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Creasing instability is ubiquitous in soft solids; however, its inception remains enigmatic as it cannot be
captured by the standard linearization techniques. It also does not fit the conventional picture of a barrier-
crossing nucleation, and instead carries some features of a second order phase transition. Here we show that
despite its fundamentally nonlinear nature, creasing has its origin in marginal stability which is, however,
obscured by the dominance of long-range elastic interactions. We argue that despite its supercritical (soft)
character, creasing bifurcation can be identified by the condition that the (generalized) driving force acting
on an incipient stress singularity degenerates. The analytic instability criterion, obtained in this way, shows
an excellent agreement with both physical experiments and direct numerical simulations.
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Creasing is a highly localized mechanical instability in
soft elastic solids (gels, elastomers, tissues). It manifests
itself through the appearance, on a free surface of a
precompressed body, of a singular region of cusped folding
and culminates in the formation of a zone of self-contact
[1–5]. Creasing is encountered in a wide range of appli-
cations from biomedical coating [6] and constrained
swelling [7,8] to tunable adhesion [9]. It is of significant
theoretical interest as an example of nonlinearizable insta-
bility [10–14] which shows universality: the creasing strain
was found to be insensitive to the constitutive behavior
[15], the geometry of the body [16], and the type of
loading [17,18].
Creasing instability is similar to buckling [19] and

wrinkling [20] because it relies mainly on geometrical
nonlinearities of an elastic solid [21]. However, in the case
of creasing, while the associated displacements are small,
the displacement gradients are large which disqualifies
standard perturbation methods [22,23] and suggests that
stability is lost in the strong sense [24]. This type of
instability is characteristic for systems where the order
parameter is a gradient, which implies nonlocality and
dominance of long-range interactions [25–27].
In the presence of an internal length scale, creasing

displays features of nucleation and growth phenomena
usually associated with first order phase transitions [21,28]
and microcracking [29]. However, in the scale-free setting
of classical elasticity, creasing instability lacks traditional
“domain boundary” structure and resembles a second order
phase transition [30]. This implies “soft” nucleation which
is closer to a barrierless binodal transition than to a spinodal
transition. Despite the progress achieved in the numerical
studies of creasing instability in a regularized setting
[10,21,22,31], the physical understanding of its purely
elastic, scale-free nature remains limited.

In this Letter we pursue a simple idea that the creation of
an incipient, highly localized self-contact zone requires an
energy inflow from far away where the necessary work is
done by the applied forces. To quantify this picture we
introduce an energetic criterion of creasing which follows a
closely similar approach in fracture mechanics [32,33]. An
(incomplete) analogy between the two subjects is suggested
by the observation that a crack is a singular set of the
deformation gradient while a crease is a singular set of the
inverse deformation gradient.
We argue that despite its supercritical (soft) character,

creasing bifurcation can be identified by the condition that
the (generalized) driving force acting on an incipient stress
singularity becomes degenerate. To compute such driving
force we use the elastic energy-momentum tensor [34]. It
allows us to link the energy released globally as a result of
the formation of a crease with the energy required locally to
bring together the two sides of a zone of self-contact.
By associating the creasing threshold with the condition

that the energy fluxes at macro and micro scale are exactly
balanced, we reproduce in the creasing framework the
original idea of Griffith [35,36]. Quite remarkably, our
analytic Griffith-type instability condition, obtained with-
out knowing the exact solution of the nonlinear elasticity
problem, shows an excellent agreement with both physical
experiments and direct numerical simulations.
Denote by xi and Xa (with i, a ¼ 1, 2, 3) the Cartesian

coordinates of the points of an elastic body in the current
and reference configurations. We assume that x3 ≡ X3 and
focus on the behavior of a 2D bodyΩ ¼ f½−L; L� × ½0; L�g.
Suppose that the material is incompressible, so that
detF ¼ 1, where Fia ¼ ∂xi=∂Xa and now i, a ¼ 1, 2.
Denoted by W ¼ R

Ω wd2X the elastic energy of the body,
where w ¼ wðFÞ is the energy density. Under the
assumption that the material is isotropic, the function w
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can depend only on I ¼ trðFTFÞ [37] and we assume, for
simplicity, that this dependence is convex. Consider next
the simplest problem where the body Ω is uniformly
compressed in a horizontal direction in a hard device.
More precisely, we assume that x1 ¼ λX1 at jX1j ¼ L,
where λ ≤ 1 is the applied stretch. We also assume that x2
remains unconstrained at jX1j ¼ L in the sense that P12¼0
where Paj are the components of the Piola-Kirchhoff stress
tensor

P ¼ ∂w=∂F − pF−1;

and p (kinematic pressure) is the Lagrange multiplier
enforcing the incompressibility constraint. At the free
surface X2 ¼ 0 we impose the zero tractions condition
PTe2 ¼ 0 where e2 ¼ ð0; 1Þ. We also assume that the
vertical displacements at the surface X2 ¼ L are con-
strained so that x2 ¼ L=λ while P21 ¼ 0. Our task is to
find the critical value λ ¼ λc < 1 when the homogeneous
configuration x1 ¼ λX1, x2 ¼ X2=λ becomes unstable vis a
vis the formation of an isolated crease with infinitesimal
length δl ≪ L, see Fig. 1.

The equilibrium problem reduces to solving the
system of equations ∇ · P ¼ 0; however, even without
knowing the creasing solution of this nonlinear problem,
one can find its internal (near field) jXj ∼ δl, external
(far field) jXj ∼ L and intermediate δl ≪ jXj ≪ L asymp-
totics [30,38].
The far field asymptotics is not affected by the appear-

ance of the crease, and therefore the external solution
represents the original homogeneous deformation. It is
fully characterized by the horizontal uniaxial stress
P11ðλÞ¼2w0ðIλÞðλ−λ−3Þ and the pressure p ¼ 2w0ðIλÞλ2,
where Iλ ¼ ðλ2 þ λ−2Þ; other stress components disap-
pear, P12 ¼ P21 ¼ P22 ¼ 0.
The near field asymptotics is furnished by the canonical

mapping from a half space to the whole space (with the
formation of a line of self-contact). Using the conditions of
incompressibility and equilibrium we obtain [21,39,40]:
x1 ¼ R=

ffiffiffi
2

p
sinð2ΘÞ, x2 ¼ R=

ffiffiffi
2

p
cosð2ΘÞ, where R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1Þ2 þ ðX2Þ2
p

and Θ ¼ tan−1ðX1=X2Þ. The pressure
distribution, pinðRÞ ¼ w0ð5=2Þð1 − 3 logRÞ − C, is defined
up to an additive constant C which controls how much the
two sides of the self-contact line with a small length δl in
the reference configuration are pushed against each other.
To match at the order ϵ ¼ δl=L the average stress
exchanged along the vertical line bisecting the crease with
the homogeneous horizontal stress in the far field P11ðλÞ,
we must choose C ¼ λP11ðλÞ − 3w0ð5=2Þ log δl [41].
The opposite sides of the self-contact must be pulled

together by forces distributed on the reference surface with
the normal −e2. This force distribution in the “internal”
problem must be effectively canceled by the matching
distribution of pushing forces in the “intermediate” problem.
Consider a domain with characteristic length L̄ centered
around the incipient crease, such that δl ≪ L̄ ≪ L. In the
limit ϵ → 0 the elastic field in this domainwill be affected by
the crease only through the resultant of such pushing force
distribution δf ¼ −4w0ðIλÞðλ2 − λ−2Þδl.
Since this forcing is weak, we can obtain the inter-

mediate asymptotics by linearizing the elastic problem
around the homogeneous external solution. To this end we
assume that x ¼ FoXþ δu, with Fo ¼ diagðλ; 1=λÞ. The
displacement field δu is incompressible and can be written
as δu1 ¼ −δϕ;2λ

−1 δu2 ¼ δϕ;1λ, where commas denote
partial derivatives. The stream function δϕðxÞ satisfies
a biharmonic equation with coordinates rescaled by the
factor [41]

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ λ4 þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2αðλ4 þ 1Þ þ ðλ4 − 1Þ2

p
2

4

s
ð1Þ

where

α ¼ 2ðw00ðIλÞ=w0ðIλÞÞðλ3 − λ−1Þ2:

FIG. 1. Sketch of the (a) reference and (b) actual configurations
of a creased elastic slab subjected to a compressive stretch λ in the
horizontal direction. The blue line indicates the (material) path γ
used to compute the energy flux. Shaded areas show the internal
solution. An inset in (b) illustrates the critical deformed shape
(intermediate asymptotics) obtained analitically for the neo-
Hookeanmaterial with a creasewith a self-contact length δl ≪ L.

PHYSICAL REVIEW LETTERS 122, 248001 (2019)

248001-2



In the case λ ¼ 1, the Green’s function GðxÞ for this
problem is classical [42] and its generalization for the case
λ < 1 is straightforward; here we only mention that it
depends on physical nonlinearity weakly, through a scaling
coefficient w00ðIλÞ=w0ðIλÞ [41].
We can then write δϕ ¼ Gδf. To obtain the first

corrections to this asymptotic result at ϵ that is small
but finite, it is sufficient to uniformly distribute the
force δf over the interval of the length 2δl: δϕ1ðXÞ ¼
½δf=ð2δlÞ� R δl

−δl GðX1 − ζ; X2Þdζ. An explicit expression
of the displacement field in this approximation can be
found in the Supplemental Material [41].
The next step is to compute the energy increment ΔW

associated with the infinitesimal advance of the tip of a
crease δl. We can write: ΔW ¼ JðδlÞδl, where the
driving force is JðδlÞ ¼ JðδlÞm and m is the direction
of the advance of the crease. To compute the energy flux we
can use the well known formula JðδlÞ ¼ R

γ TðδlÞn ds
[43–45], where

T ¼ wI − ð∂w=∂FÞF

is the energy-momentum (Eshelby) tensor [46] and I is the
unit tensor. In the definition of the driving force, the
element of length ds is taken along the contour γ following
the body boundary ∂Ω and surrounding the crease with the
normal n. We recall that due to Noether identity [47]
∇ · T ¼ 0 and therefore the integral in the definition of
J is path independent. In our case m ¼ ð0; 1Þ and
J ¼ R

γ ðwn2 − PijniFj2Þds. The anticlockwise path γ is
depicted by the blue line in Fig. 1(a).
We start from the external problem which does not see

the crease. The contributions to the J integral along the
vertical segmentsDE,D0E0 are equal to zero, because in the
external asymptotics P12 ¼ 0 and x1;2 ¼ 0 at jX1j ¼ L. The
contribution along EE0 takes the form: JjEE0 ð0Þ ¼
−
R
L
−L wðIλÞdX1 ¼ −2LwðIλÞ, where we used the fact that

P21 ¼ P22 ¼ 0 at X2 ¼ L. Since, in the absence of singu-
larities, the J integral around a closed contour must vanish,
we conclude that JjD0Dð0Þ ¼ −JjEE0 ð0Þ ¼ 2LwðIλÞ.
The compatibility of external and internal problems

requires that JjD0Dð0Þ ¼ JjD0DðδlÞ, where the term
JjD0DðδlÞ can be split into contributions from the parts
of the reference surface with and without self-contact.
Therefore JjD0DðδlÞ ¼ JjA0AðδlÞ þ 2JjADðδlÞ where we
used the fact that JjADðδlÞ ¼ JjD0A0 ðδlÞ by symmetry.
We may then define ΔWþ ¼ ½JjA0AðδlÞ − JjA0Að0Þ�δl ≥
0 as the incremental energy “absorbed” by the self-contact,
and ΔW− ¼ ð2JjADðδlÞ − 2JjADð0ÞÞδl ≤ 0 as the incre-
mental energy “released” due to unloading in the rest of the
body. In the absence of an analog of the conventional
toughness, the critical condition of the crease initiation
takes the form

lim
δl→0

ΔWþ þ ΔW−

ðδlÞ2 ¼ 0: ð2Þ

To compute the “absorbed” energy ΔWþ we need to
evaluate the J integral for the self-contacting portion of the
free surface (using the internal solution). We obtainΔWþ¼
δl

R
δl
−δl½wð5=2Þ−P21F12�dX1. Then limδl→0ΔWþ=ðδlÞ2 ¼

2½wð5=2Þ − 2w0ðIλÞðλ2 − λ−2Þ�, and since w is non-negative
and is also a convex function of I, this expression is positive
for all λ < 1. Note also that, despite the presence of a
singularity at the tip of the crease, it is tooweak (logarithmic)
to generate a special contribution to the J integral.
To compute the “released” energy ΔW−, we can use

the intermediate asymptotics. The goal is to evaluate the
integral JjAD. However, we begin with computing the
integral JjBD where B is a point on the top surface of
the body with coordinates (L̄; 0). We recall that ϵ̄¼L̄=L≪1
and ϵ ≪ ϵ̄.
Given that the normal tractions vanish along the path

BD, we obtain for the incremental stress δp12 ¼ δp22 ¼ 0,
hence JjBD ¼ R

L
L̄ wjX2¼0dX1. We can now expand the

energy w up to the first order in ϵ:
R
L
L̄ wjX2¼0dX1 ¼

wðIλÞðL − L̄Þ − 2P11ðλÞδu1ðL̄; 0Þ þ oðϵÞ where we used
the incompressibility constraint and the fact that in
the external asymptotics δu1ðL; 0Þ ¼ 0. Note that
wðIλÞðL−L̄Þ¼wðIλÞLð1− ϵ̄Þ∼wðIλÞL. Since δu1ðX1; 0Þ
is constant for X1 ≥ δl [41], we can replace δu1ðL̄; 0Þ
by δu1ðδl; 0Þ. Therefore the computed asymptotics for
JjBD can be also used to evaluate JjAD and the “released”
energy can be written as ΔW− ¼ −2P11ðλÞδu1ðδl; 0Þδl.
This expression is always negative since both P11 and δu1
are negative for λ < 1. Finally, combining all the obtained
formulas [41] we obtain λc as a real root of the equation

−
�
wð5=2Þ
2w0ðIλÞ

− ðλ2−λ−2Þ
�

þ ðλ−λ−3Þð−λ4þ2s2−1Þλs3ðλ4−1Þðλ4þ s4Þ
λsðs4−λ2Þfλ4þ s8þ s4½λ6þðλ2−1Þαþ3λ2−2�g¼ 0;

ð3Þ

where s is given in Eq. (1).
Note that in contrast to the case of fracture where the

analog of our ΔW− is linear in δl and the stability
condition concerns the first variation of the energy, in
the case of creasing, ΔW− is of the same order ðδlÞ2 as the
bulk energy increment ΔWþ. Therefore the equilibrium
condition is effectively formulated in terms of the second
variation; the latter should be then understood in the strong
sense [27]. The absence of scale makes the implied
generalized bifurcation (from a homogeneous state) super-
critical and global, while it is subcritical and local in the
case of microcracking. Creasing is also different from the
scale-free homogenous nucleation of dislocations, which is
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usually associated with linear instability of spinodal
type [48].
To illustrate our main result [Eq. (3)] and to clarify the

role of physical nonlinearity [49,50] we have chosen the
Gent’s energy density [51]

wðIÞ ¼ −
μIm
2

log

�
1 −

I − 2

Im

�
;

where μ is a characteristic stress, and Im > 1 is a maximum
deformability, defined for instance by the average contour
length of the fiber chains composing a polymeric network.
Note that Gent’s model is strongly elliptic as long as
μIm > 0, so μ should be of the same sign as Im. Gent’s
model reduces to the classical neo-Hookean model for
elastomers when Im → ∞; this limit is degenerate since
then w00ðIλÞ=w0ðIλÞ ¼ ½Im − ðIλ − 2Þ�−1 → 0 and only geo-
metric nonlinearity remains in the problem [as far as the
roots of Eq. (3) are concerned].
The dependence of the root λc on Im is illustrated in

Fig. 2 (blue line). Observe an interesting reentry behavior
of stability boundary that is caused by rapidly decreasing
extensibility of the material at high compressive stretches
(the effect of physical nonlinearity). The obtained results
are in a very good agreement with finite element simu-
lations reported in Ref. [49], which concerns both the value
of λc and the fact that creasing does not occur below Im ∼
3.7 (cf. with the value Im ∼ 3.1 in Ref. [49]). Our results
also agree with experimental measurements, which report
critical values of λ at about 0.63 for rubber [1], 0.635 for
silicone [5], and 0.65 for polymer gels [15]. Note also that
for neo-Hookean material, the threshold λc ≃ 0.6362
obtained in this Letter is close to the upper bound λc ≃
0.6372 recently computed in Ref. [38].
A similar reentry behavior is also exhibited by the Biot

threshold [20] which identifies conditions of linear insta-
bility of a prestressed solid body with a free surface. Being
a strong (nonlinear) instability, creasing always precedes

weak Biot instability independently on whether we
approach it by loading or unloading. For Gent’s material,
Biot threshold can be obtained by solving the equation [52]

ðIm þ 1Þλ8 þ ðIm − 6Þλ6 þ 3ðIm þ 2Þλ4
− ðIm þ 3Þλ2 þ λ10 þ 1 ¼ 0;

see Fig. 2 (red line). The same result can be also obtained
directly from our analysis as the condition that the response
to the force δf is singular [41]; the implied degeneration of
the incremental elasticity operator at the boundary [53] is
known as the failure of the complementing (Shapiro-
Lopatinskij) condition [54,55].
Note also that a simple lower bound for creasing can be

obtained if we compute the value of λ beyond which the
material becomes physically inextensible. Such limit would
follow from the condition w0ðIλÞ → ∞. For Gent’s material
we obtain λinðImÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im −

ffiffiffiffiffi
Im

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im þ 4

p þ 2
p

=
ffiffiffi
2

p
, and

this threshold is also shown in Fig. 2 (black line).
The developed energetic approach to creasing clarifies

why this mechanical instability exhibits some features of
the second order type phase transition while remaining a
fundamentally nonlinear, nucleation type phenomenon.
The nonuniversal physical nonlinearities were found to
have little influence on the creasing threshold which is
largely controlled by the universal geometrical nonlinearity.
The proposed methodology should prove useful in other
“non-linearizable” problems where local instability is
associated with the degeneration of the energy minimum
in the strong sense.

We acknowledge the support by the Grants No. ANR-10-
IDEX-0001-02 PSL (L. T.) and No. AIRC-MFAG-17412
(P. C.). L. T. thanks L. Mahadevan and E. Hohlfeld for
helpful discussions.

[1] A. Willis, Int. Cong. Appl. Mech. Lond. 1, 280 (1948).
[2] T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera,

Y. Hirose, and T. Amiya, Nature (London) 325, 796 (1987).
[3] A. Ghatak and A. L. Das, Phys. Rev. Lett. 99, 076101

(2007).
[4] J. Kim, J. Yoon, and R. C. Hayward, Nat. Mater. 9, 159

(2010).
[5] S. Tang, B. Gao, Z. Zhou, Q. Gu, and T. Guo, Soft Matter

13, 619 (2017).
[6] K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo,

D. V. Schaffer, K. E. Healy, and R. C. Hayward, Biophys. J.
99, L94 (2010).

[7] Z. Zhou, Y. Li, W. Wong, T. Guo, S. Tang, and J. Luo, Soft
Matter 13, 6011 (2017).

[8] B. Dortdivanlioglu and C. Linder, J. Mech. Phys. Solids
125, 38 (2019).

[9] E. P. Chan, J. M. Karp, and R. S. Langer, J. Polym. Sci. B
49, 40 (2011).

FIG. 2. Stability limits: creasing threshold (this Letter)—blue;
Biot threshold—red, inextensible limit—black. Squares: FEM
simulations [49].

PHYSICAL REVIEW LETTERS 122, 248001 (2019)

248001-4

https://doi.org/10.1038/325796a0
https://doi.org/10.1103/PhysRevLett.99.076101
https://doi.org/10.1103/PhysRevLett.99.076101
https://doi.org/10.1038/nmat2606
https://doi.org/10.1038/nmat2606
https://doi.org/10.1039/C6SM02013E
https://doi.org/10.1039/C6SM02013E
https://doi.org/10.1016/j.bpj.2010.09.045
https://doi.org/10.1016/j.bpj.2010.09.045
https://doi.org/10.1039/C7SM01013C
https://doi.org/10.1039/C7SM01013C
https://doi.org/10.1016/j.jmps.2018.12.010
https://doi.org/10.1016/j.jmps.2018.12.010
https://doi.org/10.1002/polb.22165
https://doi.org/10.1002/polb.22165


[10] N. Suematsu, K. Sekimoto, and K. Kawasaki, Phys. Rev. A
41, 5751 (1990).

[11] A. Onuki, Phys. Rev. A 39, 5932 (1989).
[12] T. Hwa and M. Kardar, Phys. Rev. Lett. 61, 106 (1988).
[13] E. Hohlfeld and L. Mahadevan, Phys. Rev. Lett. 106,

105702 (2011).
[14] J. W. Hutchinson, Phil. Trans. R. Soc. A 371, 20120422

(2013).
[15] V. Trujillo, J. Kim, and R. C. Hayward, Soft Matter 4, 564

(2008).
[16] J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, and M.

Ben Amar, Phys. Rev. Lett. 107, 018103 (2011).
[17] A. Gent and I. Cho, Rubber Chem. Technol. 72, 253 (1999).
[18] C. Lestringant, C. Maurini, A. Lazarus, and B. Audoly,

Phys. Rev. Lett. 118, 165501 (2017).
[19] B. Budiansky and J. W. Hutchinson, AIAA J. 4, 1505

(1966).
[20] M. Biot, Appl. Sci. Res. 12, 168 (1963).
[21] E. Hohlfeld and L. Mahadevan, Phys. Rev. Lett. 109,

025701 (2012).
[22] W. Hong, X. Zhao, and Z. Suo, Appl. Phys. Lett. 95, 111901

(2009).
[23] Y. Cao and J. W. Hutchinson, Proc. R. Soc. A 468, 94

(2012).
[24] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal

Problems (Elsevier, New York, 2009), Vol. 6.
[25] J. M. Ball and J. E. Marsden, Arch. Ration. Mech. Anal. 86,

251 (1984).
[26] J. M. Ball and K. Koumatos, Arch. Ration. Mech. Anal. 219,

89 (2016).
[27] Y. Grabovsky and L. Truskinovsky, J. Nonlinear Sci. 23,

891 (2013).
[28] D. Chen, S. Cai, Z. Suo, and R. C. Hayward, Phys. Rev.

Lett. 109, 038001 (2012).
[29] K. B. Broberg, Cracks and Fracture (Elsevier, Cambridge,

1999).
[30] E. Hohlfeld, Phys. Rev. Lett. 111, 185701 (2013).
[31] M. Diab, T. Zhang, R. Zhao, H. Gao, and K.-S. Kim, Proc.

R. Soc. A 469, 20120753 (2013).

[32] J. R. Rice, J. Appl. Mech. 35, 379 (1968).
[33] J. Rice and B. Budiansky, Appl. Mech. 40, 201 (1973).
[34] J. Eshelby, J. Elast. 5, 321 (1975).
[35] A. A. Griffith, Phil. Trans. R. Soc. A 221, 163 (1921).
[36] J. Willis, J. Mech. Phys. Solids 15, 151 (1967).
[37] R. W. Ogden, Non-Linear Elastic Deformations (Courier

Corporation, 1997).
[38] P. Ciarletta, Nat. Commun. 9, 496 (2018).
[39] M. Singh and A. C. Pipkin, Z. Angew Math. Phys. 16, 706

(1965).
[40] S. Silling, J. Appl. Mech. 58, 70 (1991).
[41] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.248001 for further
details on the theoretical derivation.

[42] A. Flamant, C.R. Hebd. Seances Acad. Sci. 114, 1465
(1892).

[43] J. K. Knowles and E. Sternberg, Arch. Ration. Mech. Anal.
44, 187 (1972).

[44] F. H. Chen and R. T. Shield, Z. Angew Math. Phys. 28, 1
(1977).

[45] P. J. Olver, Arch. Ration. Mech. Anal. 85, 111 (1984).
[46] J. D. Eshelby, Phil. Trans. R. Soc. A 244, 87 (1951).
[47] E. Noether, Nachr. Ges. Wiss. Goettingen Math.-Phys. Kl.

1918, 37 (1918).
[48] J. Li, K. J. Van Vliet, T. Zhu, S. Yip, and S. Suresh, Nature

(London) 418, 307 (2002).
[49] L. Jin and Z. Suo, J. Mech. Phys. Solids 74, 68 (2015).
[50] J. Yang, L. Jin, J. W. Hutchinson, and Z. Suo, J. Mech. Phys.

Solids 123, 305 (2019).
[51] A. Gent, Rubber Chem. Technol. 69, 59 (1996).
[52] M. Destrade and N. H. Scott, Wave Motion 40, 347

(2004).
[53] N. Muskhelishvili, Singular Integral Equations (Dover,

New York, 1992).
[54] M. Agranovich, in Partial Differential Equations IX

(Springer, Berlin Heidelberg, 1997), pp. 1–144.
[55] M. Silhavy, The Mechanics and Thermodynamics of

Continuous Media (Springer, Berlin Heidelberg, 2013).

PHYSICAL REVIEW LETTERS 122, 248001 (2019)

248001-5

https://doi.org/10.1103/PhysRevA.41.5751
https://doi.org/10.1103/PhysRevA.41.5751
https://doi.org/10.1103/PhysRevA.39.5932
https://doi.org/10.1103/PhysRevLett.61.106
https://doi.org/10.1103/PhysRevLett.106.105702
https://doi.org/10.1103/PhysRevLett.106.105702
https://doi.org/10.1098/rsta.2012.0422
https://doi.org/10.1098/rsta.2012.0422
https://doi.org/10.1039/b713263h
https://doi.org/10.1039/b713263h
https://doi.org/10.1103/PhysRevLett.107.018103
https://doi.org/10.5254/1.3538798
https://doi.org/10.1103/PhysRevLett.118.165501
https://doi.org/10.2514/3.3727
https://doi.org/10.2514/3.3727
https://doi.org/10.1007/BF03184638
https://doi.org/10.1103/PhysRevLett.109.025701
https://doi.org/10.1103/PhysRevLett.109.025701
https://doi.org/10.1063/1.3211917
https://doi.org/10.1063/1.3211917
https://doi.org/10.1098/rspa.2011.0384
https://doi.org/10.1098/rspa.2011.0384
https://doi.org/10.1007/BF00281558
https://doi.org/10.1007/BF00281558
https://doi.org/10.1007/s00205-015-0893-7
https://doi.org/10.1007/s00205-015-0893-7
https://doi.org/10.1007/s00332-013-9173-6
https://doi.org/10.1007/s00332-013-9173-6
https://doi.org/10.1103/PhysRevLett.109.038001
https://doi.org/10.1103/PhysRevLett.109.038001
https://doi.org/10.1103/PhysRevLett.111.185701
https://doi.org/10.1098/rspa.2012.0753
https://doi.org/10.1098/rspa.2012.0753
https://doi.org/10.1115/1.3601206
https://doi.org/10.1115/1.3422926
https://doi.org/10.1007/BF00126994
https://doi.org/10.1098/rsta.1921.0006
https://doi.org/10.1016/0022-5096(67)90029-4
https://doi.org/10.1038/s41467-018-02979-6
https://doi.org/10.1007/BF01590971
https://doi.org/10.1007/BF01590971
https://doi.org/10.1115/1.2897181
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.248001
https://doi.org/10.1007/BF00250778
https://doi.org/10.1007/BF00250778
https://doi.org/10.1007/BF01590704
https://doi.org/10.1007/BF01590704
https://doi.org/10.1007/BF00281447
https://doi.org/10.1098/rsta.1951.0016
https://doi.org/10.1038/nature00865
https://doi.org/10.1038/nature00865
https://doi.org/10.1016/j.jmps.2014.10.004
https://doi.org/10.1016/j.jmps.2018.08.016
https://doi.org/10.1016/j.jmps.2018.08.016
https://doi.org/10.5254/1.3538357
https://doi.org/10.1016/j.wavemoti.2003.09.003
https://doi.org/10.1016/j.wavemoti.2003.09.003

