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ABSTRACT
Research on smart connected vehicles has recently targeted the integration of vehicle-to-everything
(V2X) networks with Machine Learning (ML) tools and distributed decision making. Among these
convergent paradigms, Federated Learning (FL) allows the vehicles to train a deep ML model col-
laboratively, by exchanging model parameters (i.e., neural network weights and biases), rather than
raw sensor data, via V2X links. Early FL approaches resorted to a server-client architecture, where
a Parameter Server (PS) acts as edge device to orchestrate the learning process. Novel FL tools, on
the other hand, target fog architectures where the model parameters are mutually shared by vehicles
and synchronized in a distributed manner via consensus. These tools do not rely on the PS, but take
advantage of low-latency V2X links. In line with this recent research direction, in this paper we
investigate distributed FL for augmenting the capability of road user/object classification based on
Lidar data. More specifically, we propose a new modular, decentralized approach to FL, referred
to as consensus-driven FL (C-FL), suitable for PointNet compliant deep ML architectures and Lidar
point cloud processing for road actor classification. The C-FL process is evaluated by simulating a
realistic V2X network, based on the Collective Perception Service (CPS), for mutual sharing of the
PointNet model parameters. The performance validation considers the impact of dense connectivity,
continual learning over heterogeneous training data, convergence time and loss/accuracy tradeoffs.
Experimental results indicate that FL complies with the extended sensors use cases for high levels of
driving automation, it provides a low-latency training service, compared with existing distributed ML
approaches, and outperforms ego learning with minimal bandwidth usage.

1. Introduction
The forthcoming automated mobility ecosystem is ex-

pected towave in cooperative sensing, communication, com-
puting and learning from massive data in real time [1]. In
particular, connected automated driving (CAD) functions
target cooperative multi-vehicle control and planning strate-
gies [2]. They rely on the extensive use of Distributed Ma-
chine Learning (DML) techniques to achieve robust and re-
liable predictions over a large number of driving-related
functions [3]. Most notably, targeted functions include
environmental perception and localization [4], path plan-
ning and behaviour arbitration [5, 6], traffic flow predic-
tion [7] and motion control [8]. Solving such complex
tasks requires big-data-driven training of large-sizeMachine
Learning (ML) models as well as ultra-reliable low-latency
vehicle-to-everything (V2X) interactions with road infras-
tructure (V2I) and other vehicles (V2V) for cooperative
sensing/manoeuvring tasks. In DML, networked vehicles
are expected to cooperate by sharing data over V2X links
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to improve safety, efficiency and driving comfort. How-
ever, existing DML techniques in this field of application are
based on traditional big-data fusion and cloud/edge princi-
ples where vehicles mostly act as data producers [9] while
their learning capabilities are not exploited.

Over the past few years, Federated Learning (FL)
tools [10–13] have been emerging for addressing large-scale
distributed training across many interconnected devices, or
agents, with enhanced privacy preserving functionalities
compared to DML systems. FL paradigms rely on the ex-
change of locally trained instances of the ML parameters,
i.e., the weights and biases of the Neural Networks (NN),
rather than sharing raw data as in DML [9]. As opposed to
classical big-data fusion approaches, FL makes use of on-
device learning functions and an intensive exchange of ML
parameters over the network. This is expected to bring sig-
nificant benefits in future vehicular scenarios, if rooted in
6th Generation (6G) cellular V2X paradigms that can truly
support zero-latency and high-data rate communications in
dynamic scenarios.

In early vanilla FL implementations [13], a Parameter
Server (PS) acts as a central orchestrator of the learning
process: it collects the local models from the participating
nodes, updates the received models according to some pre-
defined aggregation procedure, and sends back the aggre-
gated (or global) model to devices. In analogy with dis-
tributed ledger and fog computing tools, more advanced de-
signs have been recently proposed to let the local model
parameters be consensually shared [14] and synchronized
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Figure 1: Decentralized FL architecture: vehicles cooperate in the creation of a federated dataset  comprising the individual
dataset i of each vehicle i ∈  . Vehicles engage in a distributed ML model optimization by sharing their own parameters Wt,i

every communication round t. This allows to reach a consensus on the global model Ŵ, common to all connected vehicles.

across multiple devices via decentralized, mesh, or device-
to-device (D2D) networking, without relying on PS. FL
policies well address scalability and privacy shortcomings,
although many key problems still need to be solved.
1.1. FL challenges in connected automated

vehicles
The main challenges in FL design are device sampling,

convergence and statistical heterogeneity [15–18]. For ex-
ample, device sampling methods allow to optimize the pop-
ulation of devices participating to the learning process, con-
sidering data quality, latency and energy tradeoffs. De-
vice selection policies typically target a fixed percentage
of devices [13] that are chosen to speed up the learning
process [19] or meet eligibility criteria [20]. Reducing
convergence time of FL procedures is of paramount im-
portance, especially in mobility scenarios with electric ve-
hicles and latency-critical services. In [21], a gradient-
based user association scheme is adopted, while [22, 23]
focus on momentum-based optimization and control algo-
rithms to select the best trade-off between local updates and
global aggregation. FL setups are characterized by statis-
tical heterogeneity which can highly influence the quality
of the trained models. To solve this problem, a variant of
Federated Averaging (FedAvg) has been proposed in [24] to
restrain local models from diverging from the global one.
Other approaches rely on Multi-Task Learning (MTL) [25]
or Transfer Leaning (TL) [26] that let devices learn and/or
fine-tune their models on their local data.

Centralized, or vanilla FL setups rely on a server/client
architecture for carrying out the training process. As the
client connections increases, the PS may become a bottle-
neck of the system, slowing down the entire learning process
and becoming unresponsive. On the other hand, decentral-
ized FL techniques bring further advances as they exploit
a fully distributed network architecture. Rather than rely-
ing on a PS, the cooperating devices exchange the model
parameters through peer-to-peer connections and implement
a consensus policy. Gossip learning approaches have been
proposed in [27], where nodes exchange local models with
typically two random neighbors. Consensus-driven policies
presented in [11] proposed a consensus based federated av-
eraging tool for model parameters and gradients exchange.
Further research studies target analog and digital implemen-
tations [28] in fading channels.

FL has recently started to gain attention in connected au-
tomated driving applications where vehicles need to handle
multi Gbps data streams [29, 30] for cooperative sensing
and maneuvering functionalities. Sharing such large vol-
umes of data is unfeasible, but FL allows to reduce the ex-
change to a more parsimonious set of ML model parame-
ters. Furthermore, it has the advantage of being privacy
preserving as it does not require raw sensor data sharing.
Even though the application is very relevant due to the stan-
dardization and implementation effort made by the 3rd Gen-
eration Partnership Project (3GPP) and the 5G Automotive
Association (5GAA), few studies have been performed for
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automotive use cases. In [31], a FL approach is devel-
oped for joint power and resource allocation in vehicle-to-
vehicle (V2V) communications. A FL-based traffic predic-
tion algorithm is presented in [32], while in [33] a federated
transfer Reinforcement Learning (RL) approach is devel-
oped for real-time knowledge extraction. Other studies focus
onmodel selection for aggregation [34, 35] or contract-based
FL to maximize energy efficiency in electric vehicle net-
works [36]. Blockchain-based FL algorithms are proposed
in [37, 38] for privacy-aware vehicular communications and
asynchronous FL deep RL-based node selection. Similar ap-
proaches are presented in [39] and [40], where a trusted con-
sensus policy and a blockchain-enabled federated vehicular
network are developed, respectively. Finally, [41] presents
an initial feasibility study on FL for vehicular networks. The
aforementioned methods, however, rely on centralized solu-
tions for model aggregation and/or blockchain technologies
leveraging computationally expensive Proof-of-Work (PoW)
protocols for verifying model updates that may also utilize
Road Side Unit (RSU) or centralized entities. In vehicular
scenarios, on the other hand, decentralized solutions are pre-
ferred as the connection to the road infrastructure might not
be always available and local processing allows to speed up
the learning process.
1.2. Contributions and paper organization

In this paper, we investigate the FL technology for the
classification of road users or objects (here referred to as road
actors) based on Lidar data collected by networked vehicles.
A preliminary study on FL system for road actor classifica-
tion has been performed in [42]. Herein, we extend the pre-
vious work by proposing a new cooperative solution based
on a fully decentralized FL policy, referred to as consensus-
driven FL (C-FL). The main contributions are summarized
as follows:
• The proposed C-FL technique targets fully distributed ve-

hicular networks and exploits V2V communications to
augment the recognition capability of ego-approaches,
while overcoming privacy and flexibility shortcomings of
current DML policies. Compared to vanilla FL, the con-
sensus technique makes the distributed learning process
more scalable and fault resilient as the number of cooper-
ating vehicles increases. Furthermore, it requires a mini-
mal increase of the computational resources as it is based
on weighted averaging.

• Considering FL over deep architectures, typically adopted
for solving automated vehicle tasks, amodular approach is
proposed, in which the FL process can be enabled across
a variable number of ML model layers. The approach is
integrated with the C-FL policy and validated using Lidar
sensor’s readings that are used as input to a Deep Learning
(DL) model, namely PointNet [43], which is in charge of
inferring the actual type of road actors.

• The C-FL tool is validated over a realistic V2X network
that allows the vehicles to cooperate and mutually share
the NN parameters. The V2X connections are generated

using the trajectories extracted from a microscopic traffic
simulator. The FL performance is then assessed over dif-
ferent traffic density conditions, evaluating the impact of
the V2X connectivity on the consensus process, the con-
vergence time and the loss/accuracy trade off.

• Concerning the FL implementation into the V2X network
protocol, we propose the use of the Collective Perception
Message (CPM) service [44] to encapsulate the NN pa-
rameters and propagate them through the V2X network.
The C-FL framework is also adapted to accommodate 6G-
enabled vehicular networks showing how the training pro-
cess can speed up by leveraging highly reliable and ultra
low-latency communications.
Real measurements extracted from a large-scale automo-

tive dataset are used to assess the developed techniques’ per-
formance. Experimental results indicate that FL is particu-
larly effective, compared with ego learning approaches, even
in more challenging, but practical, settings characterized by
heterogeneous data distributions, or non-independent and
identically distributed (non-IID). These settings are indeed
representative of real-world scenarios where vehicles with
outdated, or partially trained models, coexist with highly-
automated fully-equipped vehicles and benefit from their co-
operation. Ego learning approaches are characterized by low
convergence time compared to FL procedures, however, they
are not able to provide the required level of accuracy. On
the other hand, DML implementations show substantially
higher training time compared to the proposed approach due
to the raw data fusion at the data center, making them unfea-
sible in latency-critical vehicular applications.

The paper is organized as follows. Sec. 2 presents the
system model employed for characterizing the decentralized
FL training process as well as the V2X network. Sec. 3 intro-
duces the proposedC-FLmethod, a communication-efficient
modular approach for model parameters exchange, and the
expected key technology enablers in 6G V2X standardiza-
tion. Sec. 4 describes the overall FL framework, focusing on
the vehicular scenario, the dataset, and the PointNet model
and its FL adaptation for road actor classification. Finally,
Sec. 5 evaluates the proposed C-FL tool as compared with
centralized FL, DML and ego learning strategies. Learning
loss, accuracy and convergence time are evaluated for dif-
ferent V2X connectivity scenarios as well as for continual
learning setups.

2. System model
We consider a vehicular scenario evolving over time t

where a set  = {1,⋯ , Nv} of Nv vehicles participate in
the FL process. We assume a same number of vehicles si-
multaneously present at each time instant t, thusNv is time-
invariant. The position of vehicle i ∈  over the 2D space
is denoted by pt,i = [pt,i,x , pt,i,y]T.By moving along their paths, the vehicles engage in
a dynamic cooperation process, where V2V links act as a
bridge among vehicles, letting them share information with
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the nearby ones. We model this process as a time-variant
graph t, where vehicles t are the nodes and the edges �tare the V2V links. The directed graph is thus defined as
t =

(

t, �t
). For a given vehicle i, the set of its neighbors

at time t is indicated by t,i = {j ∈  , j ≠ i ∶ ‖pt,i−pt,j‖ ≤
Rc} ⊆  , beingRc theV2V connection range (here assumed
to be equal among all vehicles). An ideal free-space com-
munication is considered between each vehicle pair, without
any obstructing objects that prevent the V2V connection.

In the following, we first describe the reference use case
scenario targeting augmented sensing for road object clas-
sification (Sec. 2.1), then we provide details about the V2X
communication architecture and protocol, as well as a de-
scription of the NN parameters that are mutually exchanged
among vehicles (Sec. 2.2).
2.1. Cooperative sensing for road actor

classification
In the proposed setup, the vehicles detect the surround-

ing road actors (such as pedestrians, traffic cones, barri-
ers, bicycles, cars and buses) by scanning the environment
through a Lidar sensor. The sensing range is limited to 70
m, and the spatial accuracy of each point cloud is ±2 cm.
The Lidar Field of View (FOV) is 360 deg in azimuth and
[+10 ,−30] deg in elevation, while the capture frequency is
20 Hz.

We propose a cooperative sensing methodology where
the goal of vehicles is to cooperatively learn a PointNet-
based deep ML model for inferring the actual type of road
actors using Lidar point clouds. Differently from non-
cooperative algorithms that operate locally on each ego vehi-
cle, which can optimize the ML model by relying only on its
own dataset i, in FL all vehicles aim to optimize their own
model by including information from the neighbors. This
leads to the creation of an aggregated dataset  = ⋃Nv

i=1 i,where each ego dataset i can have different size and/or in-
clude a limited set of classes, i.e.,  is unevenly distributed
across vehicles, as typically observed in FL setups. Each lo-
cal dataset i comprises a number of examplesEi of the form
(xℎ, yℎ),∀ℎ = 1,… , Ei, where xℎ contains the Lidar point
cloud while yℎ the corresponding real road actor category.
The overall number of available examples in the whole sce-
nario is E = || =

∑Nv
i=1 Ei, with Ei = |i|≪ E,∀i ∈  .

2.2. V2X signaling of ML model parameters
The parameters of the ML model are exchanged through

V2V links according to the specific communication stan-
dard. Here, we employ the European Telecommunications
Standards Institute (ETSI) standard TR 103 562 [44], which
rules the communication among road users at application
level for cooperative Intelligent Transportation System (ITS)
services. In particular, we propose to use the Collective Per-
ception Service (CPS) to share the NN parameters among
cooperating vehicles. CPM are broadcast messages ex-
changed in the V2X network for informing each networked
entity of possible detected objects by vehicles and/or by in-
frastructure i.e., RSU [44]. A CPM is composed by an ITS

PDU (Intelligent Transportation Systems Packet Data Unit)
header and containers defined in [44]. In particular, the
Perceived Object Container (POC) is used here for the pur-
pose of exchanging the ML model parameters during the FL
process. POC is an optional container typically used for in-
forming theV2Xnetwork about objects or events detected by
the other vehicles, or the road infrastructure. As an example,
for each detected object reported in the POC, the ID num-
ber, the time of measurement, the sensor ID, the object data
(e.g., position, speed, acceleration, orientation), confidence
and type (e.g., pedestrian, car) can be included. Other con-
tainers that might provide additional side information sup-
porting the FL process are listed in the following:
• Management Container (MC): it contains mandatory in-

formation about the vehicle, its type and position;
• Station Data Container (SDC): an optional container

used for providing specific information about the entity
that generated the CPM. This container can include the
Originating Vehicle Container (OVC) or the Originating
RSU Container (ORC) in case the message is generated
either by a vehicle or RSU, respectively.

• Sensor Information Container (SIC): it reports informa-
tion about the sensors mounted on the vehicle or RSU,
such as sensor ID, sensor type and detection area. In case
of sensor fusion, the information is encapsulated into a
single SIC;

The ITS PDU header, MC and SDC are transmitted using
121 bytes, while the SIC and POC dedicate 35 bytes for each
sensor/object in the message, respectively [44, 45]. The gen-
eration frequency of the CPM is ruled by the choice of TCPMwhich ranges from 100ms to 1000ms, i.e., from a minimum
of 1 message/sec up to 10 messages/sec.

For the purpose of exchanging theMLmodel parameters
in theV2X network, we choose themaximumgeneration fre-
quency, namely 10 messages/sec. In addition, we consider
that the CPM messages always include the maximum num-
ber of POCs. This corresponds to a payload of 4480 bytes.

3. Federated learning over V2X networks
Decentralized FL policies let the local model parameters

be consensually shared and synchronized across multiple ve-
hicles via V2X networking, possibly without relying on the
PS orchestration. In particular, in the proposed distributed
implementation vehicles combine local models with neigh-
boring ones by average consensus. Next, they update the
combined models using an assigned optimizer running on
local data. The FL process generally runs for a number of
communication rounds and ends when a consensus is ob-
tained, namely when local models converge to a common
representation that satisfies a target loss or accuracy [11].

Considering a deep NN composed ofN layers, the goal
of FL is to learn a global model ŷ(W; x), where W =
W(N) encapsulates the parameters of the NN, from the avail-
able input data x and for all N layers. Namely, W(N) =

: Preprint submitted to Elsevier Page 4 of 18



{

wT
n ,bn

}N
n=1 with vectors wn and bn collecting the NN

weights and biases of the layer n. At the last layer N , the
predictions are obtained by applying a non-linear function
f (⋅) to the weighted sum over the outputs hN−1 of the sec-ond last layer as:

ŷ(W(N); x) = fN
(

wT
NhN−1 + bN

)

. (1)
Similarly, at a generic layer n the predictions
fn

(

wT
nhn−1 + bn

) are recursively computed as a func-
tion of the predictions from n = 1 up to the previous layer
n−1, while for n = 0we have h0 = x. In FL, the parameters
W can be learned by applying a minimization procedure to
any finite-sum objective function L(W):

Ŵ = argmin
W

L(W) = argmin
W

Nv
∑

i=1
�i Li(W)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
L(W)

, (2)

where �i = Ei∕E and Li(W) is the local loss of vehicle i:

Li(W) = 1
Ei

Ei
∑

ℎ=1
l(xℎ, yℎ;W), (3)

and l(xℎ, yℎ;W) is the loss computed over the example
(xℎ, yℎ) when the parametersW hold.

For the specific case of road actor classification herein
considered (see Sec. 4.3), the loss l(xℎ, yℎ;W) is computed
as in [43] for C different road actor categories. More specif-
ically, the PointNet model uses two additional regularization
losses to allow the input and feature transform networks to
learn a representation that is invariant to geometric transfor-
mations. This is accomplished by constraining the resulting
matrices of the input and feature transform networks to be
close to orthogonal. Finally, these two losses are added to
the conventional categorical cross-entropy and the total loss
is used to compute the gradients and update the weights ac-
cordingly.
3.1. Consensus-driven federated learning (C-FL)

We consider the decentralized FL system in Fig. 1, where
vehicles learn the global objective (2) by relying only on lo-
cal computations and mutual exchange of the ML parame-
ters through V2V communications. For vehicle i at time t,
the local ML model parameters are represented as Wt,i. We
propose a modular approach in which the federated learning
process targets an optimized subset W(Q)

t,i of Q ≤ N model
layers, while the remaining N − Q ones are learned using
local data only and the chosen optimizer. The proposed ap-
proach is tailored for the vehicular setup as it minimizes the
communication overhead by limiting the number of ML pa-
rameters to be exchanged on each FL round. Without lead-
ing in generality, we choose to federate the Q layers closest
to the outputs, as more sensitive to unbalanced distributions
since they learn features that are specific to the considered
dataset [46]. Optimization of the number of layersQ subject
to federation is addressed in Sec. 5 for the chosen study. For

Algorithm 1 Consensus-driven Federated Averaging
1: procedure C-DFA(t,i, �, Q)
2: initialize W0,i ← vehicle i
3: initialize m0,i ← 0
4: initialize v0,i ← 0
5: for each round t = 1, 2, ... do ⊳ Training loop
6: receive{W(Q)

t,j }j∈t,i ⊳ RX Q layers
7:  (Q)t,i ← �i,iW

(Q)
t,i

8: for all vehicles j ∈ t,i do
9:  (Q)t,i ←  (Q)t,i + �i,jW

(Q)
t,j

10: end for
11:  t,i ← [W(P )

t,i ,  
(Q)
t,i ]

12: Wt,i = ModelUpdate( t,i) ⊳ Update all layers
13: send

(

W(Q)
t,i

)

⊳ TX Q layers to neighbors
14: end for
15: end procedure
16: procedureMODELUPDATE( t,i) ⊳ Local Adam
17:  ← mini-batches of size B
18: for batch b ∈  do
19: mt+1,i ← �1mt,i + (1 − �1)∇Lt,i( t,i)
20: vt+1,i ← �2vt,i + (1 − �2)∇2Lt,i( t,i)

21:  t+1,i ←  t,i −

√

1 − � t
2

1 − � t
1

⋅
mt+1,i

√vt+1,i + �
22: end for
23: end procedure

Q layers, the corresponding model parameters W(Q)
t,i to be

exchanged on each communication round are therefore

W(Q)
t,i =

[

wT
N−Q,bN−Q,… ,wT

N ,bN
]

, (4)
with same definitions for weights wn and biases bn. The
remaining layers are learned using local data only and are
here collected in W(P )

t,i =
{

wT
n ,bn

}N−Q−1
n=1 , therefore Wt,i =

[W(P )
t,i ,W

(Q)
t,i ].Decentralized ML model parameter sharing and adapta-

tion is implemented by an average consensus approach. The
consensus-driven FL (C-FL) process is summarized in the
pseudo-code provided in Algorithm 1 and detailed in the fol-
lowing. On every communication round t = 1, 2, ..., vehicle
i fuses the ML parameters, namely theQ selected layers, re-
ceived from its neighbors j ∈ t,i via average consensus:

 (Q)t,i = �i,iW
(Q)
t,i +

∑

j∈t,i

�i,jW
(Q)
t,j , (5)

where �i,j are the mixing weights for the received models
which are chosen as [11]:

�i,j =
Ej

∑

j∈t,i Ej
, (6)
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while for i = j:
�i,i =

Ei
∑

j∈t,i Ej
. (7)

Once the consensus process is completed, the vehicle i
fuses the shared parameters  (Q)t,i with W(P )

t,i into  t,i =
[

W(P )
t,i ,  

(Q)
t,i

]

and runs the local optimizer, to minimize the
local loss Li( t,i) in (3). Considering the Adam optimizer
[47] as being the preferred option for PointNet based ar-
chitectures [43], this last stage is implemented as Wt+1,i =
 t,i − Δ t,i with:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Δ t,i = �t ⋅

√

1 − � t
2

1 − � t
1

⋅
mt+1,i

√vt+1,i + �
mt+1,i = �1mt,i + (1 − �1)∇Lt,i( t,i)
vt+1,i = �2vt,i + (1 − �2)∇2Lt,i( t,i)

, (8)

wheremt+1,i and vt+1,i are the estimates of the first and sec-
ond moment of the gradients∇Lt,i( t,i) at round t+1. Otherparameters �1, �2 ∈ [0, 1), �t and � are defined in [47].
Model adaptation in (8) is computed over a mini-batch 
(of size B) of local training examples. The new parameters
Wt+1,i are forwarded to the neighbors of vehicle i and a newround starts. This procedure is iterated until the parameters
Wt,i converge to the desired loss values.
3.2. Empowering FL by 6G V2X communications

Consensus driven FL methods rely on an intensive use
of low-latency V2X communications for ML model shar-
ing. Communication-efficient FL designs paired with novel
6G radio technologies are thus expected to bring significant
benefits. In what follows, we break down and analyze the
key features of 6G that are expected to play a pivotal role for
massive deployment of FL in vehicular setups.

Mass-market commercialization of connected vehicles
for consumers is quite recent, with the standardization of
the WiFi-based IEEE 802.11p protocol [48]. As an alterna-
tive, the cellular technology of 3GPP Rel. 14 [49], known as
LTE-V2X, has also been designed as to accommodate for ve-
hicular applications too. However, moderate availability of
spectrum cannot afford the development of enhanced con-
nected mobility services, as planned in 5G V2X [50, 51].
Moreover, the overcrowded bandwidth in the ultra-high and
super-high frequency bands (up to 30GHz) has pushed to in-
vestigate millimeter waves (mmWaves) as candidate mean of
transmissions. Experimental analyses and proof of concepts
validated and confirmed their effectiveness, also in vehicular
environments [52–56]. At present, the latest release of 5G
New Radio (NR), i.e., 3GPP Rel. 16, is designed to operate
up to 52.6GHz, but research activities for Rel. 17 plan to ex-
tend 5G NR support until 71GHz [57, 58]. Shifting towards
this frequency range is mandated to fulfill the demands of
automated mobility applications, where high congestion of
connected devices is expected to populate the vehicular en-
vironment in the next future, with diverse service require-
ments and communication capabilities [59]. At the same

time, hardware enhancements on antenna systems will intro-
duce beam-based communications (possibly adaptive [60]),
not only at the network side (i.e., base station) but also on
each road user, as higher frequencies (mmWaves) require
a compact physical size of the antenna equipment, afford-
ing to fit many radiators in a same device [58]. This lead
to an increased spectral efficiency, as well as the possibil-
ity to handle multiple communications in parallel by spatial
selectivity/diversity.

The forthcoming 6G standard is expected to be the first
wireless communication technology that faces an unprece-
dented density of connected devices, with a variety of ser-
vice requirements and communicationmodes, requiring spe-
cific intelligent functionalities in local edge clouds targeting
low latency [61, 62]. Key performance indicators project the
6G technology to a new level of how wireless communica-
tions are conceived, paving the way for distributed process-
ing solutions. 6G targets to guarantee a massive data rate for
each connection (1 Tb/s) and an end-to-end latency of 0.1
ms [63], turning out to be the first communication technol-
ogy to truly enable FL over large scale. Consensus-based
approaches will largely benefit from almost zero-latency 6G
V2V communications, letting vehicles to mutually share in-
formation on the individualMLmodels, increasing the avail-
ability of data and improving the overall accuracy of the spe-
cific algorithm or model.

4. Road actor classification: FL framework,
vehicular scenario and dataset
In this section, we present the FL framework tool for road

actor classification, the proposed vehicular setting, the Lidar
dataset and the PointNet model considered for training and
performance validation.

As discussed in Sec. 3, vehicles collectively optimize the
ML model for classification, relying only on local optimiza-
tion and V2X communications for exchanging the model up-
dates. Each vehicle implements a two-stage point cloud pro-
cessing for classifying the road actors, as depicted in Fig. 2.
At first, the Lidar point clouds are processed by a bound-
ing box extractor to obtain object detection and segmenta-
tion information (bounding box subsystem). To densify each
point cloud, we firstly aggregate 10 Lidar sweeps for each
available point cloud and extract the ones that fall within the
box. Next, the filtered point clouds are fed to a PointNet-
based ML model for obtaining the actual road actors predic-
tions (classification subsystem). Here, FL is applied only to
the classification subsystem, while the bounding boxes are
processed locally without the cooperation of other vehicles.
This choice is shown as practical enough to minimize the
communication overhead and limit theMLmodel size to rea-
sonable complexity.

The overall FL framework, its main components and the
related configuration, are detailed in the following sections.
First, the vehicular scenario and the virtual network envi-
ronment are described in Sec. 4.1. Next, extraction and pre-
processing of the point cloud data from the nuScenes dataset
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Figure 2: Road actor classification implemented at each vehicle. The classifier consists of 2 subsystems: i) the bounding box
segmentation and ii) the classifier based on the PointNet model. FL is applied for distributed training of the PointNet NN model
parameters.
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Figure 3: Simulated scenario over an urban arterial in Turin, Italy. Blue dots report vehicles across the road with their respective
communication ranges Rc , indicated with the shaded blue circle.

are addressed in Sec. 4.2. Finally, the ML model is defined
in Sec. 4.3 and adapted to the considered FL framework.
4.1. Simulation of the FL vehicular scenario

The FL framework is validated using vehicular traffic
data simulated over the urban arterial of Turin, Italy, as re-
ported in Fig. 3. Vehicles’ trajectories are simulated using
the Advanced Interactive Microscopic Simulator for Urban
and Non-Urban Networks (AIMSUN) onto this map [64].
This provides realistic traffic conditions and allows us to
evaluate the influence of the vehicles’ mobility onto the FL
training procedure.

On top of AIMSUN framework, we developed a virtual
environment that allows to deploy vehicles acting as mo-
bile devices that learn over a configurable subset of the data.
To simulate the FL process, the Lidar datasets, described
in Sec. 4.2, are distributed to the virtual mobile devices ac-
cording to an arbitrary policy (both IID and non-IID are
supported). Before feeding the training examples to the lo-
cal NN PoinNet model, described in Sec. 4.3, we normalize
the input point clouds such that they are contained into a
unit area sphere. In addition, as the NN model requires a
fixed number of points for the input point cloud, we upsam-
ple/downsample xℎ to contain 2048 points.
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TheNNparameters exchange in FL is performed through
the usage of CPM messages in the V2X network, as previ-
ously discussed in Sec. 2.2. Once the local optimization step
is performed, vehicles share the selectedQ layers of the ML
model by encapsulating the parameters into the POCs of the
CPM. Considering the FL process, and that the maximum
number of objects that can be reported in the POC is 128,
the minimal set of information included in the container are:
• the subset, or fragment, of the local ML parameters from

the Q selected layers (see Sec. 3);
• the corresponding identification (ID) of the fragment and

hyperparameters (layer type, weights and biases);
• the time reference: learning epoch or FL round;
• the local loss l used as model quality indicator.
Each message has an overall payload of 4480 bytes and it
is transmitted every 0.1 s. To exchange the selected layers,
a number of CPM messages (fragments) should be multi-
plexed, depending on the model size andQ. In what follows
we also assume that CPM messages are always correctly re-
ceived. Nevertheless, the proposed framework can be gen-
eralized to account for packet drops.

The V2X connectivity graph is extracted using the actual
positions of the vehicles and their communication range Rc .In the following section, we characterize the performances of
FL considering different communication ranges. This allows
us to characterize how the FL process responds to different
connectivity graphs and how the performances are affected
by the number of neighbors observed by each vehicle.
4.2. Vehicular Lidar dataset

FL has been simulated using the Lidar point cloud
dataset of nuScenes [65]. nuScenes is a large-scale au-
tonomous driving dataset published by nuTonomy in 2019,
consisting of 1000, 20 second-long, scenes of driving cap-
tured across Boston and Singapore. The dataset offers scenes
with different weather conditions, traffic densities as well as
lighting. The vehicle used for the recordings is equipped
with a full sensors’ suite, composed by a 360 degree Lidar, 5
long-range Radars, 6 cameras and an Inertial Measurement
Unit (IMU) sensor. All objects detected in the scenes are
annotated manually at a frequency of 2 Hz to ensure high
accuracy. Each annotated object consists of a 3D bounding
box as well as the object’s category. In what follows, the
overall database used for classification is composed by 9000
examples, equally divided for each one of the 6 considered
categories: pedestrian, car, bus, bicycle, barrier and traffic
cones1. The ℎ-th training example contains the point cloud
xℎ that fall into the box and the corresponding category yℎ.For evaluating the FL procedures, we use a separated val-
idation dataset composed by 2400 examples, equally divided
into the 6 road actor classes. The same pre-processing proce-
dure used for the training dataset, i.e. upsample/downsample

1Note that 23 road actors categories are available, ranging from large
vehicles (trailer and truck) to little objects (traffic cones).

Table 1
PointNet model parameters.

Layer Filters/Neurons Parameters Federated Layers
CN 8 32

Q
=
20CN 16 144

CN 128 2176
FC 64 8256
FC 32 2080

Q
=
16FC 9 297

CN 8 32
CN 8 72
CN 8 72

Q
=
12CN 16 144

CN 128 2176
FC 64 8256
FC 32 2080

Q
=
8CN 8 72

CN 16 144
CN 128 2176

Q
=
4FC 64 8256

FC 32 2080
FC 6 198

and normalization stages, is also applied to the validation
database to assess the performances under similar condi-
tions.
4.3. ML model and FL adaptation

The PointNet ML model [43], depicted in Fig. 4, is used
for 3D shape classification and segmentation from point
cloud data. The classification network takes as input the
point clouds, applies an input and feature transformation,
and then aggregates the learned features by a max pooling
operation. Classification scores are obtained by a Multi-
Layer Perceptron (MLP) followed by a softmax operation.
As this model was originally developed for the ModelNet40
dataset, which takes into account 40 different classes, we
adapted the model structure and parameters to reflect the
considered learning tasks. In particular, the number of fil-
ters used in the Convolutional (CN) layers and the number
of neurons in the Fully Connected (FC) layers are reduced by
a factor of 8, the dropout layers have been removed and the
final layer is composed of C = 6 output neurons. Further-
more, the Batch Normalization (BN) layers apply a momen-
tum factor of 0.9. This means that, during inference, more
importance is given to the average statistics computed over
all batches rather than the instantaneous ones for the current
batch.

In the proposed implementation, FL procedures are not
applied to the BN layers, so the statistics are only updated
locally without the cooperation of other vehicles. With such
modifications, the number of trainable layers is N = 20 (9
FC and 11 CN layers) while the total number of model pa-
rameters that can be exchanged is 40855. Table 1 summa-
rizes the parameters for the modified PointNet architecture
and details the various choice of Q for the modular C-FL
approach. Note that FC layers include bias parameters while
CN do not.

5. Numerical results
In this section, we present the numerical results for the

evaluation of the proposed C-FL framework. The approach
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Figure 5: Temporal evolution of the number of aggregated
V2V connections.

is validated in terms of loss, accuracy and convergence time
according to the V2X network setup previously described.
We also consider the performance comparison with ego
learning, featuring vehicles that learn from local training
data only disabling cooperation, PS based FL [13] as well
as conventional DML with centralized learning and fusion
at the data center.

In the following, Sec. 5.1 details the setting and system
parameters used for the simulations. Sec. 5.2 describes the
results for the IID case, Sec. 5.3 for the non-IID one, while
Sec. 5.4 illustrates a 6G-enabled FL case. Sec. 5.5 presents
the validation of a continual learning case where the train-
ing process is periodically updated using new input data col-

lected by the vehicles. This latter scenario is compared to
conventional one-time learning. Finally Sec. 5.6 discusses
relevant implementation issues and resource constraints.
5.1. System parameters

We use a vehicular network of Nv = 10 vehicles for as-sessing the modular C-FL method and characterize the im-
pact of the V2X end-to-end communication latency over the
training procedure. The V2X connectivity graph at time t
depends on the communication range Rc and vehicle posi-
tions pt,i,∀i ∈  , extracted using the AIMSUN simulator.
The entry (i, j) of the V2X connectivity matrix is equal to 1
if vehicles i and j satisfy the constraint ‖pt,i − pt,j‖ ≤ Rc ,
∀i, j ∈  otherwise it is equal to 0. We consider three com-
munication range values Rc = {100, 500, 1000} m for eval-
uating the impact of the connectivity on the C-FL procedure,
referred to as low (LC), medium (MC) and high connectiv-
ity (HC) cases, respectively. Fig. 5 reports the total number
of active V2V connections for the three connectivity cases
(LC, MC, HC) and for each timestep t. As expected, in the
LC case vehicles interact with few neighbors. Moreover, for
some timesteps, i.e., from 105 ≤ t ≤ 108, they do not imple-
ment the model exchange phase as no connections exist. On
the other hand, medium (MC) and high (HC) connectivity
always guarantee cooperation among vehicles.

The overall dataset presented in Sec. 4 is distributed to
the vehicles according to some predefined policies before the
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training starts. Here, we consider two partitioning strategies
with homogeneous (IID) and non-homogeneous (non-IID)
statistical distribution of data over vehicles. More specif-
ically, when the dataset is distributed according to an IID
policy, vehicles hold the same number of examples for each
of the C = 6 available classes, while in the non-IID they do
not retain examples for some classes. Local optimization of
the ML model is performed using a batch size of B = 30
examples and the Adam optimizer of (8) is configured with
�t = 10−4, �1 = 0.9, �2 = 0.999 and � = 10−7.The C-FL algorithm is implemented by applying the fed-
erated optimization to a variable number Q ≤ N of layers
in the NN, starting from the outer ones, i.e., N = N,N −
1,… , N −Q + 1. More specifically, performances are ana-
lyzed by varying the fractionM = Q∕N of the layers sub-
ject to the C-FL process. This ranges fromM = 20%, (i.e.,
corresponding to Q = 4 outer layers) up toM = 100% (i.e.,
all layers, apart the BN ones). C-FL is compared against
a centralized (vanilla) FL tool that relies on a PS to update
the received models from vehicles. Notice that, to ease the
comparison, the centralized FL setup also applies the same
modular technique as defined in C-FL (Sec. 3) for exchang-
ing configurable fragments of the ML parameters. The PS
server is assumed to be always connected with all available
vehicles for every communication round. The performance
of opportunistic learning, referred to as Ego Learning (EL),
is also considered as benchmark. In this case, vehicles do
not cooperate and use only their local dataset i for optimiz-
ing the PointNet ML model for classification. Finally, C-FL
is compared with a conventional DML technique, referred
to as Centralized Learning (CL), where a central orchestra-
tor, namely a data center, collects all the data produced by
the vehicles and implements the model optimization without
any help from the vehicles.

For all the above defined cases, we evaluate the time re-
quired for completing the training procedure by considering
the specific operations that are performed on every epoch. In
FL and C-FL, the total time required for completing a com-
munication round can be broken down into the time for run-
ning the local optimizer, the time for exchanging the model
parameters, either with PS (centralized) or mutually (C-FL)
and the time for applying the aggregation policy, or con-
sensus average, respectively. For CL, a preliminary phase
is executed for uploading the raw data, i.e., the Lidar point
clouds, on the data center at the beginning of the training
procedure. Finally, in EL the vehicles optimize their own
NN using only their local data. Therefore, the time required
for completing one epoch corresponds to the time used by
the local optimizer.

Table 2 reports the number of parameters exchanged at
every communication round, the corresponding number of
CPMmessages and V2X end-to-end time required to imple-
ment C-FL and FL. For CL we quantified the time required
for the initial raw data upload at the data center. We assume
that the Lidar point clouds are transmitted using an encod-
ing of 4 bytes/parameter while the ML parameters need 8
bytes/parameter. Notice that CL also requires to fed back

Table 2
V2X communication resources and times.

Approach Parameters Payload Messages V2X time
[#] [kB] [#] [s]

C-FL M = 20% 12710 101.68 23 2.3
C-FL M = 40% 17118 136.94 31 3.1
C-FL M = 60% 27766 222.12 50 5
C-FL M = 80% 30247 241.98 55 5.5
C-FL M = 100% 40855 326.84 73 7.3

CL (IID) 1658880 6635.5 1482 148.2
CL (non-IID) 1228800 4915.2 1098 109.8

the trained model to all participating vehicles. For what con-
cerns the local computation times, the time needed for com-
pleting a local Adam stage is 0.2 s for all FL designs and
EL. For CL, this is one order of magnitude higher, i.e., 2 s,
as data fusion is considered for all Nv = 10 vehicles. Fi-
nally, the consensus-driven aggregation phase of C-FL de-
pends onQ and the number of neighbors, namely the number
of models received. Computations range from aminimum of
6 ms, when Q = 4 is used with 1 neighbor, up to 166 ms for
Q = 20 and 10 neighbors.
5.2. Statistically homogeneous (IID) scenario

First, we analyze the performance of C-FLwhen the data
stored at each vehicle are IID-distributed. In particular, all
vehicles hold a local dataset comprised of �k = 3%, ∀i ∈  ,
equally divided for each one of the available classes. Valida-
tion loss and accuracy are computed by using the validation
dataset presented in Sec. 4.

Fig. 6 reports the validation loss for C-FL with M =
100% (Fig. 6a), M = 80% (Fig. 6b), M = 60% (Fig. 6c),
M = 40% (Fig. 6d), and M = 20% (Fig. 6e), while Fig. 7
presents the corresponding validation accuracy for C-FL
withM = 100% (Fig. 7a),M = 80% (Fig. 7b),M = 60%
(Fig. 7c), M = 40% (Fig. 7d), and M = 20% (Fig. 7e).
We consider the low (C-FL LC), medium (C-FL MC) and
high (C-FL HC) connectivity scenarios as well as the cen-
tralized implementation (FL) for comparison. Analyzing the
results, it can be seen that EL converges very fast when com-
pared to all other methods. However, the accuracy reached at
convergence is low compared to FL and CL, indicating that
EL may not be appropriate when high accuracy is needed.
CL needs a considerable initial time at the data center for
fusing the raw data from the vehicles. On the other hand,
it is able to provide highly accurate results outperforming
EL. As the data stored at each vehicle increases, CL may be
prohibitively limited by such initial communication and fu-
sion stage introducing large delays in the training process.
C-FL and centralized FL tools are able to approach the per-
formances of CL when M = 100%, i.e., all layers are ex-
changed, however they require more time for convergence,
namely more communication and learning rounds. This is
expected as vehicles rely only on their local database for
model optimization holding a much lower pool of examples
compared to CL, which has access to the combined database
of all vehicles. On the other hand, raw data transmission
might be sometimes unfeasible also violating privacy. Be-
ing not limited by the size of the data, nor requiring the same
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data to be disclosed to third parties, FL policies can be thus
considered as promising for big-data vehicular applications.

Focusing now on the performances of C-FL for varying
levels of connectivity, it can be seen that the number of con-
nections heavily influences the convergence speed and clas-
sification accuracy. ForM = 100%, centralized FL presents
the lowest convergence rate, followed by C-FL HC, C-FL
MC and C-FL LC. Similar results are obtained also for M
ranging from 20% up to 80%. However, in most of the cases,
C-FL LC case has higher validation loss (or lower accuracy)
compared with other setups, suggesting that a high enough
level of cooperation among vehicles is needed to improve
the classifier performance. Results also indicate that, beside
decreasing the overhead for each communication stage, it is
also important to provide more informative updates at each
round [12]. Accurate local model optimization should be
preferred initially to let the vehicles reach a rough local solu-
tion before starting the consensus aggregation policy. Once
vehicles have exploited their local data enough, consensus
can be enabled to improve the accuracy.

Looking at the performances for varying number Q of
layers subject to federation, results detail that the best ac-
curacy is achieved when all layers M = 100% are shared
among vehicles, as expected. However, communication effi-
cient designs, i.e.,M < 100%, might improve convergence
time in exchange for accuracy penalties. For example, the
performances for M = 60% and M = 40% are similar,
thereby M = 40% should be preferred to maximize effi-
ciency. M = 20% can be chosen at the cost of 3% lower
accuracy compared toM = 40%. On the other hand, choos-
ingM = 80% rather thanM = 100% induces an accuracy
penalty of 5%, however less V2X resources are used, i.e., the
payload required for transmitting model updates reduces by
almost 30%.
5.3. Statistically heterogeneous (non-IID) scenario

FL setups are typically characterized by non-IID infor-
mation across participating devices in the training process.
Since data is collected independently on each vehicle, sta-
tistical heterogeneity may arise as a result of the vehicle-
specific data collection process. Moreover, malicious data
injection and faulty nodes may affect the performances of
FL systems, especially in non-IID settings. To alleviate such
detrimental effects, authentication procedures or blockchain
technologies can be leveraged [66, 67]. This section ana-
lyzes the performance of the C-FL approach under non-IID
data partitioning across vehicles. In particular, all vehicles
hold a local dataset comprised of �i = 2.5%,∀i ∈  , equally
divided among 5 of the 6 classes available. As done before,
performances are assessed by computing the validation loss,
accuracy and convergence time, averaged over all vehicles.

Fig. 8 reports the validation loss for C-FL with M =
100% (Fig. 8a), M = 80% (Fig. 8b), M = 60% (Fig. 8c),
M = 40% (Fig. 8d), andM = 20% (Fig. 8e). Fig. 9 presents
the validation accuracy for C-FL withM = 100% (Fig. 9a),
M = 80% (Fig. 9b), M = 60% (Fig. 9c), M = 40%
(Fig. 9d), andM = 20% (Fig. 9e). As presented in the previ-
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Figure 6: Analysis of the validation loss under IID data parti-
tioning for varying number of federated layers and connectivity:
(a) M = 100%, (b) M = 80%, (c) M = 60%, (d) M = 40%,
(e) M = 20%.
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Figure 7: Analysis of the validation accuracy under IID data
partitioning for varying number of federated layers and con-
nectivity: (a) M = 100%, (b) M = 80%, (c) M = 60%, (d)
M = 40%, (e) M = 20%.
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Figure 8: Analysis of the validation loss under non-IID data
partitioning for varying number of federated layers and con-
nectivity: (a) M = 100%, (b) M = 80%, (c) M = 60%, (d)
M = 40%, (e) M = 20%.
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Figure 9: Analysis of the validation accuracy under non-IID
data partitioning for varying number of federated layers and
connectivity: (a) M = 100%, (b) M = 80%, (c) M = 60%, (d)
M = 40%, (e) M = 20%.

Table 3
Validation loss times.

Approach Target val. loss times [min]
1.55 1.50 1.45 1.40

EL 0.21 N.A. N.A N.A

C-FL LC

M = 20% 1.40 2.20 N.A N.A
M = 40% 1.99 2.80 N.A N.A
M = 60% 2.98 4.15 N.A. N.A.
M = 80% 3.25 4.43 6.79 N.A.
M = 100% 3.99 5.40 7.84 N.A.

C-FL MC

M = 20% 1.45 2.09 N.A. N.A.
M = 40% 2.23 2.93 5.75 N.A
M = 60% 3.27 4.27 6.27 N.A
M = 80% 3.46 4.54 6.33 N.A
M = 100% 4.40 5.69 7.50 11.00

C-FL HC

M = 20% 1.46 2.19 N.A. N.A.
M = 40% 2.30 3.07 5.36 N.A.
M = 60% 3.48 4.67 7.05 N.A.
M = 80% 3.77 4.86 6.75 N.A.
M = 100% 4.69 5.99 7.81 11.19

FL

M = 20% 1.52 2.34 N.A. N.A.
M = 40% 2.55 3.38 N.A. N.A.
M = 60% 3.88 5.17 8.02 N.A.
M = 80% 4.19 5.38 7.47 N.A.
M = 100% 5.25 6.55 8.52 12.05

CL 2.18 2.24 2.43 2.71

ous section, the FL tools are evaluated considering low (C-
FL, LC), medium (C-FL, MC) and highly dense (C-FL, HC)
connectivity cases. These are compared with EL and CL us-
ing the same non-IID data partitions. Compared to the IID
case, EL shows clear signs of overfitting, indicating that re-
lying only on local data for optimizing the ML model may
not be appropriate and the learned models do not generalize
well to the considered classification task. It is worth noting
that, with respect to the IID data partitioning policy, here the
classification accuracy obtained by all methods is lower.

Convergence time and accuracy are affected by connec-
tivity scenarios LC, MC and HC. Similarly as before, C-FL
LC gives the lowest convergence time while FL the highest.
C-FLMC or HC setups should be preferred to LC when data
is non-IID: cooperation among vehicles is thus more critical
when data is unbalanced across vehicles.

Implementing federation over all the model layers
(M = 100%) gives again the highest/lowest validation ac-
curacy/loss. However, as opposed to the IID case, the per-
formances always improve withM . Indeed, in this setting,
M = 60% should be preferred with respect to M = 40%
to augment the classification accuracy when the communi-
cation resources of the V2X network permit this choice. In
Table 3 and Table 4 we report the time required for all meth-
ods to reach a target validation loss and accuracy, respec-
tively. These tables are chosen to highlight the performance
comparison between C-FL, FL, CL and ego approaches.
5.4. FL in 6G V2X network

To conclude the analysis for non-IID data, we now char-
acterize the FL policies and EL, considering a realistic end-
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Table 4
Validation accuracy times.

Approach Target val. acc. times [min]
0.45 0.50 0.55 0.60

EL 0.14 0.50 N.A. N.A.

C-FL LC

M = 20% 1.22 2.84 N.A. N.A.
M = 40% 1.58 2.86 N.A. N.A.
M = 60% 2.44 4.06 N.A. N.A.
M = 80% 2.56 4.24 N.A. N.A.
M = 100% 3.09 4.63 7.72 N.A.

C-FL MC

M = 20% 1.41 2.99 N.A. N.A.
M = 40% 1.87 3.11 N.A N.A.
M = 60% 2.27 3.91 N.A N.A.
M = 80% 2.67 3.66 5.54 N.A.
M = 100% 3.36 4.53 5.45 9.45

C-FL HC

M = 20% 1.51 3.10 N.A. N.A.
M = 40% 1.95 2.89 N.A. N.A.
M = 60% 3.02 4.12 N.A. N.A.
M = 80% 2.68 3.57 5.06 N.A.
M = 100% 3.52 4.43 5.86 8.59

FL

M = 20% 1.52 2.34 N.A. N.A.
M = 40% 2.55 3.38 N.A. N.A.
M = 60% 3.88 5.17 N.A. N.A.
M = 80% 4.19 5.38 7.47 N.A.
M = 100% 5.24 6.55 8.52 12.05

CL 1.93 2.14 2.21 2.43

to-end latency to better adhere to the envisioned communi-
cation capabilities of 6G V2X networks. In the previous ex-
amples, the model exchange and/or raw data upload rely on
standardized CPM messages that cannot meet the challeng-
ing requirements foreseen for fully autonomous driving sce-
narios. We now resort to an enhanced 6G V2X setup where
the model parameters are exchanged using a single message
within 1 ms [63] thanks to the ultra wide band V2X con-
nectivity. The payload required for exchanging all the model
parameters for C-FL is 326.84 kB while the data rate is 2.61
Gbps, i.e., the payload in bit divided by 1 ms. Such val-
ues are compliant with the envisioned 6G V2X performance
which target 1 Tbps [61]. The comparison focuses on C-FL
withM = 100% and EL, by evaluating the convergence time
as well as the validation loss and accuracy.

Fig. 10a reports the validation loss while Fig. 10b the
validation accuracy for C-FL under low (C-FL LC), medium
(C-FL MC) and high connectivity (C-FL HC) settings.
These are again compared with centralized FL and EL. Us-
ing V2X communications now rooted in the 6G paradigm,
the convergence time is 15 times lower compared to the pre-
vious cases, this corresponds to a learning time scaling down
from roughly 15 minutes to 1 minute. C-FL, paired with
novel 6G, is thus able to outperform EL by a much larger
margin while keeping the overall time required for complet-
ing the FL process comparable to EL.
5.5. Continual Learning

Real world vehicular applications are characterized by a
continual and online sensor data acquisition that changes in
response to the specific environment in which vehicles are
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Figure 10: Performance analysis for C-FL withM = 100% over
6G V2X networks: (a) validation loss, (b) validation accuracy.

deployed. As the time passes, data is continually gathered
while periodic re-training of the ML models should be car-
ried out to adapt to the changing environment and exploit this
newly acquired data to further refine the models. To better
address this aspect, here we evaluate the performances of
C-FL and CL in a continual learning setting where vehicles
periodically collect new Lidar data samples. At the start of
the training phase, the vehicles have access to 30 randomly
drawn examples chosen from an IID or a non-IID dataset.
The local IID data available at the vehicles is composed by
�i = 5%,∀i ∈  , equally divided among the 6 classes, while
the non-IID one comprises �i = 4.1%,∀i ∈  , evenly parti-
tioned across only 5 classes. The continuous data gathering
process is here simulated using the following procedure. Ev-
ery 5 epochs, corresponding to 23 s, the vehicles randomly
select 15 new training examples and add them to the over-
all training database that is used for local model optimiza-
tion. This procedure is iterated until all available examples
are used. The V2X connectivity chosen is the medium one
with Rc = 500 m.

Fig. 11 reports the validation loss (Fig. 11a) and accu-
racy (Fig. 11b) for the IID case with C-FL ranging from
M = 20% up to M = 100% and CL, while Fig. 12 shows
the validation loss (Fig. 12a) and accuracy (Fig. 12b) for
the non-IID one. Analyzing the results, C-FL now provides
comparable performances to CL when M = 100% under
IID. On the other hand, when data is non-IID, there exists an
accuracy gap between the two. Continual CL now requires
the participating vehicles to send updated training examples
every time new Lidar point clouds are gathered. The need to
implement frequent uplink transmissions introduces further
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Figure 11: Performance analysis for continual learning with
IID data partitioning for C-FL ranging from M = 20% up to
M = 100% and CL: (a) validation loss, (b) validation accuracy.

delays in the CL process. As a consequence, the convergence
times of C-FL and CL are now comparable. Notice that, as
more data is produced by the vehicles, CL might be penal-
ized by higher communication overheads than FL. The ML
model parameters have also smaller size compared to raw
(uncompressed) Lidar point clouds, while they do not need
anonymization before transmission.
5.6. FL implementation and resource constraints

Real-world FL setups need to consider several imple-
mentation issues, summarized in the following. Maximiz-
ing communication efficiency while decreasing convergence
time is of paramount importance not only for reducing the
network resources, as previously highlighted, but also to
minimize the energy footprints of the vehicles participating
in the FL process. With this respect, vanilla and consensus-
based FL tools must generally limit the V2X channel use
only for sharing truly informative updates. For example,
during C-FL initialization, a sufficient number of local op-
timization rounds needs to be implemented on each vehicle
so that the local model is accurate enough to initiate the con-
sensus process. Similarly, the FL process should be termi-
nated promptly when no further improvements are experi-
enced. Distributed implementations may also require dedi-
cated set-up phases to distribute the initial model hyperpa-
rameters. i.e., DL model structure, while centralized ones
can exploit the PS to control the overall initialization stage.

As far as the vehicles’ resources are concerned, all FL
policies let the vehicles collect their own training data with-
out requiring to store them in a central location. This al-
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Figure 12: Performance analysis for continual learning with
non-IID data partitioning for C-FL ranging from M = 20%
up to M = 100% and CL: (a) validation loss, (b) validation
accuracy.

lows to limit the storage required at the end nodes compared
to DML systems. On the other hand, FL requires the vehi-
cles to participate in the model training process. The most
computationally intensive operation for FL setups is thus
the local model optimization: the vehicles computing hard-
ware should typically support gradient-based optimization,
via dedicated processing units or Tensor Processing Units
(TPU) [68]. Besides local optimization, the proposed C-FL
policy requires each vehicle to reserve additional memory
space for storing the model parameters obtained from the
neighboring vehicles, and to implement averaging or fusion
of the same parameters, i.e., the selected model layers. On
the other hand, weighted sum over the received models re-
quires far less computational resources compared to local
model optimization and scales linearly as the number of co-
operating vehicles increases.

6. Conclusions
In this paper, we explored the potentials of the

consensus-driven Federated Learning (C-FL) paradigm in
V2X networks to provide communication-efficient dis-
tributed training services. In particular, we developed a
modular decentralized FL approach for road actor classifi-
cation, where model sharing can be implemented on a vari-
able number of layers, depending on the required efficiency
and bandwidth requirements. The federation process is ap-
plied to a PointNet compliant machine learning architecture
for classification of road objects using Lidar point clouds as
inputs. Model exchange among interconnected vehicles dur-
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ing the FL process relies on a realistic V2X network and uses
the standardized CPS service for encapsulating the NN pa-
rameters into the CPM messages.

The characterization of the proposed consensus-driven
FL (C-FL) approach has been performed by evaluating the
accuracy and loss performances as well as the convergence
time considering different connectivity and vehicles mobil-
ity scenarios, IID and non-IID data partitioning policies, as
well as continual learning setups. Experimental results show
that the proposed C-FL method is able to outperform ego
(EL) approaches by a large margin, while providing com-
parable performances to centralized (CL) implementations.
Results also suggest that consensus among vehicles should
be adapted to privilege informative updates or vehicles pos-
sessing high quality local models. Furthermore, connectiv-
ity among vehicles heavily influences the accuracy and the
learning time: C-FL typically performs well in dense net-
works characterized by a large population of interconnected
vehicles.

The analysis has also shown that currently-standardized
CPM messages are not appropriate for latency-sensitive ve-
hicular applications, as they might lead to high convergence
time or insufficient accuracy in some cases. On the other
hand, the proposed FL process truly supports low-latency
distributed intelligence when seamlessly integrated with 6G
enhanced V2X communications: this is shown as useful to
scale down the learning time and meet the challenging re-
quirements foreseen for full self-driving scenarios, often re-
quiring continual learning on large and time-varying data
structures.

Further research activities are needed on novel FL and
6G convergent designs. These will possibly embrace new
technology enablers, such as multi-connectivity techniques
to support efficient long and short range V2V communica-
tions. Besides, the implementation of ad-hoc network slic-
ing procedures optimized to sustain the FL process in high
mobility scenarios is also promising and could bring further
improvements.

Acknowledgment
The authors would like to thank Prof. Francesco Deflo-

rio of DIATI Transport Systems, Politecnico di Torino, for
the cooperation in the simulation of the AIMSUN-based ve-
hicular traffic scenario.

References
[1] H. Viswanathan, P. E. Mogensen, Communications in the 6G era,

IEEE Access 8 (2020) 57063–57074. doi:10.1109/ACCESS.2020.

2981745.
[2] A. Eskandarian, C. Wu, C. Sun, Research advances and challenges

of autonomous and connected ground vehicles, IEEE Transactions on
Intelligent Transportation Systems 22 (2) (2021) 683–711. doi:10.

1109/TITS.2019.2958352.
[3] S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu, A survey of deep

learning techniques for autonomous driving, Journal of Field Robotics
37 (3) (2020) 362–386. doi:10.1002/rob.21918.

[4] A. Gupta, A. Anpalagan, L. Guan, A. S. Khwaja, Deep learning for
object detection and scene perception in self-driving cars: Survey,

challenges, and open issues, Array 10 (2021) 100057. doi:10.1016/j.
array.2021.100057.

[5] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
K. O. Arras, Human motion trajectory prediction: A survey, The
International Journal of Robotics Research 39 (8) (2020) 895–935.
doi:10.1177/0278364920917446.

[6] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, A. Mouzaki-
tis, Deep learning-based vehicle behavior prediction for autonomous
driving applications: A review, IEEE Transactions on Intelligent
Transportation Systems (2020) 1–15doi:10.1109/TITS.2020.3012034.

[7] A. Miglani, N. Kumar, Deep learning models for traffic flow predic-
tion in autonomous vehicles: A review, solutions, and challenges, Ve-
hicular Communications 20 (2019) 100184. doi:10.1016/j.vehcom.

2019.100184.
[8] X. Di, R. Shi, A survey on autonomous vehicle control in the era

of mixed-autonomy: From physics-based to AI-guided driving pol-
icy learning, Transportation Research Part C: Emerging Technologies
125 (2021) 103008. doi:10.1016/j.trc.2021.103008.

[9] J. Dean, G. S. Corrado, R.Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, et al., Large scale distributed
deep networks, in: Proceedings of the 25th International Conference
onNeural Information Processing Systems - Volume 1, NIPS’12, Cur-
ran Associates Inc., Red Hook, NY, USA, 2012, p. 1223–1231.
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