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Abstract 6 

Improving the reliability of energy simulation outputs is becoming a pressing task to reduce the performance gap between the design 7 

and the operation of buildings. Occupant behaviour modelling is one of the most relevant sources of uncertainty in building energy 8 

modelling and is typically modelled via a priori choices made by modellers. Thus, an improvement in the description of occupant 9 

behaviour is needed. To this regard, the availability of smart meter recordings might help to generate more reliable input data for 10 

building energy models. This paper discusses a novel data-driven procedure that enables to create yearly occupancy and occupant-11 

related electric load profiles to inform building energy modelling, using a typical uneven database made available by energy 12 

operators. The procedure is subdivided into three main tasks. The first has the intent to detect representative occupant-related electric 13 

load profiles from smart meters readings. The second task aims to generate yearly occupancy profiles from the same database. The 14 

last task assesses the impact of the generated occupancy and occupant-related electric load profiles on building energy simulation 15 

outputs. The procedure is applied to the case study of a multi-residential building in Milan, Italy and is meant to show the possibility 16 

to overcome deterministic inputs that might have little relation with the actual building operation. It showed a substantial 17 

improvement in the reliability of building energy simulation and that occupant related load profiles may account for about 8 % of 18 

the building’s energy need for space heating. 19 
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1. Introduction 22 

All over the world, the building sector is one of the major users of energy and materials [1,2]; therefore, in the last decades, the 23 

interest in reducing its impact has greatly increased [3,4]. At the end of 2018, the European Union launched new directives [5–8] to 24 

increase the energy efficiency of existing and new buildings and to enhance the use of renewable energy. According to the objectives 25 

expressed by these directives, building energy simulation is becoming progressively more important to support new constructions 26 

and renovation projects.  27 

Occupant Behaviour (OB) represents one of the biggest uncertainties in building energy modelling [9,10] and has a significant 28 

impact on energy usage in buildings [11–18], especially in the residential sector [2,19,20]. Commercial software tools, nevertheless, 29 

usually lack the capacity to describe individual actions of building users and assume generic user schedules, which are not able to 30 

directly reproduce the unpredictability of OB over time [4,12,21,22]. This is becoming a relevant problem, since, in new high-31 

performance buildings, the share of energy demand affected by OB is constantly rising [2,23,24]; thus, the interest on OB models 32 

is gaining momentum [4]. It is important not only to model more realistic OB scenarios but also to quantify the impact of them on 33 

buildings’ energy performance. Employing stochastic and more accurate occupancy profiles in Building Performance Simulations 34 

(BPS) can increase the reliability of the results, or at least, provide an indication of related uncertainty. For this purpose, the 35 

International Energy Agency (IEA) approved, first, the Energy in Buildings and Communities (EBC) Annex 66 [25], whose aim is 36 

to “bridge the gap” between the built environment and OB and currently is operating the EBC Annex 79 that is addressing the issue 37 

of occupant-centric building design and operation. Among several contributions, Annex 66 provided an ontology of occupant-38 

related phenomena that relates influencing factors with occupancy (presence, movement) and occupant behaviour (actions) [26,27] 39 

and Annex 79 is investigating the use of data-driven methods to support the modelling of occupant presence and actions (OPA) 40 

[28]. 41 



The traditional approach to energy modelling is to create a numerical model of a building with a set of deterministic input data and 42 

to calculate the model’s energy performance. However, this procedure is not able to consider both epistemic and aleatory 43 

uncertainties and variability in the input data. Sun et al. [13], proposed a methodology to estimate the performance of energy 44 

conservation measures that are influenced by uncertainties. Azar et al. [12] proposed a framework for BPS and Agent-Based 45 

Modelling using a regression surrogate model. Such methodology tries to overcome the limitations of BPS in modelling human 46 

behaviour. The conclusion is that the way in which these uncertainties are considered can influence the energy performance of 47 

buildings and highly change the range of the actual results. Also, the study of Gaetani et al. [29] showed how uncertainties can 48 

influence building performance predictions. In their opinion, it is crucial to include the modelling of uncertainties among BPS 49 

models. 50 

Data analysis applied to real dataset might help in the definition of better input to model OB. In the literature, numerous works dealt 51 

with the analysis of electric energy use datasets. Chicco et al. [30], for example, studied the load pattern-based classification of 52 

electricity customers with the aim to gain accurate knowledge of the customers’ consumption patterns for electricity providers in 53 

competitive electricity markets. In their study, two methods were implemented to achieve the result: a modified follow-the-leader 54 

algorithm and a Self-Organizing Map (SOM). The conclusion was that both can effectively assist the electricity providers in 55 

performing customer classification. Tsekouras et al. [31] developed a two-stage methodology for the classification of electricity 56 

customers of the Greek power system. It was based on unsupervised pattern recognition methods, like k-means, Kohonen adaptive 57 

vector quantization, fuzzy k-means, and hierarchical clustering. In the first stage, representative load curves of various customers 58 

were deducted with the help of pattern recognition procedures. In the second stage, a classification of the customers was carried out 59 

with the same methods of the first stage. Hernández et al. [32] developed a well-structured methodology composed of a cascade 60 

application of a SOM and the clustering k-means algorithm to identify energy consumption patterns. The results showed that the 61 

system could adequately find different behaviour patterns without supervision and without any prior knowledge about the data. 62 

Deshani et al. [33] proposed an accurate prediction of electrical energy use through improved artificial intelligent approaches. This 63 

research showed how a cluster analysis performed to group similar day types, could contribute towards selecting a better set of 64 

neuro-forecasters in neural networks. The daily total electric energy use for five years was considered for the analysis and each date 65 

was assigned to one of the thirteen day-types. Three different clusters were found using Silhouette plots, and thus three neuro-66 

forecasters were used for predictions. Panapakidis et al. [34] developed a methodology for the investigation of the electric behaviour 67 

of buildings, using clustering techniques, exploiting the incorporation of smart grid technologies in the building sector. Utilizing a 68 

university campus as a case study, the proposed methodology was applied to the load curves of different buildings leading to the 69 

determination of an optimum clustering procedure. In fact, the spread of the smart grid technologies enables the automatic collection 70 

of information about the customer’s behaviour along with the building’s performance. Also in the study of Grzegorz Dudek [35], 71 

several methods based on neural networks were proposed and compared, such as multilayer perceptron, radial basis function neural 72 

network, generalized regression neural network, fuzzy counter propagation neural networks, and SOM. Capozzoli et al. [36,37] 73 

proposed frameworks on load profiles characterisation in buildings, based on the recent scientific literature.  74 

Other researchers tried to find a relation between electric energy use and the presence of occupants in the building. The common 75 

method to register very big data of occupancy is through sensors, like in the work of Jorissen et al. [38] or Kim et al. [39] or Khalil 76 

et al. [40]; nevertheless, privacy issues inhibit the implementation of such methods in the residential buildings. Also, Time-User 77 

Surveys (TUS) are commonly used. The methodology of Aerts et al. [41], used data from Belgium TUS of 2005. Hierarchical 78 

clustering techniques on individual occupancy profiles were implemented and then, probabilistic occupancy profiles were obtained 79 

by applying the probability to transit from a certain state to another and the duration probability, which are both time-dependent. 80 

Also, the methodology proposed by Buttitta et al. [14] introduced a new occupancy model from TUS data, using data mining 81 

clustering techniques. The methodology was divided into two steps: identification and grouping of households with similar daily 82 

occupancy profiles, and then, the creation of probabilistic occupancy profiles. However, these relatively simple methods can be 83 

only used in residential buildings energy models that use TUS as inputs. The works of Kleiminger et al. [42,43] exploited the 84 

electricity meters as occupancy sensors. They showed that supervised machine learning algorithms could extract occupancy 85 



information with an accuracy between 83 % and 94 %. They used a feature set of 10 and 35 characteristics of the registered electric 86 

load that are related somehow to the activation state of appliances, hence to the presence of occupants. In particular, they used the 87 

k-Nearest Neighbour (k-NN) algorithm [42,43], that is used as supervised learning algorithms for clustering the dataset [44]. 88 

However, adequate attention must be provided in the phase of data cleaning and processing [45,46]. 89 

Some researchers focused their attention specifically on the residential sector. Rhodes et al. [47] studied the measured electric energy 90 

use data from 103 homes in Austin, Texas, to determine the shape of demand profiles, to optimise the number of normalized 91 

representative profiles and to draw correlations based on survey data from occupants. The k-means algorithm was implemented to 92 

cluster the electricity patterns and a regression method was used to determine whether homeowner survey responses could serve as 93 

predictors for the clustering results. Also, McLoughlin et al. [48] proposed a clustering methodology in the residential sector for 94 

Ireland starting from electricity smart metering data. They used the method of data mining that allows for the data to be segmented 95 

before aggregation processes are applied. The study implemented three of the most widely used unsupervised clustering methods: 96 

k-means, k-medoid and SOM. Viegas et al. [49,50] proposed a methodology predicting the typical daily load profile of electricity 97 

usage based on static data obtained from surveys, with the intent to determine consumer segments based on the metering data using 98 

the k-means clustering algorithm, to correlate survey data to the segments, and to develop statistical and machine learning 99 

classification models to predict the demand profile of the consumers. Ali et al. [46] starting from a dataset from 400 houses, proposed 100 

a study on data mining techniques to explain and evaluate which techniques are useful for better understanding large-scale use 101 

profile to improve the power system management and design. 102 

The work presented in this paper focuses specifically on residential buildings provided with a yearly sample of smart meter readings 103 

with a time resolution of 15-minute and no surveys; a typical challenging condition for energy modellers. The research tries to 104 

provide a methodology able to overcome the limits of actual datasets, usually characterized by a lack of data, errors and noise. 105 

Following this approach, the presented work reports a procedure to analyse real monitored data to create yearly schedules for internal 106 

heat gains due to appliances and occupancy. Three types of occupants’ attitudes (low, medium and high electric energy usage) are 107 

defined to represent different levels of energy consciousness in terms of control of lights and plug-in appliances. Differently from 108 

the most used deterministic approaches [51], hereby a stochastic methodology able to include the intrinsic variability of occupants 109 

is adopted. From the reported literature review, data mining and unsupervised machine learning emerged as promising techniques 110 

for this purpose. These methods are indeed useful for noise reduction [52] and for pattern recognition in a wide variety of data 111 

samples [37],  automatically extracting information from the dataset [53]. For this reason, they are adopted in this case study. The 112 

work is intended for energy modellers interested in setting more reliable input for their simulations and dealing with uneven “real-113 

world” datasets. It uses unsupervised machine learning techniques via a structured and reliable procedure that may be adopted, 114 

repeated and assumed as a tool to support a more accurate building energy simulation. 115 

2. Case study 116 

2.1. The building and its numerical model 117 

The case study is a residential estate in Milan, which is composed of two blocks with a total gross floor area of 4500 m2 with about 118 

70 apartments for an estimated population of 200 people. The buildings were built in the ‘80s and have never been retrofitted so far. 119 

Based on the existing documentation, including an energy audit and in-situ inspections carried out by expert and independent 120 

engineers, a dynamic energy model is created. EnergyPlus 8.5.0 is the energy simulation engine used for the modelling and 121 

simulation tasks. Each released version of EnergyPlus undergoes two major types of verification tests [54]: analytical tests according 122 

to ASHRAE Research Projects 865 and 1052, and comparative tests according to ANSI/ASHRAE 140 [55] and IEA SHC 123 

Task34/Annex43 BESTest method. 124 

 Each flat is modelled as a single heated thermal zone, whereas the ground floor and the attic are modelled with two individual 125 

thermal zones and are unheated spaces. Also, the staircases are considered as unheated spaces. The surroundings of the building 126 

include the presence of trees, with a height of ten to eighteen meters. The simulations are run for a typical year with an hourly 127 

resolution. The main settings of EnergyPlus are:  128 



− North axis set at 39 °, 129 

− Terrain set as Suburbs, 130 

− Solar Distribution set as Full Exterior, 131 

− Minimum number of warmup days set at 25, 132 

− Ground temperature set as the 2 meter-depth temperature given by the weather data IGDG of Milano-Linate, 133 

− Heat conduction in constructions calculated with the finite difference method and with a 3-minute time step. 134 

The main settings of the building fabric are summarized in Table 1. In the model, the thermal bridges are accounted for increasing 135 

the steady-state thermal transmittance on the envelope constructions. The window glazing has a U-value of 3,0 W/(m2 K) with a g-136 

value of 0,75 and a visible transmittance of 0,82, while the frame has a thermal transmittance of 5,4 W/(m2 K). These two 137 

components are used for all the nine windows’ combinations, characterised by a different number of shutters and dimensions. Roller 138 

blinds are set with a nocturnal schedule (closed from 10:00 p.m. to 6:00 a.m., otherwise open) and are characterized by a solar 139 

transmittance of 0,05, a solar reflectance of 0,5, and an infrared transmittance of 0,05. The internal gain from electric equipment is 140 

divided into a radiant and a lost fraction, respectively set as 0,3 and 0,5. The infiltration is constant and equal to 1 air change per 141 

hour, counting both for natural ventilation and infiltrations. This is a strong assumption that was made because no data on windows 142 

opening was available and to not arbitrarily influence the simulation outcome with ad-hoc control rules. 143 

The building is equipped with a fuel oil centralised system for space heating and gas boilers for domestic hot water (DHW) installed 144 

in each apartment. No mechanical ventilation systems nor centralised mechanical cooling systems are installed.  145 

Table 1: Main building fabric settings in the EnergyPlus building model 146 

 Code Description 
Thermal transmittance 

W/(m2 K) 

C
o

n
st

ru
ct

io
n

s 

M2 Main external wall 1,22 

M7 External wall of stairs 4,00 

M7b External wall of the attic 4,00 

MS External wall on loggias’ sides 0,55 

M31 Roller blind case 0,93 

M4 External wall on loggias 1,09 

M6 Vertical internal partition among flats 4,00 

M8 Vertical internal partition on stair cases 1,22 

MP Vertical internal partition inside flats 1,22 

P1 External floor on the ground 1,75 

P2 External floor on loggias 2,70 

S2 Roof on the attic 4,00 

P3 Internal floor 2,78 

 147 

2.2. The dataset 148 

The building is provided with electric energy metering data for the year 2016, from the 1st February to the 31st August. Data is 149 

completely anonymous, and no additional data or survey are available. The dataset includes 24 households with a 15-minute time 150 

step registration. The raw registered data shows some recording errors that cannot be easily interpreted and required a data cleaning 151 

process. The electric profiles of each apartment are the accumulation of the electric absorptions of several unknown appliances; 152 



therefore, the registered data includes all the electric appliances installed in each flat and could also comprehend the absorptions 153 

from small electric space heating (or cooling) devices, which are not reflected in the energy need for space heating (or cooling). 154 

This represents a typical, although uneven, dataset available for energy modellers. The aim of this work is to obtain enough 155 

information from this dataset to generate simulation input, in terms of occupancy and occupant-related load profiles, to relieve the 156 

energy modeller from the unfair and difficult choice of setting deterministic occupancy and heat gain schedules. 157 

2.3. The weather dataset 158 

Erba et al. [56] and Moazami et al. [57] stressed the impact of different weather datasets on the energy modelling of buildings, 159 

therefore, a weather file that could represent the actual conditions at the location was selected. The Agenzia Regionale per la 160 

Protezione dell'Ambiente (ARPA) provides years of registered data for the weather station in Via Juvara 22, close to the building 161 

site. Table 2 summaries the technical characteristics of the installed sensors. The existing registration for this weather station 162 

includes dry-bulb temperature, relative humidity, wind velocity and direction, precipitation, atmospheric pressure and global solar 163 

radiation. To complete the weather data to be used in EnergyPlus, the global radiation is split into direct, diffuse and global solar 164 

radiation using the Watanabe simplified method [58] based on the location of the weather station. 165 

Table 2: Technical characteristics of the installed sensors in the ARPA weather station of Via Juvara, Milan, Italy 166 

Measured variable Sensor Sensible element Accuracy Range Resolution 

Dry-bulb temperature 

Thermohygrometer 

Pt100 1/3 DIN-B ± 0,10 °C - 50 ÷ 70 °C 0,06 °C 

Relative humidity Capacitive ± 1,5 % 0 ÷ 100 % 0,50% 

Wind velocity Tachoanemometer Optoelectronic sensor 
< 35 m/s: ± 2 %                                                                                                               

> 35 m/s: ± 3 % 
0 ÷ 50 m/s 0,01 m/s 

Wind direction Gonioanemometer Optoelectronic sensor ± 2 ° 0 ÷ 360 ° 1 ° 

Precipitation Electric rain gauge 
Collector cone and 

double chamber bascule 
± 1% 0 ÷10 mm/min 0,2 mm 

Atmospheric Pressure Barometer Piezoresistive sensor ± 1 hPa 800 ÷1100 hPa 0,1 hPa 

Global solar radiation Pyranometer Thermopile ± 5 % (daily) 0 ÷ 1500 W/m2 1 W/m2 

 167 

3. Methodology 168 

The aim of this session is to describe the process required to create different yearly schedules for internal heat gains due to appliances 169 

and occupancy and to assess their impact on the energy performance of a multi-residential building. Seldom actual data of electric 170 

energy usage is complete, and a deep survey or expensive sensors should be used to detect the presence of people inside buildings. 171 

With the shown procedure, the modeller should be able to create schedules of occupancy and of occupant-related electric power 172 

used by appliances for a full year, starting from a relatively small sample of data, improving the reliability of the outcome of energy 173 

simulations. 174 

The work is divided into three main sub-tasks (Figure 1): (i) generation of schedules of the standardized occupant-related electric 175 

load profiles for use in the energy model, from the registered electricity use; (ii) generation of the standardized occupancy schedules 176 

for all the flats in the energy model, from the registered electricity use; (iii) assessment of the impact of the generated schedules on 177 

the energy need for space heating of the building. 178 

To perform the first two tasks, IBM SPSS Statistics 24 and MATLAB R2017a are exploited; whereas to perform the third task, 179 

EnergyPlus 8.5.0 is used. 180 



 181 

Figure 1: Flowchart of the proposed methodology 182 

3.1. Task 1 183 

The input of this section is the raw registered dataset of electricity use, and the output is a yearly schedule for the occupant-related 184 

electric power used by appliances. The aim of the task is to cluster the daily load curves of electricity in different meaningful groups, 185 

each represented by the first, second and third quartile. The three final scenarios can be interpreted as the electric profiles for low, 186 

normal, and high electric energy users. 187 

3.1.1. Data processing 188 

Data processing is an important step that can spoil the final quality of results. Usually, the actual raw data is incomplete and contains 189 

errors. The steps followed to create the dataset for statistical analyses are: (i) data pre-processing (cleaning), in which the outliers 190 

are identified and removed, and the inconsistency of data is resolved; (ii) data dimensionality reduction/discretization, in which the 191 

representation of data is reduced but producing similar analytical results; (iii) data transformation, in which the data is normalized 192 

and aggregated if needed; (iv) data integration, in which integration of multiple dataset and completion with attributes are set into a 193 

single and useable format. The result is a clean and functional file suitable for statistical analyses. 194 

3.1.2. Data understanding 195 

The data understanding is performed with different statistical techniques and basic summaries, with the aim to have a deep insight 196 

into the dataset and the relations among the different possible influencing factors of the problem. A distinction is made between the 197 

registered data and the possible influencing factors. The followed steps are: (i) statistical analyses of the possible influencing factors; 198 

(ii) relation analyses among influencing factors; (iii) statistical analyses of the registered data; (iv) relation analyses between the 199 



registered data and the possible influencing factors. The main statistical analysis used in this step is the correlation test, to explore 200 

the direct relationships in the sample, T-test and analysis of variance (ANOVA), to perform the difference among groups analyses. 201 

These methods are used both to compare the influencing factors between one another and to check whether there is a direct 202 

relationship between the influencing factors and the registered data. 203 

3.1.3. Clustering 204 

Clustering means grouping a dataset into an N number of clusters Ci, where i = {1, 2, …, N}. To solve the clustering problem two 205 

methods of machine learning are used (Figure 2): SOM and k-means. They are able to allocate the data into a number of groups 206 

trying to minimize some criterion or error functions. The number of clusters is predefined in both cases. Clustering requires the 207 

following steps: (i) initialize the clusters' centroids; (ii) group the data; (iii) update the cluster centroids; (iv) if the partitioning is 208 

unchanged stop, otherwise return to step ii. 209 

 210 

 211 

Figure 2: Two-levels clustering approach. From Ref. [59] 212 

The SOM algorithm is used to create protoclusters that are further grouped with a k-means algorithm to find the final clusters. As 213 

shown by Vesanto et al. [59] and Hernàndez et al. [32], this two-levels approach gives better results than directly clustering the data. 214 

The two main benefits are the minimization of computational cost and noise reduction. The protoclusters are local averages of the 215 

original samples and so, less sensitive to single high or low cases in the data sample. The SOM algorithm classifies unlabelled data 216 

into clusters [60], it can display multidimensional data in a low-dimensional grid and is also a powerful visualization tool. A SOM 217 

neuron k does not occupy a fixed position ck in the input space, but it moves due to weight adjustments during the training process. 218 

If an input vector is entered, the neuron closest to the input pattern is activated in the input space. The neurons structure is a single-219 

layer architecture: the input layer is composed by a specific number of neurons equal to the number of input variables, the actual 220 

neurons layer is a grid of nx × ny neurons operating in parallel. The input layer has the only role to distribute the information to the 221 

computational layer. The important feature of the SOM is that through it, not only the weight of the winner is modified to be closer 222 

to the input vector, but also the weights of all neurons, in a certain neighbour of the winning one, are updated. This means that the 223 

neurons, which at the beginning are organized according to a topology function, can move during the iterations to best fit with the 224 

inputs. The k-means algorithm, instead, is one of the simplest and most commonly used unsupervised learning algorithms [61]. It 225 

solves the problem of clustering given a fixed number (k) of centroids, one for each cluster. For this clustering technique, the input 226 

can move from cluster to cluster during the analysis.  227 

To achieve a good result, it is fundamental the choice of a proper number of clusters as outputs of the SOM. The SOM Toolbox for 228 

MATLAB Report [52] is followed to set this parameter. The final choice is a 2-dimensional map with hexagonal lattice and the size 229 

is given by the heuristic formula:  230 

𝑁 = 5√𝑀                                          (1) 231 

in which 𝑁 is the final number of protoclusters, 𝑀 is the number of data sample given as input. Finally, the ratio of the side-lengths 232 

of the lattice would be the ratio between the two biggest eigenvalues of the covariance matrix of the given data. The actual side-233 

lengths are then set so that their product is as close as possible to the desired 𝑁. To improve the results of the SOM, a normalization 234 



on the maximum value reached in the day is performed. The number of final clusters (𝑛) useful to describe the data sample is set 235 

using the Davies-Bouldin Index (DBI). After several analyses, the number 𝑛 of the final clusters in the k-means is fixed at 5. This 236 

value gives a good result based on the description of data, but at the same time does not create negligible not-representative clusters.  237 

3.1.4. Classification 238 

In this methodology, a k-NN algorithm is used to solve the classification problem. The recorded data covers only seven months; 239 

thus, a classification algorithm is necessary to complete the yearly schedule that can be used as input in the building simulation 240 

software. At this step, the days covered by the registration data are characterised by a cluster and some influencing predictors. These 241 

predictors are the difference between Working day and Not-working day and the difference between the Heating season and the 242 

Cooling season are used as predictors. Moreover, to give a time sequence to the days of the year without using the months and days, 243 

the average daily external temperature and its variation are added as predictors.  For the rest of the year, not covered by the 244 

registration, just these influencing predictors are available. Thus, in this section, a k-NN algorithm is exploited to assign one of the 245 

five clusters obtained in the previous steps to the remaining days of the year on the base of the predictors. The k-NN algorithm, 246 

being a supervised learning procedure, needs a training set and a testing set. In this case, the training set is the known part of the 247 

year in which each day is characterized by the association with a final cluster. The testing set is the part of the year in which no 248 

registration of electric consumption is available. To run these analyses, the application of MATLAB Classification Learner is used. 249 

Cross-validation of five folds is implemented to avoid overfitting problems. The response, in this case, is the cluster in which the 250 

considered day falls in. The k-NN is able then, to assign to each day of the year the cluster related to its specific predictors. 251 

The result of this task is an hourly full year schedule (8760 values) for all the flats in the building. Each day of the year is related to 252 

one cluster. Then, the curves corresponding to the first, second and third quartiles of the electric use are extracted, for all the days 253 

in the specific cluster. These three daily load profiles might be interpreted as three typologies of potential user: low, normal, and 254 

high electric energy user. 255 

3.2. Task 2 256 

The input of this task is again the measured electric energy use, whilst the goal is to generate reliable occupancy profiles from it, in 257 

order to associate, in the building simulation, heat gains due to occupants to a meaningful profile of occurrence. The used procedure 258 

is an adaptation of the work of Kleiminger et al. [42,43]. The idea is that some numerical features of the electric use within an hour 259 

can be indicative of the presence of occupants. The average electric use within an hour, its standard deviation, its minimum and 260 

maximum values and the sum of the absolute differences (SAD) are all quantities related to the presence of people that are using 261 

and changing the electric energy use. For example, a high standard deviation and a high SAD corresponds both to high changes in 262 

the electric use within the hour that can be associated with turning on/off the devices and it is usually related with the presence of 263 

people in the flat [42,43] since no building automation system is installed.  264 

3.2.1. Data processing 265 

The data processing of this task is composed of cleaning and transformation. The parts of the database in which the 15-minute step 266 

registration is not available (e.g., due to gaps or errors) are erased from the sample. The transformation, in this case, is the association 267 

with the hourly listed features: average, minimum and maximum, standard deviation and SAD.  268 

3.2.2. Classification 269 

A simple heuristic unsupervised occupancy detection is used to simplify the problem by comparing the current electric energy use 270 

to the mean of the night-time use and proposing possible ground truth occupancy profiles to the user, as suggested by Kleiminger 271 

et al. [43]. The k-NN algorithm is used for this activity. The outcome of the classification is a binary variable (e.g., it can take either 272 

0 or 1) corresponding to the absence or presence of occupants for each hour of each day.  273 

3.2.3. Prediction 274 

Occupancy profiles expressed by a binary variable are too sharp for describing the occupancy in apartments used by several 275 

members. It is preferable to provide the probability of occupancy, which can better describe the real occupancy patterns in the 276 



apartments. Thus, from the previous task, each day of the year is clustered in one of the five identified clusters. Then, for each 277 

cluster, the first, second and third quartiles are calculated from all the daily binary profiles of occupancy derived from the 278 

classification. The results are three continuous variables (first, second, third quartiles) ranging from 0 to 1, corresponding to the 279 

probability of occupancy in a specific hour of the day for each cluster. Since this probability should be associated with the heat 280 

gains due to the building occupants, it is expressed with integer numbers, to avoid setting the heat gain due to fractions of a physical 281 

person. It is assumed that when the value of the continuous variable is below 0,33, it will be rounded to 0 % probability, when the 282 

value of the variable is between 0,33 and 0,66, the considered probability will be 50 % and, when it is higher than 0,66, it corresponds 283 

to 100 % probability of occupancy. For each cluster, proper daily schedules are created from the results of the classification and 284 

transformation process. The probability is then multiplied by the nominal number of people that are supposed to live in an apartment 285 

(2 or 4), which is estimated on the basis of the type of bedroom: rooms with a net floor area lower than 14 m2 are single bedrooms 286 

otherwise are double bedrooms,  according to the prescriptions of the building regulation of the Municipality of Milan [62]. 287 

3.3. Task 3 288 

Task 3 concerns the energy simulation of the building with the schedules created in task 1 and 2. These schedules affect the occupant-289 

related electric power used by appliances in the building and, beyond the electrical energy use, the energy need for space heating 290 

and cooling (in the following case study cooling will not be considered since the building is not equipped with a mechanical cooling 291 

system). Three cases are run:  292 

1. a low internal heat gains scenario that considers, for each cluster, the first-quartile load curve for appliances (i.e. low 293 

electric energy users) and the low probability of presence,  294 

2. a medium internal heat gains scenario characterised by the median load curve (i.e. medium electric energy users) for 295 

appliances and the medium occupancy probability, 296 

3. a high internal heat gains scenario with the third-quartile load curve for appliances (i.e. high electric energy users) and the 297 

high probability of presence. 298 

Finally, as a conclusive validation of the methodology, the energy simulation results are compared against the registered energy use 299 

for space heating of the building block for the year 2016. It is reminded that the simulation has been run with the actual weather 300 

data of 2016 from the weather station in via Juvara in Milan. 301 

4. Results and Discussion 302 

4.1. Task 1 303 

4.1.1. Data processing 304 

A first necessary step is the cleaning of the dataset from errors and data gaps. To correct the inconsistent data, these periods are 305 

erased from the dataset. In fact, a substitution can alter the dataset and modify the result. The dataset includes the electric energy 306 

use with a 15-minute time step from 1st February 2016 to 31st August 2016, for 24 flats. The data of 29th February, 6th and 7th March, 307 

and from 3rd to 8th May are totally missing. Moreover, other periods of time are characterized by a lack of data, in particular: 308 

− Flat 3 and Flat 13 have no data because they are empty or without an active contract,  309 

− Flat 4 from 12th June to 31st August, 310 

− Flat 5 from 14th August to 31st August, 311 

− Flat 14 from 19th June to 29th August, 312 

− Flat 29 from 2nd March to 31st March. 313 

The second fundamental step is the reduction of data. In this case, it is performed on the time step basis. The available dataset is 314 

registered every 15 minutes as electric power in watt, to obtain hourly values, the average within the hour is performed. In this way, 315 

possible eluded outliers are reduced, and so their effect on the overall results. Moreover, the hourly time step is appropriate for the 316 

creation of a yearly schedule for energy simulation software.  317 



The aim of the first statistical analysis is to understand if the electric energy use can be easily predicted considering some features, 318 

on different scales (hourly-, daily- or flat-scale). As a first approximation, electric energy use can be thought to be affected by some 319 

influencing factors, such as the installed electrical appliances, or the number of people living in a household, etc. These influencing 320 

factors are numerous; therefore, a detailed literature review is performed. In Table 3, all the influencing factors that can affect the 321 

electric energy use are listed with one or more references in which each one is explicitly related to building electric use. 322 

Table 3: List of influencing factors that can affect electric energy use with related references 323 

 324 

The integration step is necessary to get the data in a usable format to run the statistical analysis. The influencing factors are chosen 325 

on the basis of their exploitability and added in a spreadsheet with the registered data. Table 4 summaries the list of the selected 326 

influencing factors.  327 

 328 

Family Influencing factor Reference(s) 

Location/Weather/Habits 

External radiation† [63] 

External temperature† [64] 

Working days / Not-working days† [65] 

Day of the week† [14] 

Precipitation† - 

Hour of the day† [65] 

Heating season/Cooling season† [64][65]  

Renewables on site◊ [66] 

House demand limit◊ [67] 

Flat characteristics 

Orientation* [63] 

Floor* [68] 

Number of rooms* [69] 

Floor area* [69] 

Window-to-wall ratio* [70] 

Insulation level◊ [64] 

g-value◊ [63] 

Shading type◊ [71] 

Typology◊ [69] 

Indoor 
Indoor air temperature∞ [64] 

Internal illuminance∞ [63] 

Family type 

Number of people∞ [67][69] 

Sex∞ [67][69] 

Age∞ [72] 

Income∞ [67][69] 

Occupation∞ [67][69] 

Shading operation∞ [71] 

Appliances’ efficiency∞ [68] 

Availability of electric car∞ [73] 

Installed equipment∞ [67][68] 

∞ is for the influencing factors that are not available in this case study. 

◊ is for the influencing factors that are not exploitable in this case study because they are constant all over the dataset. 

† is for the influencing factors that are exploitable and mark a difference among hours. 

* is for the influencing factors that are exploitable and mark a difference among flats. 



Table 4: List of selected influencing factors and their features 329 

 330 

Description of influencing factors 331 

The climate influencing factors are derived from the registration of the A.R.P.A. Lombardia weather station located in Via 332 

Juvara [67]. External-radiation is the global radiation incident on a horizontal plane expressed in W/m2 and calculated as the hourly 333 

average of the measured data. External-temperature is the hourly average air temperature in degree Celsius (˚C). Precipitation is 334 

the hourly cumulative value in millimetres (mm). 335 

The Month, the Day-of-the-month, the Hour-of-the-day and the Day-of-the-week are inserted to give a temporal distinction that is 336 

used as an influencing factor and to sample data in SPSS. A categorical variable (Day/Night) is inserted to distinguish between day 337 

and night. Day is indicated with 1, and it is related to the hours in which there is solar radiation in the shortest day of the year (the 338 

winter solstice), thus from 8:00 a.m. to 4:00 p.m. Whilst, Night is indicated with -1, and it is related to the hours in which there is 339 

not solar radiation in the shortest night of the year (the summer solstice), thus from 10:00 p.m. to 4:00 a.m. The third group, 340 

composed by the hours in between, that can change to be day or night during the year, is indicated with 0. The influencing factor 341 

Workdays/Not-working-days discriminates between the working days and weekends plus national holidays.  342 

The difference between the Heating/Cooling-season is set according to the Art. 9 of DPR 26/08/93 [87]. Milan belongs to climatic 343 

zone E, so the heating season is from 15th October to 15th April; the rest of the year is set as cooling season, although no active 344 

mechanical cooling is available in the building. 345 

Orientation is set according to the position of the main windows of each flat. It is a categorical variable with values from 1 to 4, in 346 

which 1 is South-West, 2 is North-West, 3 is North-East and 4 is South-East. 347 

Flat-number is simply the progressive number used to name the different flats. It is useful only to group data and to represent 348 

features in a graphical format, thus, the correlation results for this factor is not reported. Floor is the storey at which a flat is located. 349 

Number of bedrooms is set as the number of bedrooms in the flat, the area is calculated as the net useful floor area. Window-to-350 

floor-ratio is the ratio between the net window area belonging to an apartment and the net floor area of the whole apartment. 351 

 Variable name Unit of measure 

Range of variation 
- Continuous [Interval, step] 

- Categorical {discrete values} 

Type of variable 

A
M

O
N

G
 H

O
U

R
S

/D
A

Y
S

 

External-radiation W/m2 [0 ≤ x ≤ 931,3] Continuous 

External-temperature °C [1,6 ≤ x ≤ 33,8] Continuous 

Precipitation mm [0 ≤ x ≤ 29,6] Continuous 

Month - {2-8} Interval 

Day-of-the-month - {1-31} Interval 

Hour-of-the-day - {0-23} Interval 

Day-of-the-week - {1-7} Interval 

Day/Night - {-1; 0; 1} Categorical 

Workdays/Not-working-days - {-1; 1} Binary 

Heating/Cooling-season - {-1; 1} Binary 

A
M

O
N

G
 F

L
A

T
S

 

Orientation - {1-4} Categorical 

(Flat-number) - {2; 4-7; 14-29} Categorical 

Floor - {0-3} Ordinal 

Number of bedrooms - {1; 2; 3} Categorical 

Floor-area m2 [37,9 ≤ x ≤ 95,3] Continuous 

Window-to-floor-ratio - {1-4} Ordinal 



4.1.2. Data understanding 352 

In this section, statistical methods and graphs are exploited to understand the variables of the dataset. Then, a correlation test is 353 

performed to investigate the links between the influencing factors and the actual electric registered data. Visual techniques are used 354 

to detect possible patterns in the building’s electric energy usage. The daily sum of the electric energy usage of all the flats in the 355 

entire period from 1st February to 31st August shows that the use of electricity in the dwellings slightly decreases along the seasons. 356 

In the monthly average electric energy use of the flats, again, a negative trend is registered going from February to August. 357 

Nevertheless, July is characterized by an increase in electric use compared to the closest months, showing an average value 358 

comparable with February and March. Calculating the average electric energy use of the flats on a daily basis, Sunday is 359 

characterized by the highest value of average electric use. This result can be ascribed to the fact that people could stay at home 360 

longer than during working days, resulting in higher electric energy usage. Moving to the hourly resolution, some characteristics of 361 

the electric daily energy use can be deduced from Figure 3. The early morning is characterized by a very low electric demand with 362 

the minimum reached around 4:00 a.m.; then, the values increase till lunchtime, around noon. During the afternoon, there is almost 363 

constant electricity demand, and the maximum values are registered in the evening, from 7:00 to 10:00 p.m. The energy usage in 364 

the evening is sharply higher than the rest of the day, since almost all the tenants are at home, having dinner, using lighting and/or 365 

using leisure electric equipment such as television or personal computers. The influencing factors that can affect the electric energy 366 

usage in the residential buildings are numerous and thus, the trends are not easily predictable. For these reasons, a correlation test 367 

between the influencing factors and electric energy use is carried out. 368 

 369 

Figure 3: Hourly-averaged electric energy use of all flats 370 

Correlation analysis  371 

Table 5 shows that no influencing factor can be considered as highly correlated with electric energy use according to the criteria 372 

that assess the strength of the correlation proposed by Rumsey [74]. Spearman’s rho correlation is exploited because the variables 373 

were not always normally distributed. Moderate and almost moderate correlations are registered between the energy usage and the 374 

number of bedrooms and the floor area. These correlations can be justified considering that a larger flat (larger floor and more 375 

bedrooms) has more electric appliances installed, which are also typically used by a higher number of occupants. If strong 376 

correlations were registered, this analysis could lead to a simplified clustering process. However, in this case study, no significant 377 

result is found, and advanced clustering processes need to be explored. Machine learning techniques emerged from the literature 378 

review as the most promising clustering techniques and are, therefore, implemented to achieve this goal. The objective is to find 379 

daily patterns that can be attributed to different family types and habits.  380 



Table 5: Correlation results between the possible influencing factors and electric energy usage 381 

Influencing factor Spearman’s rho 

Day/Night 0,039 

Heating/Cooling-season -0,002 

Workdays/Not-working-days -0,007 

Day-of-the-week -0,001 

Precipitation 0,016 

External-temperature 0,072 

External-radiation 0,045 

Floor 0,039 

Orientation -0,034 

Number of bedrooms 0,389 

Floor-area 0,290 

Window-to-floor-ratio 0,062 

 382 

4.1.3. Clustering 383 

The data is normalized to the daily maximum. The final size of the SOM is 8 x 42. Figure 4a shows the topology of the used SOM, 384 

and Figure 4b shows the connections among the neurons. This figure uses blue hexagons to represent the neurons, whilst the red 385 

lines represent the connection among neighbouring neurons. After running the SOM, each neuron represents a protocluster. Another 386 

useful figure is the SOM Sample Hits (Figure 4c). It shows how many data points are associated with each neuron. The distribution 387 

is not even, and some neurons group many days. Finally, Figure 4d shows the SOM Weighted Neighbour Distances, which presents 388 

the following colour coding: 389 

− the blue hexagons represent the neurons, 390 

− the red lines connect neighbouring neurons, 391 

− the colours in the regions containing the red lines indicate the distances among neurons, 392 

− the darker colours represent larger distances, 393 

− the lighter colours represent smaller distances. 394 

From Figure 4d, it is visible that the protoclusters are not sharply subdivided; they are mainly linked together. The average of the 395 

normalized daily use in each protocluster is calculated and then submitted to the k-means algorithm.  396 

After the clustering phase, the dataset is subdivided into five groups of days with similar daily patterns; the results are shown in 397 

Figure 5. The graphs on the right side of Figure 5 show the protoclusters inside a cluster. On the left side, the graphs show the three 398 

final scenarios: low, medium and high electric energy users, calculated as the first, second and third quartile respectively. The SOM 399 

plus k-mean method is able to subdivide into groups days with similar patterns. 28 % of the days of the original dataset are grouped 400 

in cluster 5, 25 % are in cluster 4, 20 % are in cluster 1, 14 % are in cluster 2, and 13 % are in cluster 3. No cluster is apparently 401 

more representative than others. 402 



 403 
                       a                                           b                                       c                                 d 404 

Figure 4: (a) Topology, (b) Connections, (c) Hits and (d) Weighted distances of the SOM 405 
 406 

4.1.4. Classification  407 

The k-NN is then applied with a cubic calculation of the distances with 10 neighbourhoods., Workdays/Not-working-days, 408 

Heating/Cooling-season, External-temperature and its variation are used as predictors to complete those months that missed data. 409 

The k-NN algorithm is used because it was evaluated as one of the techniques with the highest average accuracy [51][52]. The 410 

accuracy, in the current case study, is high (with a k-NN run with the cubic calculation of distances and with 10 neighbours), with 411 

an average of 86 % among the flats. The k-NN is run, and then the result is applied to the rest of the data sample. The application 412 

of the k-NN provides a cluster for each day of the year. To create the yearly hourly schedule, then, each daily cluster is substituted 413 

with the relative 24-hour pattern (Figure 5). Since two flats have no data registration (flat 3 and 13), to complete the yearly schedule 414 

for the whole building, the schedules of the most similar flats in the building are adopted. Similarity is estimated comparing Floor-415 

area, Number of bedrooms, Orientation, Floor, and Window-to-floor-ratio. Thus, flat 6 and flat 16 are used to represent flat 3 and 416 

13 respectively. 417 

4.2. Task 2 418 

This task, consisting of data processing (section 3.2.1), classification (section 3.2.2.) and prediction (section 3.2.3.), provides yearly 419 

schedules of occupancy. The procedure needs a higher granularity of the registration respect to the previous one, thus, only the parts 420 

of the dataset with an available 15-minute step registration were used. The 15-minute step registration is integrated with the selected 421 

hourly features (average, minimum and maximum, standard deviation and SAD). Then, the k-NN algorithm is used with a simple 422 

heuristic unsupervised occupancy detection method, to predict the final occupancy probability. The prediction method is applied to 423 

the three resulting quartiles to create three scenarios of occupancy. The result is shown in Figures 6. The quartile 3 represents 424 

families whose components spend more time at home, whilst, the quartile 1 represents families that spend more time outside. In 425 

these figures, the blue line represents the occupancy probability given by the average, the red line represents the third quartile and 426 

the dark blue line represents the first quartile. The conclusion is an occupancy probability directly related to each cluster, therefore, 427 

it can be generalized throughout the year following the results of the previous task. The final probability is then multiplied by the 428 

number of people that are supposed to live in the apartment, based on the number of bedrooms. 429 



 430 

Figure 5: Protoclusters and scenarios in each cluster 431 

4.3. Task 3 432 

The aim of the final analyses is to assess the impact of the generated schedules on the yearly energy need for space heating. Case 1 433 

(Figure 7) is run varying the three scenarios of electric energy use but using the medium presence profile in all the flats (second 434 

quartile). The analysis results in three different cases that can be ascribed to the internal heat gains schedule scenarios: low, medium 435 

and high. In the first case, the schedule generated with the first quartile is assigned to all the households and it corresponds to the 436 

situation of the lowest electric energy use due to lighting and appliances. For this reason, an increase in the energy need for space 437 

heating is expected. In the second case, the medium schedule is assigned. The third case corresponds to the assignment of high 438 

electric energy users’ schedule to all the households in the building, resulting in an increase of the internal heat gains.  439 



 440 

Figure 6: Three scenarios of occupancy probability in each cluster 441 

In this last case, a decrease in the energy need to maintain thermal comfort is expected, since they refer to heating only. The average 442 

value of energy need for heating is 77,3 kWh/(m2 a). The range given by the two extreme scenarios goes from a minimum of 443 

74,7 kWh/(m2 a) with the high electric energy users’ schedules, to a maximum of 78,8 kWh/(m2 a) with the low electric energy 444 

users’ schedules. This variability corresponds to -2 % and +3 % of the average value. To understand the impact of the presence of 445 

the people in the flats, Case 2 (Figure 7) is run. In this case, in addition to the variation of internal heat gains due to appliances and 446 

lights, there is also the variation of the internal gains due to people and, thus, an increase in the variability of the results is expected. 447 

The average value of energy need for space heating is the same as before, corresponding to 77,3 kWh/(m2 a). The range given by 448 

the two extreme scenarios is increased and it goes from a minimum of 71,0 kWh/(m2 a) with the high electric energy users’ schedules 449 

and high presence, to a maximum of 82,7 kWh/(m2 a) with the low electric energy users’ schedules and low presence. This variability 450 

corresponds to -7 % and +8 % of the average value.  451 

The aim of this task is also to compare the obtained results with the registered energy need of 2016 as validation. Even if a 452 

comparison cannot be considered as a proper validation method, it gives a good estimate of the quality of all the modelling process, 453 

thus of the presented methodology. The original reference value is expressed in terms of delivered energy for space heating. Thus, 454 

an estimated global seasonal efficiency of 0,7, due to generation, distribution, emission and regulation, is used to compute the energy 455 

need for space heating, based on the characteristics of the existing heating systems described in the energy audit and evaluated via 456 

on-site surveys.  The registered data, 74,1 kWh/(m2 a), is not far from the modelled values (Figure 7), indicating that the overall 457 

modelling of the building is able to approximate satisfactorily the result, always considering that the energy modelling implies 458 

numerous hypothesis and simplifications. The good agreement between simulated and registered energy consumptions can be 459 

attributed to both an accurate estimation of the occupant-dependent input data and a careful creation of the numerical model of the 460 

building. Specifically, epistemic uncertainties related to the specification of technical features were reduced as much as possible 461 



thanks to the use of detailed information obtained by an energy audit and data collected in several inspections carried out by expert 462 

and independent engineers. Aleatory uncertainty due to weather variation was reduced by creating a weather file using the actual 463 

weather data collected by a meteorological station located close to the site in the same period of the energy metering. 464 

 465 
Figure 7: Result of the two cases compared to the registered data (Case 1: setting the medium schedules for occupancy, varying the electric use; 466 

Case 2: varying both electric use and occupancy schedules) 467 

According to Figure 7, the actual behaviour of the majority of building occupants’, in terms of electrical energy use and occupancy 468 

probability, seems to be medium to high. 469 

 470 

5. Conclusions and future outlook 471 

In this paper, a novel procedure that aims at improving the energy modelling of residential buildings is proposed. The procedure 472 

uses a few machine learning algorithms to extract information useful for generating occupant-related input schedules from the 473 

electricity recordings of smart meters. It is applied to and validated through a case study regarding a multi-residential building estate 474 

located in Milan, Italy. 475 

The procedure is subdivided into three main phases. In the first phase, the implementation of the Self-Organizing Map (SOM) and 476 

the k-means algorithm was found appropriate for clustering purposes given the nature and complexity of the data sample. In 477 

particular, the two techniques are coupled for efficiently detecting representative electricity daily use profiles from actual electricity 478 

recordings. After the first run of analysis, five clusters emerged with different daily profiles that can be attributed to different types 479 

of user. Daily occupant-related load profiles were generated for each cluster. Afterwards, the k-Nearest Neighbour (k-NN) algorithm 480 

was implemented to extend the results to the whole year. 481 

In the second phase, a classification method is proposed to estimate the occupancy in the apartments. However, occupancy 482 

estimation does not rely on data from occupancy sensors but is based on the analysis of the actual electricity recordings. The k-NN 483 

algorithm is used for the classification. Occupancy schedules are then generated and associated to all the apartments of the multi-484 

residential building. The accuracy of this task, however, depends on the availability of ground truth from which the k-NN algorithm 485 

could have learnt. To this regard, a survey on occupancy presence would have been helpful to validate and improve the methodology. 486 

The resulted occupancy is associated with the five daily profiles assessed in the first phase that retrace the different type of user. 487 

In the third phase, the schedules generated in the previous two steps are used to simulated the impact of the occupancy behaviour 488 

on the energy need for space heating. The result from the simulation is compared with the actual registered data, showing a range 489 

of variation, for heating, of about ±3 % changing only the internal heat gains due to electric appliances and of about ±8 % changing 490 

also occupancy schedules.  491 

The procedure proposed in task 1, for the investigation of the electricity use profiles, may be valuable as an efficient use profile 492 

analysis in residential buildings. This type of buildings represents a peculiar case in terms of noise in the data sample, of the 493 

complexity of the variable and of privacy issues. In the residential sector, a vast amount of raw data getting available thanks to smart 494 

meters, might be processed, obtaining in-depth and useful information about electricity use behaviour. The approach used in task 2 495 

exploits the electricity consumption registration as an occupancy sensor. Modellers, without the availability of ground truth data, 496 

can apply the proposed methodology to create occupancy schedules. The first advantage of the approach is the fact that the privacy 497 

of the tenants is respected since no invasive sensor is installed in the building and no personal information needs to be collected. 498 



Furthermore, being able to understand how much occupants and their habits may impact on the energy need of a building is crucial 499 

for high-performance buildings. As a matter of fact, the occupancy behaviour can substantially change the result and, for this reason, 500 

the accomplishment or the failure of an energy target.  501 

Finally, the obtained results can be helpful to different stakeholders, such as: 502 

− modellers, who do not possess occupancy and internal heat gains schedules for their residential buildings models [10]; 503 

− tenants, who can benefit from the knowledge of good and bad behaviours to decrease their expenses and can benefit from 504 

targeted tariff plans; 505 

− policymaker, who can optimize the energy targets considering occupants’ uncertainty; 506 

− facility managers whose aim is to develop strategies for energy savings due to the good management of resources; 507 

− distribution system operators and transmission system operators, who can both exploit the identification of energy profiles 508 

for the management of the electricity grids and for the balance of the market; 509 

− energy service companies involved in the building management that can exploit the information to optimize the energy 510 

savings measures. 511 

The proposed methodology looks promising and with minor improvements could become an asset in the field. To further improve 512 

the results of the generation of standardized schedules of occupancy probability (task 2), a more detailed measurement of the 513 

electricity might be helpful. In addition, a ground truth of the presence of people can be beneficial for improving the accuracy of 514 

the k-NN algorithm. The procedure developed in the paper could be further extended to address other topics, such as ventilation, 515 

particularly natural ventilation (not considered in this case study for lack of data on the windows’ openings). 516 
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