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Abstract Prostate cancer is the most diffused cancer affecting the male popula-
tion. As therapies improve their effectiveness, surviving patients might be affected
by complications induced by radiotherapy in the long run. To predict the onset of
such rare late toxicities, because of the failure of phenotypic characteristics, the at-
tention is shifting towards identifying specific genetic locations (Single Nucleotide
Polimorphisms, or SNPs) associated with them. Because of the complexity of the
problem, SNPs identified in a study are rarely validated on a different cohort of pa-
tients. In this case study we apply a novel approach for feature selection (namely a
Deep Sparse Autoencoder-based Feature Selection method), to validate SNPs asso-
ciated with radiotherapy-induced late toxicity causing urinary frequency variation
(UFV).
Abstract Il cancro alla prostata è il più diffuso tra la popolazione maschile. Nonos-
tante il miglioramento nei trattamenti, i pazienti comunque essere affetti da com-
plicazioni indotte dalla radioterapia nel lungo periodo. Per predire l’emergere
di queste rare tossicità tardive, visto il fallimento nell’utilizzare caratteristiche
fenotipiche dei pazienti, l’attenzione si sta spostando sull’identificare loci genetici
(SNPs) a loro associate. Per la complessità del problema, le SNP individuate in uno
studio sono raramente validate su una coorte differente di pazienti. In questo caso
studio applichiamo un nuovo metodo di selezione delle variabili (un metodo basato
su Deep Sparse Autoencoders), per validare le SNPs associate con la variazione
tardiva della frequenza urinaria.
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1 Introduction
Prostate cancer is the most diffused cancer affecting the male population in Europe.
According to the American Cancer Society, about 1 american man in 9 will be diag-
nosed with prostate cancer during his lifetime. Because of the recent advancements
in treatments, survival rates are high, but patients might suffer from debilitating
complications resulting from therapies in the long run (radio-therapy induced late
toxicity) [1, 2].
Traditional methods based on patients’ phenotypic characteristics and treatment de-
tails fail in stratifying the treated population and in predicting the onset of such
negative, but still very rare, side-effects. For this reason, the attention is shifting
towards investigating possible relations between the genotype and the adverse out-
comes in the so called ‘precision medicine’ approach, driving the need for novel
statistical methods to address this question.
This case study was conducted with the support of Fondazione IRCSS Istituto
Nazionale dei Tumori, the Italian National Cancer Research Institute, that provided
us with data regarding the REQUITE [3] cohort of prostate cancer patients, with the
aim of validating some specific genetic markers (in the form of Single Nucleotide
Polymorphisms, SNPs) that could be predictive for late toxicity. The identification
and validation of predictive biomarkers is an objective of paramount importance in
a setting such as Genome-Wide Association Studies (GWAS), as the complexity of
the problem, the rarity of the traits (or negative outcome) and the numerosity of the
genetic traits to evaluate makes it extremely complex and rare for different studies
to recognize similar patterns in data.
In this short paper we present a novel approach to SNPs validation, exploiting a
Deep Sparse Autoencoder-based (DSAE) feature selection method to identify rele-
vant SNPs associated with radiotherapy-induced late Urinary Frequency Variation
(UFV). The task at hand requires us to identify predictive features for an extremely
small minority class in a setting characterized by complex non-linear interactions
among genetic loci, small sample size, several confounding factors, noisy data and
the need for results interpretability to drive real clinical research.
For this reason, the work presented in this study exploits a feature selection method
tailored to identify relevant features to discriminate the minority class from the
majority class, and improve minority class classification accuracy. The adopted
methodology for this case study was developed in a previous work in [4], where
a detailed description of the algorithm can be found. For this reason, in Section 2
we will provide only a brief description of the main concepts, while the rest of the
paper will be devoted to the case study.
The benefits of this Deep Learning (DL) model for our objective are several: it is
a non-linear and stratified model, allowing to learn complex and hyerarchical rela-
tionships in data; additionally, the model deals well with large numbers of features,
and has the capability of autonomously ignore noise.
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2 Methods
Deep Sparse AutoEncoders (DSAE). An AutoEncoder (AE) is a neural network
whose output provides a reconstruction of the input (Hinton and Salakhutdinov,
2006). The network can be seen as constituted by two parts: an encoder and a de-
coder.
The encoder function hi = f (Wxi+b), encodes each input vector xi into an encoded
version of itself of size H. Here f :RJ→ IRH is usually non-linear, WH×J is called
weight matrix and b is an H-dimensional bias vector.
The decoder maps back the encoded vector to the J-dimensional space in most cases
using a squashing non-linear function x̂i = g(W′hi +b′), g : IRH→ IRJ with param-
eters W′ and b′. The model is trained through gradient descent of the loss function
L(x, x̂); where L is typically the Mean Squared Reconstruction Error (RE), i.e. the
mean squared Euclidean distance between the input values and the reconstructed
values for each observation.
To force the model to learn more useful representaitons of the input data, one ap-
proach is to force sparsity in the central hidden layer. A sparse representation can
be obtained adding a penalty term that penalizes the L1 norm of the vector h(l)

i of
activation of the hidden nodes (where (l) indicates the layer the hidden nodes be-
long to, and it should be considered the most internal layer in case of a Deep AE),
for each observation i, controlled by the parameter λ , i.e.:

Li = L(xi, x̂i)+λ |h(l)
i |. (1)

The parameter λ can be optimized through grid search or can be arbitrarily chosen
in the design phase of the model.

DSAE for Minority Class Feature Selection. The main idea behind the choice
of a DSAE as a mean to perform feature selection is that the model trained to re-
construct normal observations only (majority class, or healthy patients) would make
higher errors by trying to reconstruct anomalous patterns in outliers (minority class,
or unhealthy patients showing late toxicity). Indeed, it is on the analysis of the aver-
age RE performed by the model on each feature for each class that we identify those
that could discriminate better between the two classes. A detailed description of the
proposed methodology can be found in our previous work [4]. In Figure 1 we pro-
pose a schema of the algorithm after the trained DSAE is tested on both healthy and
unhealthy patients. Note that as a result the algorithm provides a subset of features
which dimension depends on a parameter (δ ∈ [0,1]) set by the user: the closer the
δ value is to 1, the smaller the subset.

3 Urinary Frequency: Case Study Setting
From the original dataset, we selected a cohort of 1,296 patient, among which 55
(4.2%) belonged to the class of cases (y=1, i.e. the patients reported radiotherapy-
induced late UVF), while 1241 (95.8%) belonged to the controls’s class. Each pa-
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Fig. 1 Schema of the proposed algorithm: after training the DSAE on healthy patients only, the
model is supplied with a test set composed of healthy and unhealthy patients. The passages in this
schema depict all the steps from the collection of the RE to the feature selection based on δ . More
details can be found in [4].

tient was characterized by 43 genetic traits (SNPs), among which 9 were identified
in previous studies as predictive biomarkers for this endpoint.

SNP Reference

rs17599026 Kerns et al. (2016) [5]
rs342442 Kerns et al. (2016) [5]
rs8098701 Kerns et al. (2016) [5]
rs7366282 Kerns et al. (2016) [5]
rs10209697 Kerns et al. (2016) [5]
rs4997823 Kerns et al. (2016) [5]
rs7356945 Kerns et al. (2016) [5]
rs6003982 Kerns et al. (2016) [5]
rs10101158 Kerns et al. (2016) [5]

Table 1 SNPs previously identified in lit-
erature as associated with late UVF

In Table 1 we list the biomarkers to val-
idate. The unbalancing of the classes and
the complexity of the problem (there po-
tentially exist complex non-linear relations
among biomarkers affecting the outcome [6])
makes this field of application an interesting
fit for the peculiarities and potentials of our
proposed model [4]. We performed the train-
ing and testing of the DSAE 50 times, extract-
ing from the 1,296 the training set (1,186 ob-
servations, i.e. all controls except the 55 in-
cluded in the test set) and test set (110 obser-
vations, half cases and half controls). The al-
gorithm was implemented in Python. The DSAE had one input layer with 43 nodes,
and three encoding hidden layers (with 40, 30 and 20 nodes respectively), followed
by three decoding layers (30, 40, 43 nodes respectively). The training of each DSAE
was performed for 400 hundred epochs, with a batch size of 10 observations, and the
whole procedure of sampling, training and testing took on average (over the 50 repe-
titions) 3.22 minutes to complete. Note that the training time of the whole algorithm
highly depends on the number of repetitions of sampling and training, and could
be highly reduced in case less repetitions are needed to capture the most relevant
variations between the two classes, or the number of minority class observations is
sufficiently large to require a smaller number of sampling procedures on the healthy
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Fig. 2 Reconstruction Error by SNP and by Group (cases in red and controls in blue)

population to guarantee a robust comparison.
Once the AE was trained to reconstruct the training set of the healthy population,
the test set (composed of healthy and unhealthy observations) was supplied to the
model, collecting the Reconstruction Error (RE).
As in the process depicted in Figure 1, we obtained a matrix where each patient
(row) that belonged to the test set at least once was associated with an outcome and
a set of REs for each feature (SNP). This allowed us to group patients w.r.t. the
enpoint, and estimate the average RE for each SNP for cases and controls.

4 Results
In Figure 2 we report the results of the procedure just described. The bars in the
barplot represent the reconstruction error for each group (cases in red, controls in
blue). On the x-axis one can read all the 43 SNPS, each one with two associated bars.
To validate the SNPs in a robust way, we selected different values for the δ threshold
(δ equal to 0.75, 0.8, 0.85 and 0.9). In Table 2 are reported the 9 SNPs previously
identified in literature (already mentioned in Table 1) as predictive for the onset of
late UFV after radiotherapy. As shown in Table 2, for δ=0.75 the model identifies
as relevant (thus validating) 4 out of 9 SNPs coming from literature. Interestingly,
the four identified SNPs present the highest odds ratio w.r.t. the outcome, according
to the study that first mentioned them. Note that the study in [5] was performed
on a different cohort of patients. The fact that the identified SNPs are those most
evidently related to the outcome on different data is both a proof of our methodology
to identify the most discriminative features, and of the generalizability of its results.
Unfortunately, we do not have access to the data from the mentioned study to cross-
validate our method on that cohort. Another notable aspect of our results, is that the
four identified SNPs remain relevant almost for all δ values, except for one that is
excluded after the last threshold (0.9).



6 Massi M.C. et al.

ODDS RATIO THRESHOLD

0.75 0.8 0.85 0.9

3,2 rs7366282 rs7366282 rs7366282 rs7366282
3,12 rs17599026 rs17599026 rs17599026 rs17599026
2,66 rs10209697 rs10209697 rs10209697 rs10209697
2,41 rs8098701 rs8098701 rs8098701 rs8098701
1,8 rs10101158 rs10101158 rs10101158 rs10101158
1,74 rs7356945 rs7356945 rs7356945 rs7356945
0,51 rs342442 rs342442 rs342442 rs342442
0,51 rs6003982 rs6003982 rs6003982 rs6003982
0,49 rs4997823 rs4997823 rs4997823 rs4997823

TOTAL SNPS 43 43 43 43
TOTAL SELECTED 11 9 7 5
TOTAL IDENTIFIED 4 4 4 3
PERCENTAGE IDENT/SEL 36.36% 44.44% 57.14% 60.00%
PERCENTAGE SEL/TOT 25.58% 20.93% 16.28% 11.63%

Table 2 Results of the SNPs validation for UFV. SNPs validated by our methodology are in bold,
for different threshold values. The first column reports the ORs associated with these SNPs in the
study in [5].

5 Conclusion
In this paper we presented a novel approach to SNPs validation through the use of a
DSAE-based feature selection method to select relevant minority class features. We
applied the methodology to a case study that required us to validate SNPs previously
identified in literature as predictive for the onset of radiotherapy-induced late UFV.
Despite the complex unsupervised setting does not allow us to compare our results
with a ground truth, the robustness of the identified SNPs and the height of the Odds
Ratio associated to them on another cohort of patients support our results.
Using a DL approach in a GWAS seems therefore to be a viable strategy to tackle
the peculiar complexities of this setting, and opens the venue for relevant future
research.
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