Research for Development

Series Editors

Emilio Bartezzaghi, Milan, Italy
Giampio Bracchi, Milan, Italy
Adalberto Del Bo, Politecnico di Milano, Milan, Italy
Ferran Sagarra Trias, Department of Urbanism and Regional Planning, Universitat Politècnica de Catalunya, Barcelona, Barcelona, Spain
Francesco Stellacci, Supramolecular NanoMaterials and Interfaces Laboratory (SuNMiL), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland
Enrico Zio, Politecnico di Milano, Milan, Italy; Ecole Centrale Paris, Paris, France
The series Research for Development serves as a vehicle for the presentation and dissemination of complex research and multidisciplinary projects. The published work is dedicated to fostering a high degree of innovation and to the sophisticated demonstration of new techniques or methods.

The aim of the Research for Development series is to promote well-balanced sustainable growth. This might take the form of measurable social and economic outcomes, in addition to environmental benefits, or improved efficiency in the use of resources; it might also involve an original mix of intervention schemes.

Research for Development focuses on the following topics and disciplines: Urban regeneration and infrastructure, Info-mobility, transport, and logistics, Environment and the land, Cultural heritage and landscape, Energy, Innovation in processes and technologies, Applications of chemistry, materials, and nanotechnologies, Material science and biotechnology solutions, Physics results and related applications and aerospace, Ongoing training and continuing education.

Fondazione Politecnico di Milano collaborates as a special co-partner in this series by suggesting themes and evaluating proposals for new volumes. Research for Development addresses researchers, advanced graduate students, and policy and decision-makers around the world in government, industry, and civil society.

THE SERIES IS INDEXED IN SCOPUS

More information about this series at http://www.springer.com/series/13084
Buildings for Education

A Multidisciplinary Overview of The Design of School Buildings
Preface

This book belongs to a series, which aims at emphasizing the impact of the multidisciplinary approach practiced by ABC Department scientists to face timely challenges in the industry of the built environment. Following the concept that innovation happens as different researches stimulate each other, skills and integrated disciplines are brought together within the department, generating a diversity of theoretical and applied studies.

Therefore, the books present a structured vision of the many possible approaches—within the field of architecture and civil engineering—to the development of researches dealing with the processes of planning, design, construction, management, and transformation of the built environment. Each book contains a selection of essays reporting researches and projects, developed during the last six years within the ABC Department (Architecture, Built Environment, and Construction Engineering) of Politecnico di Milano, concerning a cutting-edge field in the international scenario of the construction sector. The design of schools has been recognized as one of the hottest topics in architectural research, also for the criticalities detected in the current conditions of Italian school buildings.

The papers have been chosen on the basis of their capability to describe the outputs and the potentialities of researches and projects, giving a report on experiences well rooted in the reality and at the same time introducing innovative perspectives for the future.

With the aim of exploring the evolutionary scenario of school design as an architectural topic, the collected papers were selected according to a comprehensive and multidisciplinary overview. Researches on typology and spatial organization are enriched through the contribution of a historical and social perspective to enlarge the focus on the urban role of the school buildings. Moreover, innovative approaches and tools have been highlighted both in the design process and in the education techniques. The presented experiences include best practices of
consistent and coordinated contributions of the several disciplines involved in the design of school buildings, also implementing digital tools. Finally, the issues related to the challenges of the existing built stock triggered the development of more technical and specialized, albeit multidisciplinary, investigations and case studies’ reports.

Stefano Della Torre
Head of the Department Architecture
Built Environment and Construction Engineering
Politecnico di Milano
Milan, Italy
e-mail: stefano.dellatorre@polimi.it
Introduction

Background

The design of educational spaces dedicated to school is a rather recent topic in Italy, since until the end of the nineteenth century and the unification of the country, children were educated exclusively in private or ecclesiastical environments; and only later, the school education was recognized for its significant role in the teaching and learning processes (Pennisi 2012). The evolution of the architectural school typology and of the primary school in particular, can be analyzed as a complex combination of political, cultural, social and urban planning issues and as a reflection of the historical situation. Through the analysis of the educational buildings erected in the different periods, it is possible in fact to detect the evolution of the legislative framework, aimed at defining hygienic and comfort requirements, and of the organization of spaces required by the different pedagogical approaches. The study of the architecture of existing schools reveals a sequence of construction systems, both traditional and innovative, from masonry walls to reinforced concrete frames and to prefabricated solutions, which were employed to better respond to changing needs (in particular, low construction and maintenance cost and construction time reduction). Finally, and with a strict connection with the above considerations, the role of the school building in the city is remarkable at the urban level also, for its ability to promote the development of entire neighborhoods of a city or for the ability to revitalize an existing portion of a city in relation to other public services and open spaces.

1 The compulsory education was introduced in Italy with the Casati Law, issued by the Minister of Public Education Gabrio Casati in 1860. This law entrusted the central government the obligation to enact laws in relation to school education and the management of public schools and gave private individuals the possibility of founding and managing institutions, but without the right to confer educational qualifications. In this period, elementary education became free, compulsory only for the first two out of four years (i.e., for pupils aged 6–7 years) but only present in cities with over 4000 inhabitants or in secondary education institutions (Laurenti and Dal Passo 2018).
The Current Situation

The results of a more than a centenary process of school buildings’ construction are significant from a quantitative point of view. The whole stock of educational buildings of all levels and dimensions amounts to 42,408 units, hosting 7,816,408 students in 370,597 classes (Miur 2017), distributed all over the national territory (see Fig. 1). However, this is an extremely heterogeneous heritage, because of the aging, the functional and often physical obsolescence, which ultimately does not respond to the current demands in terms of teaching and learning methodologies, but also because of the low comfort and safety performances and of fruition and accessibility problems (lack of compliance with “Universal Design” goals).

![Distribution of the educational buildings on the Italian territory](Source: MIUR—Portale unico dei dati della scuola, Anagrafe scuola)

2 Thirty-two percent of the schools was built after 1976, 27% between 1961 and 1975, 12% between 1946 and 1960, 8% between 1921 and 1945, 4% between 1900 and 1920, 3% in the nineteenth century, and 1% before 1800. There is no information for the remaining 13% (Miur 2017).
In addition to the hydrogeological hazard that can affect some schools positioned in risk areas, one of the most urgent issues is related to the high seismic vulnerability characterizing most of the existing schools, which indeed were designed with respect to gravity loading only.

The identification of the seismic areas in Italy started at the beginning of the twentieth century, through the instrument of the royal decree, issued after the destructive earthquakes of Reggio Calabria and Messina on December 28, 1908. Since 1927, the areas hit by earthquakes have been divided into two categories, in relation to their degree of seismicity and their geological constitution. Therefore, the seismic map in Italy was nothing but the map of the territories affected by the strong earthquakes after 1908, while all the territories struck before that date (most of the seismic areas of Italy) were not classified as seismic and, consequently, there was no obligation to build in compliance with anti-seismic regulations. Only in 1974, through the law of February 2, 1974, n. 64, a new national seismic regulation was established which defined the reference framework for the seismic classification methods of the entire national territory, as well as for the drafting of technical standards. Immediately after the earthquake of October 31, 2002, that hit the territories on the border between Molise and Puglia, the Civil Protection adopted the ordinance of March 20, 2003, n. 3274, in order to provide an immediate response to the need to update the seismic classification and seismic regulations. According to the ordinance n. 3274, and unlike the provisions of the previous regulations, the entire national territory was classified as seismic and divided into four zones, characterized by different seismic hazard.

This brief history demonstrates that seismic regulations in Italy are quite recent. Indeed, according to the new registry launched by the Ministry of Education University and Research (Miur 2017), only 8% of the schools was designed in compliance with seismic regulations, 54% is in a vulnerable zone, and around 19,000 buildings are situated in high-risk seismic areas. The collapse of educational buildings in the 2009 and 2016 earthquakes in central Italy and the tragedy of San Giuliano di Puglia (2002), where 27 children died in the primary school building collapse, represent a clear symbol of the gravity of this problem.

A second major issue is related to the inadequate energy performance of the educational buildings, again due to the old construction date and to the evolution of the regulations on the energy performance of the buildings, the first being enacted only in 1976, but with very low requirements in comparison with the current situation. Although the European Energy Performance of Buildings Directive (EPBD) requires that “the public sector in each Member State should lead the way in the field of energy performance of buildings” and “buildings occupied by public authorities and buildings frequently visited by the public should set an example,” almost 85% of the school buildings in Italy belongs to the bottom classes of the energy performance ranking. Only 5% (Legambiente 2018) of the stock can be classified among the first three classes, a percentage corresponding to the constructions completed after the 2001, when the first regulations requiring a high standard of energy efficiency were enacted. Hence, if the lack of sufficient structural safety can appear as a real threat, the inadequate energy performance is certainly a
waste of resources and a lost chance as well. Energy retrofit programs in fact can become lighthouse projects not only because schools are public buildings visited by pupils, their parents, and the staff, but also because the direct understanding of the behavior of the building envelope and technical systems can help children learn how to support energy savings as responsible users and transfer the knowledge to their families. A further issue to add to the serious situation of the national heritage, related to both structural safety and energy poor performance, is the significant gap between northern and southern regions; an imbalance which characterizes also the funding for ordinary repairs, let aside renovation interventions.

Furthermore, health and indoor comfort requirements should be addressed, especially when considering that almost 10% (Legambiente 2018) of the existing complexes should be cleaned from asbestos.

Finally, the shift toward a knowledge society where information and knowledge are expanding in quantity and accessibility is introducing major changes in teaching and learning models. The information revolution has changed the way we interact with people and things. We live in a society where information is spread out in a large-scale dimension, and new technologies become new tools to change the relationship between time and space. Learning happens everywhere. The new generation of net-native pupils, with an increasingly different set of expectations about space and time, will require constant access to learning materials and resources to share within and beyond the school. Inter-disciplinary learning and collaborative peer-to-peer learning will become increasingly common. New educational models and approaches will be required to help multiple generations, belonging to diversified cultures and in different fields. This will require a general rethinking of the school layouts to overcome the actual strict zoning of the functions and to respond with a higher flexibility to the rapidly changing demand.

The barriers toward the starting of a concrete policy for the renovation or the replacement of the existing stock are varied. It is not just a problem of economic resources but also of a complex set of different issues related to both the diversity of the heritage and the heterogeneous set of institutions responsible for the construction/renovation process. The schools in fact are managed by municipalities as well as by provinces and also directly by the central state. The interventions, considering the major presence of public buildings, are very often subjected to the national public works legislation, requiring a significant effort in planning and organization. One of the challenges is thus how to support municipalities or institutions, especially the smallest ones, in the process from the design activity, to the tendering, to the site inspections and co-ordination during execution, until the final acceptance testing.
The decision for the construction or the retrofit of the school building should consider the relationship with the urban context and the possible potentials that the public building and its annexes can add to the community, for example, in terms of quality of the public spaces, additional resilience in case of emergency\(^3\) and of lifelong learning\(^4\) or integration with other public facilities. A new construction or a requalification can also trigger the regeneration of the surrounding neighborhoods.

The Challenge of Renovation and New Buildings Design

From 2014, in Italy a vast program\(^5\) of construction of new schools and requalification of existing educational buildings that affect, in different ways, every level of education, from primary schools to universities, have been public financed. Different architectural design competitions were also proposed, beyond the attribution of the design task, to collect innovative proposals able to explore new solutions and approaches for the renovation of the educational facilities. Many examples and competition applications are collected in this book.

This program concerned the transformation of educational and pedagogical approaches, aimed at improving the effectiveness of learning models, as well as the requalification of the existing buildings from an energy-saving and structural safety point of view, the latter with particular regard to seismic vulnerability of the existing buildings.

These themes have long been a field of great interest, experimentation, and research, aimed at developing projects, models, and intervention strategies where different disciplines and skills are involved. The possibility of giving old places a new identity, to update buildings according to the new educational and teaching models, to develop projects that take into account the actual needs of energy savings and structural safety is deeply investigated in the following chapters.

On a broader scale, all these needs offer the possibility of redesigning complex existing buildings and developing projects that play an important role also at the urban level, by becoming reference places, opportunities for redevelopment of degraded parts of a city, new cultural, and civic centers.

This book describes the results of some of the research and consulting works, carried out at the Department of Architecture, Built Environment and Construction engineering (Politecnico di Milano), related to the design of new schools and to the

\(^3\) A structural safe school building in seismic areas can be used, for example, as a possible emergency center or temporary accommodation in case of necessity.

\(^4\) The often-unused spaces of a school building during the evening or weekends can host courses for adults or other continuous learning programs or different activities for the whole community.

\(^5\) Of the ten billion euros invested, five have been spent by municipalities, provinces, and metropolitan cities to construct 300 new buildings and start 12,000 renovation projects. ItaliaSicura, the Council of Ministers authority created to lead and manage the renovation programme, was closed in July 2018 (https://www.corriere.it/scuola/primaria/18_luglio_05/edilizia-scolastica-ambiente-governo-chiude-italiasicura-adef7264-8017-11e8-841c-47290107a48c.shtml).
requalification of existing ones. The description of these activities has been organized into three sections, where particular emphasis is given to the effective collaboration with institutions at various levels and the synergetic combination of the different disciplines involved, needed to respond to their requests through applied and basic theoretical research works.

The chapters, organized into the three different sections, investigate central themes about the buildings for education, focusing, in particular, on the definition of multidisciplinary approaches for the design of new schools and for the upgrading of existing ones. Among the main topics highlighted, the first section focuses on the relationship between the city and the school as a civic building with a public role for the community also to possibly host different functions. Accordingly, some recent concept designs are featured, carried out within national and international competitions, and analytical and historical studies on the theme of schools and on their typology, as well as on the role of these buildings at the urban level, are reported. In the second section, innovative solutions for both the design and the construction process are analyzed, and in some applications, particular relevance is given to the building information modeling (BIM) strategy as an optimal tool to achieve a synergetic combination of the different disciplines involved. Finally, the third section focuses on the built heritage, particularly: (i) on the tools, technologies, and approaches required to upgrade the existing buildings, in order to comply with the new regulations (in terms of seismic resistance and energy performance); (ii) on the possible transformation of unused constructions into buildings for education, and (iii) on the management of the existing stock. Theoretical as well as applied research paths are reported to illustrate the topic both from the methodological point of view and through real case studies.

Massimiliano Bocciarelli
Laura Daglio
Raffaella Neri

References

Contents

Urban and Social Role of School Buildings

The Open-Air School Typology in the Milanese Experience:
The Trotter and the Rinnovata Pizzigoni 5
Enrico Bordogna

The Topic of the School Building in the Milanese Professionalism 17
Michele Caja, Martina Landsberger and Angelo Lorenzi

Space and Figuration of the School Building in the Construction of the Metropolitan Periphery: The School as a Social Emancipation Workshop ... 29
Domenico Chizzoniti

Imagining the School of the Future ... 41
Massimo Ferrari, Claudia Tinazzi and Annalucia D’Erchia

Modernist Schools in the New Rural Landscape of the Pontine Plain ... 53
Francesca Bonfante, Nora Lombardini, Emanuela Margione and Luca Monica

Rural and Urban Schools: Northern Greece in the Interwar Period ... 63
Cristina Pallini, Aleksa Korolija and Silvia Boca

The Schools as Heritage and a Tool for Political and Cultural Integration. The Buildings of the Plan de Edificación Escolar in Buenos Aires ... 73
Maria Pompeiana Iarossi and Cecilia Santacroce

Origins and Development of the American Campus:
The “Academical Village” of Thomas Jefferson 85
Mariacristina Loi
Bovisa: A Park for Work and Research
Domenico Chizzoniti, Luca Monica, Tomaso Monestiroli and Raffaella Neri

Page 95

The City’s New Road. The Fundamental Role of Nature in Urban Transformation Processes
Adalberto Del Bo

Page 105

The Quality of the Project and the MIUR Standards for the Control and Funding of Buildings for Education and Training
Giovanni Castaldo, Matteo Gambaro, Elena Mussinelli and Andrea Tartaglia

Page 117

Education as Reconstruction. School Typology in Post-earthquake Reconstruction in Central Italy
Enrico Bordogna and Tommaso Brighenti

Page 127

Design for Schools
Domenico Chizzoniti, Luca Monica, Tomaso Monestiroli, Raffaella Neri and Laura Anna Pezzetti

Page 139

The Paths to Innovation: Tools, Models and Processes
A BIM-Based Process from Building Design to Construction: A Case Study, the School of Melzo
Giuseppe Martino Di Giuda, Paolo Ettore Giana, Francesco Paleari, Marco Schievano, Elena Seghezzi and Valentina Villa

Page 163

A Collaborative Approach for AEC Industry Digital Transformation: A Case Study, the School of Liscate
Giuseppe Martino Di Giuda, Paolo Ettore Giana, Marco Schievano and Francesco Paleari

Page 175

Use of Predictive Analyses for BIM-Based Space Quality Optimization: A Case Study, Progetto Iscol@
Giuseppe Martino Di Giuda and Matteo Frate

Page 185

Technical-Scientific Support for the Definition of the Project for the Reconstruction of School Buildings Involved in Seismic Events
Emilio Pizzi, Maurizio Acito, Claudio Del Pero, Elena Seghezzi, Valentina Villa and Enrico Sergio Mazzucchelli

Page 193

“A Factory for the Future”: Inveruno New School
Tomaso Monestiroli, Francesco Menegatti, Maurizio Acito, Giuseppe Martino Di Giuda, Franco Guzzetti and Paolo Oliaro

Page 203

Field of Education and “Corpus Socialis”
Riccardo Canella and Micaela Bordin

Page 213
Space-Places and Third Teacher: The Issue of Architectural Space in the Age of Knowledge Cities and Schools 3.0
Laura Anna Pezzetti

Management, Transformation and Enhancement of the Built Heritage

School Building Surveying: A Support Tool for School Building Registry Office
Angela S. Pavesi, Genny Cia, Cristiana Perego and Marzia Morena

Extension for the Accademia di Brera at the Farini Marshalling Yard in Milan: The Architecture of the Campus and Spaces Frames for Teaching
Luca Monica, Luca Bergamaschi, Giovanni Luca Ferreri, Paola Galbiati and Massimiliano Nastri

Camillo Boito’s “Capannone” for the Accademia di Brera in Milan: Reuse of a Railway Depot
Gabriella Guarisco, Maurizio Acito, Stefano Cusatelli and Mehrnaz Rajabi

A University Campus for Medical Disciplines in View of the Redevelopment of the Guglielmo da Saliceto Hospital in Piacenza
Piero Poggioli

Application of Externally Bonded Inorganic-Matrix Composites to Existing Masonry Structures
Angelo S. Calabrese, Tommaso D’Antino, Carlo Poggi, Pierluigi Colombi, Giulia Fava and Marco A. Pisani

Strengthening of Different Types of Slabs with Composite-Reinforced Mortars (CRM)
Tommaso D’Antino, Angela S. Calabrese, Carlo Poggi, Pierluigi Colombi, Giulia Fava and Massimiliano Bocciarelli

Energy Retrofit Potential Evaluation: The Regione Lombardia School Building Asset
Fulvio Re Cecconi, Lavinia Chiara Tagliabue, Nicola Moretti, Enrico De Angelis, Andrea Giovanni Mainini and Sebastiano Maltese

Energy and Environmental Retrofit of Existing School Buildings: Potentials and Limits in the Large-Scale Planning
Giuliano Dall’O’ and Luca Sarto