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PSEUDOSPECTRAL CONVEX LOW-THRUST TRAJECTORY
OPTIMIZATION IN A HIGH-FIDELITY MODEL

Christian Hofmann* and Francesco Topputo†

The low-thrust minimum-fuel trajectory optimization problem is solved in a high-
fidelity model using convex optimization. The problem is convexified and dis-
cretized with the Radau pseudospectral method. We apply a homotopic approach
and successively increase the complexity and accuracy of the model to enhance
convergence properties. Solar radiation pressure, variable specific impulse and
maximum thrust, and the perturbation of other bodies are considered. A homo-
topy from the minimum-energy to the minimum-fuel problem is added. The per-
formance is assessed in minimum-fuel interplanetary transfers to two asteroids.
Moreover, the developed approach is integrated into a closed-loop guidance sim-
ulation. The numerical simulations show that the sequential convex programming
approach is able to solve highly nonlinear optimization problems to high accuracy
with poor initial guesses.

INTRODUCTION

Highly efficient propulsion systems such as electric propulsion have become an important devel-
opment during the past years. Even though they provide only low thrust, their high specific impulse
enables considerable savings of propellant. This enables new space missions, but also requires new
trajectory design techniques as the thrusting periods increase and therefore, the assumption of in-
stantaneous impulses does not hold anymore. Although extensive research has been conducted in
the field of low-thrust trajectory optimization,1 it was only recently that autonomous guidance and
control has attracted more and more attention.2, 3 The current state of the art is to determine trajec-
tories in an open-loop fashion on ground and update the state and control histories of the spacecraft
accordingly. This approach, however, results in high operational costs and is therefore not consistent
with the overall goal to reduce the cost of future missions.3 Moreover, it limits the mission design
and can pose risks as the dependency on a communication link to Earth might impede time-critical
acting during a mission. It is therefore desirable to limit the interaction with Earth to a minimum
and shift the decision making on board. It is expected that this is the only way to enable a robust
and sustainable exploration and exploitation of space.4

Planning the trajectory requires solving a nonlinear optimal control problem (OCP). In contrast
to indirect methods that suffer from convergence issues when a poor initial guess is provided,5

direct methods are often preferred, especially when high-fidelity models are used.6 The infinite-
dimensional problem is discretized into a finite-dimensional nonlinear parameter optimization prob-
lem. There are several approaches to solve the resulting nonlinear program (NLP), ranging from
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single and multiple shooting to direct collocation.5 As solving the NLP directly often requires high
computational power and a decent initial guess, sequential convex programming (SCP) techniques
have become a popular alternative in the past few years.7 The problem is convexified and then
iteratively solved until the solution satisfies the original nonlinear constraints. Many applications,
such as powered descent landing,8 nonlinear model predictive control,9 collision avoidance and
robotics,10 have successfully applied convex programming techniques. The use in low-thrust trajec-
tory optimization has also become more popular. For example, the minimum-time- and minimum-
fuel problems have recently been solved with a convex approach.11, 12 Tang et al. used SCP to
generate an initial guess for an indirect method.13 More complex interplanetary trajectories have
been computed with an adaptive pseudospectral method.14 Moreover, Hofmann et al. assessed the
real-time performance of a SCP method on an ARM processor for interplanetary transfers.15

Low-thrust trajectory optimization problems that consider higher fidelity models (for example, third
body perturbations, solar radiation pressure, realistic thruster model) have been solved with indi-
rect (16, 17) and direct, NLP-based methods (18–20). With regard to convex programming techniques,
the accuracy and convergence can be poor for highly nonlinear applications due to the successive
linearization. Therefore, most researchers considered only simple two-body dynamics. The litera-
ture on solving more complex models, for example the circular-restricted three-body problem using
convex programming, is scarce.21 Moreover, none of the previous works addressed additional per-
turbations such as solar radiation pressure or the gravitational forces of other bodies. Even though
simple two-body dynamics suffice for many applications (especially preliminary design), the error
can be large in several cases. An example is ESA’s M-ARGO mission to an asteroid where the
spacecraft departs from the Sun-Earth Lagrange point L2. It was shown that neglecting the gravita-
tional influence of the Earth results in different final masses and a large error during the first part of
the trajectory when the spacecraft is still close to Earth.22, 23 Even though highly accurate models
are often desirable, the computational effort can increase significantly. This becomes even more
challenging for real-time applications with limited computational power; a tradeoff is necessary and
simpler models are often preferred. In this work, we exploit the advantages of convex program-
ming approaches and incorporate more complex dynamical models. A homotopy is performed to
gradually increase the complexity of the model. Third-body perturbations, solar radiation pressure
and thruster models with a variable specific impulse and maximum thrust are considered. We use
an adaptive Radau pseudospectral method to solve the resulting optimization problem and run a
multitude of simulations to assess the effectiveness of the approach. The high-fidelity model is in-
corporated into a closed-loop guidance simulation to assess the potential onboard capability.
The paper is structured as follows. Section II describes the optimal control problem and the adap-
tive Radau discretization method. In Section III, the homotopy process to more complex models
is explained. Section IV addresses the closed-loop guidance simulation and Section V presents the
results of the numerical simulations. Section VI concludes this paper.

PROBLEM FORMULATION

We present the optimal control problem in space flight and explain the convexification to obtain
a convex subproblem. The adaptive Radau pseudospectral method is used to discretize the infinite-
dimensional OCP.
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Optimal Control Problem and Convexification

Considering a two-body model with the Sun as the primary, the equations of motion in Cartesian
coordinates are given by

ẋ = f(x,u) ⇒

 ṙ
v̇
ṁ

 =

 v
−µr/r3 + T/m
−‖T‖ /(g0Isp)

 (1)

where r, v, and m are the position, velocity and mass, respectively. µ is the gravitational constant,
T is the thrust vector, g0 is the gravitational acceleration at sea level and Isp the specific impulse.
‖·‖ refers to the 2-norm if not stated otherwise. The fuel-optimal control problem in space flight is
to minimize

J0 = −m(tf ) (2)

subject to
ẋ = f(x,u) (3a)

0 ≤ ‖T‖ ≤ Tmax (3b)

x(t0) = x0, x(tf ) = xf (3c)

xl ≤ x ≤ xu, ul ≤ u ≤ uu (3d)

The subscripts (·)0 and (·)f refer to initial and final values, respectively. Eq. (3d) defines the lower
(subscript l) and upper bounds (subscript u) for states and controls, respectively. Introducing the
new variable T and defining the states and controls as x = [r,v,m]> and u = [T, T ]>, we rewrite
Eq. (3) to obtain

ẋ =

 ṙ
v̇
ṁ

 =

 v
−µr/r3

0


︸ ︷︷ ︸

p(x)

+

 03×4
13×3 1/m 03×1

01×3 −1/(g0Isp)


︸ ︷︷ ︸

B(x̄)

[
T
T

]
= p(x) + B(x)u (4)

where 1 denotes the identity matrix. We set f(x,u) ≈ p(x) + B(x̄)u and linearize Eq. (4) only
partially at x̄ so that the dynamics are independent of the previous control ū:

f(x,u) ≈ A(x̄)x + B(x̄)u + q(x̄) (5)

Numerical simulations show that this technique can improve the convergence considerably.24 A(x̄) =
∂p
∂x

∣∣∣
x=x̄

denotes the Jacobian matrix evaluated at the reference point x̄ and q(x̄) = p(x̄)−A(x̄)x̄

refers to the constant part of the linearization.
The second-order cone program then reads:

min −m(tf ) + λ ‖ννν‖1 (6)

subject to
ẋ = A(x̄)x + Bu + q(x̄) + ννν (7a)

‖T‖ ≤ T (7b)

0 ≤ T ≤ Tmax (7c)
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‖x− x̄‖1 ≤ rtr (7d)

x(t0) = x0, x(tf ) = xf (7e)

xl ≤ x ≤ xu, ul ≤ u ≤ uu (7f)

Note that we added a virtual control ννν in Eq. (7a) to avoid artificial infeasibility that may arise due
to the linearization. To ensure that this slack parameter is only active when needed, we penalize
it in the cost function with a sufficiently large parameter λ. Eq. (7b) is the relaxed version of the
thrust constraint ‖T‖ = T . Apparently, a feasible solution that satisfies ‖T‖ = T is also a feasible
solution of the relaxed problem. Moreover, it can be shown that the optimal solution of the relaxed
problem is also an optimal solution of the original problem, and we have ‖T‖ = T and T = 0 or
T = Tmax.25 The trust-region constraint in Eq. (7d) is needed to keep the linearization valid.

Radau Pseudospectral Method

Pseudospectral methods offer several favorable properties, including spectral convergence for
smooth problems and the possibility to determine the costates using the obtained Lagrange mul-
tipliers.26 As interplanetary trajectories often last several years, many discretization nodes might
be needed to accurately approximate the states and controls. As a consequence, using a single
interpolating polynomial of high degree would result in a dense problem that requires large compu-
tational cost. In this paper, we apply an adaptive method where the trajectory is divided into several
segments and the states and controls are approximated with polynomials of different degrees (and
therefore, arbitrary number of nodes). Instead of approximating the dynamics at the roots of the
flipped Legendre–Radau polynomial,14, 27 we use the standard Legendre–Radau points that are de-
fined in the pseudospectral time domain t̂(k)i ∈ [−1, 1). Therefore, the final point of each segment
is not a collocation point. Still, we include it in the state approximation in this work. With regard to
the controls, note that the final control at tf is not obtained in the solution. The relationship between
the physical time ti and pseudospectral time t̂i is given by28

t
(k)
i = t

(k−1)
Nk

+
t
(k)
Nk
− t(k)0

2
t̂
(k)
i +

t
(k)
Nk

+ t
(k)
0

2
for i = 0, 1, ..., Nk, k = 1, ...,K (8)

with t(0)Nk
= 0. (·)(k)i refers to the ith node of the kth segment. Given Nk − 1 collocation points and

defining the discretized states and controls as X and U, respectively, the dynamics are approximated
as29

Nk∑
j=0

D
(k)
ij X

(k)
j =

t
(k)
Nk
− t(k)0

2
f(X

(k)
i ,U

(k)
i )

=
t
(k)
Nk
− t(k)0

2

[
A(X̄

(k)
i )X

(k)
i + B(X̄

(k)
i )U

(k)
i + q(X̄

(k)
i ) + ννν

(k)
i

] (9)

with the differentiation matrix D and i = 0, 1, ..., Nk − 1. As the final points are not collocation
points, the condition X

(k)
Nk

= X
(k+1)
0 must be satisfied for all segments k < K. This constraint is

implicitly taken into account as the final node of a segment and the initial node of the next segment
are considered the same. Defining Y ≡ [X,U, ννν]>, the discretized convex dynamics can be written
in standard form M Y = b where

M =
[
diag(D̂(k)), diag(B̂(k)), 1

]
(10)
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with the diagonal entries

D̂(k) =


D

(k)
00 1nx −∆(k)A

(k)
0 D

(k)
01 1nx · · · D

(k)
0Nk

1nx

D
(k)
10 1nx D

(k)
11 1nx −∆(k)A

(k)
1 · · · D

(k)
1Nk

1nx

...
...

...
D

(k)
Nk−1,11nx · · · D

(k)
Nk−1,Nk

1nx −∆(k)A
(k)
Nk−1


(11)

and

B̂(k) =


−∆(k)B

(k)
0 0
−∆(k)B

(k)
1

0

. . .

−∆(k)B
(k)
Nk−1

 (12)

The notation

∆(k) =
t
(k)
Nk
− t(k)0

2
(13)

and A
(k)
j = A(X̄

(k)
j ) (B and q are defined similarly) was introduced for conciseness. nx ∈ R7×1

is the number of states.

LOW-THRUST TRAJECTORY OPTIMIZATION IN A HIGH-FIDELITY MODEL

As adding high-fidelity models significantly increases the nonlinearity, a standard SCP algorithm
would have difficulties to converge for complex problems. Therefore, we perform a homotopy-like
procedure and gradually increase the complexity of the problem. The following steps can combined
arbitrarily depending on the considered model:

• If needed, a homotopy from the smooth minimum-energy to the non-smooth minimum-fuel
problem is performed.

• We gradually add the perturbing force caused by solar radiation pressure. As it is relatively
small, our rationale is that the solution will not change significantly; only a small acceleration
is added to the dynamics. The solution of the previous run is used as the initial guess to obtain
a refined solution in only few iterations.

• The real maximum thrust and specific impulse curves are approximated with piecewise affine
functions. The solution to this simplified problem is then used as the initial guess to solve the
problem with the real thruster model.

• Solving the full n-body problem would deteriorate the convergence as the dynamics are highly
nonlinear. Therefore, the value of the gravitational parameter of the desired perturbing body
is gradually increased from 0 to the final value. This way, the nonlinearity increases only
slightly in each iteration and convergence is not impeded. We successively add other bodies
and proceed in a similar way.
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Minimum-Energy to Minimum-Fuel Homotopy

For the minimum-energy to minimum-fuel homotopy, the control structure is relaxed and the
performance index changes to30

J0 =

∫ tf

t0

[
T − εenergyT (1− T )

]
dt =

∫ tf

t0

T
(
1− εenergy

)
dt+

∫ tf

t0

εenergyT
2 dt (14)

where εenergy ∈ [0, 1] is a smoothing parameter. The smooth energy-optimal problem (εenergy = 1)
is solved first and ε is gradually decreased until the fuel-optimal problem (εenergy = 0) is obtained.
Remark: Minimizing

∫ tf
t0
T dt is equivalent to Eq. (2).

Even though the objective function in Eq. (14) is convex, we need to reformulate the quadratic part
in standard form. The discretized objective is

J0 =
(
1− εenergy

) N∑
i

∆iUT,iwi + U>TQUT︸ ︷︷ ︸
Jquad

(15)

where N is the number of collocation points and Q is a diagonal matrix with entries

Qii = εenergy∆iwi (16)

∆i, UT,i and wi denote the ith entries of the concatenated time transformation factors ∆∆∆ [see Eq.
(13)], thrust magnitudes UT and Radau integration weights w, respectively. We introduce the slack
variable y ∈ R1 to rewrite the quadratic part of Eq. (15) as31

Jquad = y (17)

with the additional constraint U>TQUT ≤ y. This epigraph form is equivalent to minimizing
U>TQUT directly. As the matrix Q is positive definite, the Cholesky decomposition Q = L>L
is used to reformulate this constraint as z>z ≤ y and z = L>UT , z being a slack variable. The
quadratic constraint can now be reformulated as a second-order cone constraint and the optimization
problem for the energy-to-fuel homotopy reads

min
UT ,y,ννν

(1− ε)
N∑
i

∆iUT,iwi + y + λ ‖ννν‖1 (18)

subject to ∥∥∥∥[2L>UT

y − 1

]∥∥∥∥ ≤ y + 1 (19)

and the discretized form of Eq. (7).

Remark: Due to the structure of Q, the diagonal entries Lii of L> reduce to Lii =
√
εenergy∆iwi.

Solar Radiation Pressure

The equations of motion considering the solar radiation pressure are given as ṙ
v̇
ṁ


SRP

= f +

0
a
0


SRP

(20)
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where f refers to the remaining part of the dynamics. Moreover,

aSRP =
SSunCRASC

m

r

r3
(21)

SSun =
LSun

4πc
(22)

LSun = 4πCSunAU2 (23)

A simple cannonball model is used where the projected area ASC of the spacecraft is assumed
constant.32 CR is the reflectivity coefficient of the spacecraft, SSun the solar pressure constant, LSun
the luminosity of the Sun, and CSun the solar constant. c and AU denote the speed of light and
astronomical unit, respectively.
We introduce the homotopic parameter εSRP to gradually add the acceleration caused by the solar
radiation pressure. Eq. (20) then reads ṙ

v̇
ṁ


SRP

= f + εSRP

0
a
0


SRP

(24)

The problem is first solved with εSRP = 0 (SRP is not taken into account) and gradually increased
until εSRP = 1 (full influence of SRP is considered). The solution of the previous optimization
problem is used as the initial guess for the new one. Eq. (24) is then partially linearized as described
in Section II. Even though the additional aSRP increases the nonlinearity, this smoothing approach
is a simple means to improve convergence in SCP as the perturbation is only added step by step.

Variable Maximum Thrust and Specific Impulse

In a real thruster model, the maximum thrust Tmax(Pin(r)) and specific impulse Isp(Pin(r)) de-
pend on the input power Pin(r), which in turn is a function of the distance to the Sun. These
functions are often described by nth order polynomials. This increases complexity and results in
additional nonlinear constraints. Without loss of generality, we consider two different thruster mod-
els in this work (see Figs. 1 and 2a):

Model 1:17

Tmax,1(r) =
â0
r

â1 + â2
r + â3

r2

1 + â4r + â5r2
(25a)

Isp,1(r) =
b̂0
r

b̂1 + b̂2
r + b̂3

r2

1 + b̂4r + b̂5r2
(25b)

with â0 = 0.3375 N, â1 = 1.621 AU, â2 = −0.108 AU2, â3 = −0.0117 AU3, â4 = 0.0108 1/AU,
â5 = −0.0013 1/AU2 and b̂0 = 3375 s, b̂1 = 1.621 AU, b̂2 = −0.108 AU2, b̂3 = −0.0117 AU3,
b̂4 = 0.0108 1/AU, b̂5 = −0.0013 1/AU2 and r in AU. The coefficients of the real thruster model
are modified values of the ones used in Taheri et al.17

Model 2:20

Tmax,2(Pin) = ã0 + ã1Pin + ã2P
2
in + ã3P

3
in + ã4P

4
in (26a)

Isp,2(Pin) = b̃0 + b̃1Pin + b̃2P
2
in + b̃3P

3
in + b̃4P

4
in (26b)

Pin,2(r) = c̃0 + c̃1r + c̃2r
2 + c̃3r

3 + c̃4r
4 (26c)
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with ã0 = −0.7253 mN, ã1 = 0.02481 mN/W, ã2 = 0, ã3 = 0, ã4 = 0, b̃0 = 2652 s, b̃1 =
−18.123 s/W, b̃2 = 0.3887 s/W2, b̃3 = −0.00174 s/W3 and c̃0 = 840.11 W, c̃1 = −1754.3 W/AU,
c̃2 = 1625.01 W/AU2, c̃3 = −739.87 W/AU3, c̃4 = 134.45 W/AU4.
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Figure 1: Tmax,1(r) and Isp,1(r) curves.
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(a) Tmax,2(r) and Isp,2(r) curves.
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(b) Approximation of Tmax,2(r).

Figure 2: Thruster model 2 and its approximation with an affine function.

As the input power depends on the distance to the Sun (note the similarity to a r−2 power law), we
propose to approximate the real thruster model with piecewise affine functions at first. Approximat-
ing Tmax as

Tmax(r) ≈ ar + b (27)

with constants a and b, and substituting it into Eq. (3b) yields

T − ar − b ≤ 0 (28)

As the slope a is always negative in our examples, we use ‖r‖2 = r to rewrite Eq. (28) to obtain
the second-order cone constraint

‖r‖2 ≤
b

|a|
− 1

|a|
T (29)

This enhances the convergence properties as the constraint

T ≤ Tmax(r) ⇐⇒ T ≤ Tmax(Pin) (30)
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(a) Approximation of Tmax,1(r) using an affine func-
tion.
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Figure 3: Tmax,1(r) approximations using an affine and piecewise affine function.

is now convex and no additional slack variables or linearizations are needed. Figs. 3a and 2b show
the affine approximations of the Tmax curves of model 1 and 2. In general, we try to ensure that the
affine function lies above the nonlinear curve. This way, more thrust is available and the problem is
often easier to solve. We have the relationship

Tmax(r) =

{
Tmax r ≤ r∗

ar + b r > r∗
(31)

where r∗ depends on the thruster model. In implementation, the case r ≤ r∗ is implicitly handled
through the upper bound Tmax on T . Therefore, no case-by-case analysis is needed.
This approach can easily be extended to piecewise affine functions. In this paper, the case with two
sub-functions is considered as this represents an acceptable approximation of the original nonlinear
curve (see Fig. 3b):

Tmax(r) =


Tmax r ≤ r∗1
a1r + b1 r∗1 < r ≤ r∗2
a2r + b2 r∗2 < r

(32)

This requires a distinction of cases. We propose to use r̄ from the previous iteration to determine
which sub-function is to be used.
The solution to this simplified problem serves as the initial guess to solve the problem with the real
thruster model. Instead of linearizing the upper bound of constraint Eq. (30) about a reference point
x̄, we approximate Tmax(r) as

Tmax(r) ≈ Tmax(r̄) (33)

where r̄ from the previous iteration is used. Our simulations suggest that this is often advantageous
in terms of convergence.
Due to the partial linearization of the dynamics in Eq. (5), Isp(r) in B(x̄) is computed similarly
using r̄.
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Perturbation of Other Bodies

The dynamics of the n-body problem can be written as ṙ
v̇
ṁ


nbody

= f +

0
a
0


nbody

(34)

where anbody is the additional acceleration caused by the gravitational pull of other bodies in the
solar system:

anbody =
n∑
i

εi,nbodyµi

(
rsat,i

r3sat,i
− ri
r3i

)
(35)

In this work, we consider the n = 9 perturbations of the barycenters of Mercury, Venus, Earth,
Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. µi is the gravitational constant of the ith body, ri
is the position of the ith body with respect to the Sun, and rsat,i = ri − r denotes the position of the
ith body with respect to the spacecraft. The time-dependent positions ri of the perturbing bodies are
obtained using the software SPICE.33 Note that Eq. (35) already contains the homotopic parameter
εi,nbody that adjusts the contribution of each perturbing body individually. It is gradually increased
from 0 (no contribution) to 1 (full gravitational influence considered). This way, the perturbing
bodies can be added successively until the full n-body problem is obtained. Eq. (35) is linearized
and added to the optimization problem as described in Section II. Our rationale is that the solver is
more likely to find a feasible solution when increasing the nonlinearity (and hence, the linearized
term) only step by step than solving the full problem directly. Considering the real thruster model
together with the perturbations caused by the solar radiation pressure and other bodies yields the
high-fidelity model.

CLOSED-LOOP GUIDANCE PROCESS

The closed-loop guidance process is shown in Fig. 4. The guidance is determined in a closed-loop
fashion where the reference trajectory is recomputed in predefined intervals using the SCP method
described in Sections II and III. After each reoptimization, the equations of motion are propagated
with the obtained controls for some time interval until a new reference is to be determined. This
process continues until the target is reached. To account for uncertainties and other errors, the
propagated state is perturbed and then used as the new initial state. As the spacecraft advances in
its flight, the number of collocation points is decreased in segments that meet a certain accuracy
threshold. The interested reader is referred to Hofmann et al.23 for details about the closed-loop
guidance simulation.

NUMERICAL SIMULATIONS

We calculate fuel-optimal trajectories from the Sun-Earth Lagrange point L2 (SEL2) to the as-
teroids Dionysus and 2000 SG344. The open-source Embedded Conic Solver (ECOS)34 is used to
solve the second-order cone program. Physical constants, scaling factors and SCP parameters are
given in Tables 1 and 2. The trust-region based SCP algorithm is described in Hofmann et al.15

For the homotopic approach, every subproblem is solved to full optimality (maximum constraint
violation εc and change of cost εφ are below some threshold) or until the maximum number of iter-
ations or step tolerance is reached. If not stated otherwise, a simple cubic interpolation is used to
generate the (poor) initial guess.
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Figure 4: Flowchart of the closed-loop guidance simulation.23

Table 1: Physical constants and scaling factors.

Parameter Value

Gravitational const. µ 1.32712× 1011 km3/s2

Gravitational accel. g0 9.80665× 10−3 km/s2

Solar constant CSun 1361 W/m2

Speed of light c 299792458 m/s
Length unit LU = AU 1.49597× 108 km
Velocity unit VU

√
µ/LU km/s

Time unit TU LU/VU s
Acceleration unit ACU VU/TU km/s2

Mass unit MU m0

Table 2: Parameters of the SCP algorithm.15

Parameter Value

Penalty weight λ 100
Penalty weight µ 100
Trust region r0 100
ρ0, ρ1, ρ2 0.01, 0.25, 0.9
α 1.5
β 1.5
εc 10−5, 10−6

εφ 10−4

Assessment of Homotopic Approach

For each dynamical model described in Section III, we calculate 350 fuel-optimal trajectories to
asteroid Dionysus with poor initial guesses to assess the performance of the homotopic approach.
This example is considered challenging due to the long time of flight and large changes in orbital
elements; several revolutions are required to reach the target. Moreover, the maximum thrust and
specific impulse decrease significantly over time as the distance between spacecraft and Sun in-
creases. The initial guesses are generated using a simple shape-based cubic interpolation method
where we impose non-integer values in the range [3.0, 6.5] on the number of revolutions. This
way, neither the dynamics nor the final boundary condition are satisfied. Two example trajectories
and thrust profiles for the high-fidelity model are illustrated in Figs. 5 and 6. It is evident that the
initial guesses are far from the optimal solutions. The characteristic bang-off-bang control structure
confirms that optimal solutions were found that comply with the real thruster model. We compare
the number of converged cases, average iterations and final masses, including the ±1σ standard
deviation. A maximum constraint violation tolerance of εc = 10−5 is used. The parameters for the
simulations are given in Table 3.
Throughout this section, 2b refers to the fuel-optimal problem with two-body dynamics, constant
maximum thrust and specific impulse, and no additional perturbations. The notation X → Y indi-
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Figure 5: Trajectory and thrust magnitude for a transfer to asteroid Dionysus with three revolutions.
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Figure 6: Trajectory and thrust magnitude for a transfer to asteroid Dionysus with six revolutions.

cates that problem X is solved first and then used as an initial guess for problem Y.

Energy-to-Fuel Homotopy. We perform 15 homotopic steps with εenergy = [1.0, 0.95, 0.9, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0] for the energy-to-fuel homotopy. Only two-body
dynamics with constant Tmax and Isp and no perturbations are considered. The results are shown in
Table 4. Even though solving the fuel-optimal problem directly yields a high convergence rate of
89 %, performing a homotopy from the energy-optimal problem slightly increases this figure. As
we solve each step to full optimality, the number of iterations is considerably larger due to the 15
intermediate optimizations. One remedy could be to reduce the number of steps or limit the number
of iterations during the homotopy. Nevertheless, the average run time of few minutes on a standard
Laptop seems to be acceptable for such a large number of iterations.

Solar Radiation Pressure Homotopy. The results for six homotopic steps εSRP = [0.0001, 0.001,
0.01, 0.1, 0.5, 1.0] are given in Table 5 where SRP refers to solving the problem directly with a
cubic interpolation guess. The figures are similar to the previous case: solving the problem directly
already yields a high percentage of converged cases of 89 %, but adding a homotopy increases it
to 95 % at the cost of more iterations and hence, computational time. Although the SRP homotopy
finds the maximum final masses, all values are similar.
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Table 3: Simulation values for the SEL2 to Dionysus transfer.35

Parameter Value

Initial epoch 23-Dec-2012 00:00:00 UTC
Initial mass m(t0) 4000 kg
Final position rf [−2.0406, 2.0518, 0.5543]> LU
Final velocity vf [−0.1423,−0.4511, 0.0189]> VU
Final mass m(tf ) free
Tmax, Isp (fixed Isp) 0.32 N, 3000 s
Tmax, Isp,max (variable Isp) 0.5 N, 5000 s
Thruster model 1
Time of flight tf 3534 days
Projected spacecraft area ASC 100 m2

Reflectivity coefficient CR 1.3
Total number of collocation points 250
Number of segments 25

Table 4: Results of energy-to-fuel homotopy.

Simulation Converged Converged (%) Avg. iter. Avg. m(tf ) (kg)

Fuel-opt. 312 89 70.1 ± 20.1 1805 ± 428
Homotopy 328 94 784.9 ± 104.0 2116 ± 223

Variable Thrust and Specific Impulse Homotopy. The variable Isp homotopy consists of approx-
imating the curves with affine and piecewise affine functions first before using the real thruster
model. As the maximum thrust and specific impulse decrease considerably with the distance to the
Sun in the chosen model, the algorithm was only able to find optimal solutions in 80 % of the cases
when considering the real thruster model directly (Var. I b

sp, see Table 6). The convergence rate
increases by approximately eight percent when (piecewise) linear approximations are included. It
can therefore be an effective means to find feasible solutions in case of complex transfers or when
poor initial guesses are provided. As mentioned in Section III, using Tmax(r) ≈ Tmax(r̄) instead of
linearizing the upper bound of Eq. (30) improves the convergence rate, cf. I a

sp and I b
sp. Note that

the final masses of the homotopic approach are lower than in the other cases. The reason is that the
former found additional solutions that correspond to lower final masses, thus reducing the average
value.

Table 5: Results of the SRP homotopy.

Simulation Converged Converged (%) Avg. iter. Avg. m(tf ) (kg)

SRP 312 89 68.8 ± 18.4 1800 ± 432
2b → SRP 316 90 88.9 ± 29.5 1796 ± 440

2b → SRP homotopy 338 95 256.3 ± 116.5 1839 ± 481
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Table 6: Results of the variable maximum thrust and specific impulse homotopy.

Simulation Converged Converged (%) Avg. iter. Avg. m(tf ) (kg)

Var. Isp
a 251 72 74.1 ± 14.1 2148 ± 391

Var. Isp
b 279 80 80.9 ± 25.2 1807 ± 461

2b → var. Isp 296 85 134.5 ± 35.5 1783 ± 485
2b → var. Isp homotopy 309 88 237.4 ± 80.9 1712 ± 495
a Linearizing the upper bound of Eq. (30).
b Using Tmax(r) ≈ Tmax(r̄).

N-body Homotopy. With regard to the n-body problem, it is apparent that this is difficult to solve
as the dynamics are highly nonlinear. The results are presented in Table 7. Remarkably, despite the
poor initial guesses, SCP was still able to find optimal solutions in 78 % of the cases when solving
the n-body problem directly (cf. N -body in the first row). When solving the n-body problem directly
without any homotopy using the solution of 2b as the initial guess, the convergence increases by
more than ten percent. Still, incorporating a homotopic approach results in more converged cases
(310 vs. 323 and 334). Also note that because the spacecraft departs close to Earth at the SEL2

point, adding the gravitational influence of the Earth separately allows us to determine a few more
optimal solutions (see the case 2b → 3b hom. → n-body hom.). We used εnbody = [0.0001, 0.001,
0.01, 0.1, 0.5, 1.0] for all simulations. The discrepancy in the final masses is again because of the
additional solutions that were found.

Table 7: Results of the n-body homotopy.

Simulation Converged Converged (%) Avg. iter. Avg. m(tf ) (kg)

N-body 272 78 72.4 ± 16.4 1874 ± 398
2b → n-body 310 89 107.1 ± 22.8 1825 ± 424

2b → n-body homotopy 323 92 202.6 ± 95.1 1852 ± 436
2b → 3b hom. → n-body hom. 334 95 303.7 ± 177.9 1809 ± 475

Comparison with a Nonlinear Programming Solver

We compare SCP with a nonlinear programming approach in terms of convergence, iterations
and computational time. We use the DIRETTO (DIREct collocation Tool for Trajectory Optimiza-
tion),36 a tool developed at Politecnico di Milano that is based on a Hermite–Simpson collocation
method, together with IPOPT.37 As the NLP solver is not able to solve the Dionysus transfer with-
out a decent initial guess, we choose a simpler transfer from SEL2 to the near-Earth asteroid 2000
SG344, which is a possible target of ESA’s Miniaturised Asteroid Remote Geophysical Observer
(M-ARGO) mission.20 The simulation values are given in Table 8. We reduce the the maximum
constraint violation tolerance to εc = 10−6. The initial guesses are generated as follows:

• Guess 1: cubic interpolation that does neither satisfy the dynamics nor the final boundary
condition. We perform 100 simulations where the number of revolutions of the initial guess
ranges from 1.6 to 2.6. It is considered a poor initial guess.
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• Guess 2: propagating the nonlinear dynamics for tf with constant tangential thrust. We run
again 100 simulations. For each guess, a thrust magnitude T ∈ [0, Tmax] is chosen. Such an
initial guess is considered relatively good as the dynamics are satisfied and the propagated
final state is often close to the target state.

Table 8: Simulation values for the SEL2 to asteroid 2000 SG344 transfer.20

Parameter Value

Initial epoch 04-Feb-2024 12:00:00 UTC
Initial mass m(t0) 22.6 kg
Final mass m(tf ) free
Maximum thrust Tmax 2.2519 mN
Maximum specific impulse Isp,max 3067 s
Thruster model 2
Time of flight tf 700 days
Projected spacecraft area ASC 0.05 m2

Reflectivity coefficient CR 1.3
Total number of collocation points 150
Number of segments 15

The converged cases and average number of iterations, CPU time and final mass are reported in
Table 9. In contrast to SCP that converged in 64 % of the cases, the NLP solver was not able to
find optimal solutions for the poor initial guesses at all (cf. Guess 1). When a decent initial guess is
provided (Guess 2), however, the NLP method determined 69 optimal solutions out of 100. Still, it
required on average almost two times as many iterations as SCP which failed in two cases, resulting
in a considerably higher CPU time (112.6 vs. 14.5 seconds). The final masses are instead very
similar. The results confirm that a NLP method requires a decent initial guess whereas a poor guess
often suffices for SCP.

Table 9: Comparison of SCP and NLP for transfers to asteroid 2000 SG344.

Simulation Converged Converged (%) Iterations CPU time (s) m(tf ) (kg)

Guess 1
SCP 64 64 44.3 ± 34.3 18.7 ± 14.7 21.29 ± 0.42
NLP 0 0 — — —

Guess 2
SCP 98 98 36.5 ± 29.1 14.5 ± 11.2 21.44 ± 0.16
NLP 69 69 66.3 ± 36.6 112.6 ± 59.7 21.45 ± 0.01

Closed-Loop Guidance Simulation

We extend the approach in Hofmann et al.23 and perform the closed-loop guidance simulation
to asteroid 2000 SG344 using a high-fidelity model. A poor initial guess is provided that requires
a homotopic approach to find an optimal solution in the first iteration. As this is a simple transfer
with few revolutions only, it suffices to solve the two-body problem first and then directly proceed to
the high-fidelity model. In all subsequent reoptimizations, no additional homotopy is applied as the
previous solutions serve as decent initial guesses. The random position and velocity perturbances
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are −104 to 104 km and −10−3 to 10−3 km/s, respectively. The trajectory is recomputed every 14
days, hence resulting in a total of 50 reference trajectories to be calculated given the time of flight
of 700 days. Other simulation values are given in Table 8.
The concatenated propagated trajectory (that is, the trajectory flown by the spacecraft) and the initial
guess are shown in Fig. 7a. The squares indicate the positions where a new reference was computed.
Apparently, the poor initial guess does neither satisfy the dynamics nor the final boundary condition.
Fig. 7b illustrates the thrust magnitudes where T nominal corresponds to the obtained control history
in the first iteration. Both curves match well despite some small spikes that occur during the closed-
loop guidance; a finer mesh is likely to eliminate those. Apart from that, the real thruster behavior
was captured accurately as the thrust magnitude either follows the Tmax curve or is zero. The
number of iterations and computational time are only high for the first iteration (see Fig. 8) due to
the required homotopy. Despite the high-fidelity model, computing all other reference trajectories
required only two iterations and 0.5 seconds on average, thus making the performance similar to the
two-body simulation in Hofmann et al.23 As we consider additional perturbations in our simulation,
the propagation error is considerably lower (order of 100 km or less). The obtained final mass of
21.49 kg after reaching the target is almost identical to the nominal one.

-0.5
1

0

1

z 
(L

U
)

y (LU)

0

x (LU)

0.5

0
-1 -1

Trajectory
Initial guess
x0

xf

(a) Trajectory flown by the spacecraft.

0 100 200 300 400 500 600 700
Time (days)

0

0.5

1

1.5

2

2.5

T
hr

us
t (

m
N

)

T concat T nominal Tmax

(b) Thrust magnitudes.

Figure 7: Trajectory flown by the spacecraft and thrust magnitude for the closed-loop guidance
simulation.
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CONCLUSION

The low-thrust fuel-optimal problem was addressed using a pseudospectral SCP method. It was
shown that high-fidelity models such as solar radiation pressure, variable maximum thrust and
specific impulse, and the gravitational influence of other bodies can be solved with standard SCP
techniques. A homotopic approach was proposed that improves the convergence rate when more
complex models are considered. Thousands of transfers to an asteroid demonstrate the excellent
robustness even in highly nonlinear applications.
This work has demonstrated that SCP can outperform a standard NLP solver even when more com-
plex dynamical models are considered. The high robustness against poor initial guesses make it an
appealing choice whenever a high convergence rate is desired. Apart from artificial intelligence,
numerical optimization is the second important class of methods for onboard guidance and con-
trol. Especially SCP has proven in several occasions that it is suitable for real-time applications.
The simulations suggest that a high-fidelity model can in general be integrated into a closed-loop
guidance scheme without a significant increase of computational effort. For problems with few
revolutions, the performance is comparable to the low-fidelity model, except for the accuracy that
can be improved considerably. This is a promising result as SCP is capable of solving also highly
nonlinear problems in a short amount of time.
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