that predicting the effect in terms of improvement of image
classification accuracy of the deeper network is out of the scope of this paper.

In all the extrapolation scenarios, despite the small number of available samples
(see Appendix), the MAPE on the test set is always below 30%, allowing the effective
use of the proposed models in real scenarios Lazowska et al. (1984).

5.5 Discussion

This work has proposed ML performance models to study the performance of DL net-
works training time in GPUaaS systems and private clouds. The proposed approach
exploits two main sets of features: on one hand, network architecture and hyper-
parameters, on the other, hardware characteristics of the target deployment. Such
data enable the learning of multiple linear regression models, which, coupled with an
established feature selection technique, become accurate prediction tools, with errors
below 11% on average.

Unfortunately, our approach is DL network architecture specific and it is not able to
identify a single ML performance model able to account different network architectures
characteristics. Generalization on the network architecture can be obtained in case the
network has a fixed structure, as in the ResNet, if such assumption does not hold a
per-layer approach as, proposed in our previous work Gianniti et al. (2018b), or in
Dube et al. (2019) is needed. Indeed, we tried to generalize the applicability of our
methodology, by adding new terms to the regression function to account for network
characteristics but this was not enough to capture the complex correlations among
features and their compound impact on the DL network training time (the obtained
errors are above 30%, jeopardizing the use of our performance models in practice).

To achieve good accuracy and generalization on the network architecture, the mod-
eling approach needs to include features governing the computational requirement of
a network expressed as flops (as in Gianniti et al. (2018b)) or more high-level features
such as the number of weights, activation layers, filters input and output size, etc (as
in Dube et al. (2019)). The resulting predictive model will be applicable to arbitrary
network architectures but, in that case, are limited to single GPU types.

To actually generalize this approach to predict the training time of NNs composed
of whatever type of layer on whatever type of hardware, a large set of data should be
collected. This approach would not require to just train a limited set of networks on
multiple number and types of GPUaaS, but it would require to generate and train mul-
tiple different heterogeneous NNs on all the hardware configurations. The overall result
is an exponential growth in terms of the experiments to be performed and consequently
an exponential growth in the experimental campaign time and cost.

6 Conclusion

This work has proposed ML performance models able to predict the training time of DL
networks. Multiple frameworks, types of NNs and heterogeneous GPU environments
have been considered both in GPUaaS scenarios and private clouds.
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Differently from previous solutions based on analytical models or other ML-based 
literature methods, the approach proposed in this paper does not require low-level 
profiling (e.g., micro-architecture information and/or specific counters) nor simulation 
of the target applications. Several scenarios of interest have been investigated demon-
strating that the trained models, which exploit feature engineering, augmentation, and 
selection, can be built with limited profiling and can achieve good accuracy and extrap-
olation capabilities (maximum MAPE equal to about 27 % in the worst case), making 
them suitable to for adoption in real scenarios.

Future work will exploit the performance models to devise an advanced real-time 
scheduler able to partition available GPUs among multiple competing users while pro-
viding a priori DL networks training time upper bounds. Moreover, the training of DL 
jobs requiring multiple machines or more than 8 GPUs possibly in disaggregated 
hardware scenarios (where GPUs are accessed from computing nodes through a fast 
network) will be also considered. Finally, the models will be also embedded in AutoML-
like frameworks where the NN architecture search procedure will be also guided by the 
target network performance and not only by the model classification accuracy.
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A Number of Samples in Training Data Used in Performance
Prediction Models

This appendix presents the number of samples that have been used to train each of the mod-
els presented in Section 5. Table 10 reports the data about the hold-out scenario, while the
remaining tables details the size of the training dataset for extrapolation experiments. For
example, Table 11 shows how the number of samples of the training set of the extrapolation
experiment on the batch AlexNet implemented on PyTorch considering 1 and 2 P600 is 72 and
204 respectively.

Table 10: Number of samples in training data used in interpolation models

Network Framework Training set size

AlexNet PyTorch 3951
TensorFlow 2326

ResNet-50 PyTorch 1817
TensorFlow 1782

VGG-19 PyTorch 1312
TensorFlow 1219

DeepSpeech TensorFlow 2986

Table 11: Number of samples in training data used in batch size extrapolation models

GPU Type and Number
P600 K80

Network Framework 1 2 1 2 3 4

AlexNet PyTorch 72 204 24 20 24 24
TensorFlow 48 48 24 24 16 24

ResNet-50 PyTorch 28 44 24 24 24 24
TensorFlow 28 44 48 24 24 16

VGG-19 PyTorch - - 16 64 48 24
TensorFlow - - 16 32 24 24

DeepSpeech Tensorflow 136 145 240 283 317 316

GPU Type and Number
M60 GTX 1080Ti

Network Framework 1 2 3 4 1 2 4 8

AlexNet PyTorch 39 21 36 21 11 16 17 47
TensorFlow 18 36 18 18 12 12 12 12

ResNet-50 PyTorch 12 24 48 72 24 24 24 24
TensorFlow 48 72 48 72 12 12 12 12

VGG-19 PyTorch 20 32 24 29 24 24 24 24
TensorFlow 20 30 24 28 12 12 12 12

DeepSpeech TensorFlow 240 281 283 317 52 72 94 475

Table 12: Number of samples in training data used in GPU number extrapolation
models

GPU Type
Network Framework K80 M60 GTX 1080Ti

AlexNet PyTorch 384 543 947
TensorFlow 288 744 231

ResNet-50 PyTorch 192 96 96
TensorFlow 312 768 144

VGG-19 PyTorch 216 144 84
TensorFlow 288 288 96

DeepSpeech TensorFlow 768 768 168
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Table 13: Number of samples in training data used in computational power extrapola-
tion models

Network Framework Training set size

AlexNet PyTorch 58
TensorFlow 52

ResNet-50 PyTorch 65
TensorFlow 52

DeepSpeech Tensorflow 822

Table 14: Number of samples in training data used in Network depth extrapolation
models

GPU Type and Number
M60

Network Framework Max N 1 2 4
ResNet PyTorch 4 680 131 181
ResNet PyTorch 5 935 182 233
ResNet PyTorch 6 1200 240 289
ResNet PyTorch 8 1757 360 407
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