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Andrea Maria Zanchettin, Member, IEEE, Andrea Casalino, Student Member, IEEE, Luigi Piroddi, Member, IEEE,
and Paolo Rocco Senior Member, IEEE

Abstract—It is widely agreed that future manufacturing en-
vironments will be populated by humans and robots sharing
the same workspace. However, the real collaboration can be
sporadic, especially in case of assembly tasks which might involve
autonomous operations to be executed by either the robot or the
human worker. In this scenario, it might be beneficial to predict
the actions of the human in order to control the robot both
safely and efficiently. In this paper, we propose a method to
predict human activity patterns in order to early infer when a
specific collaborative operation will be requested by the human
and to allow the robot to perform alternative autonomous tasks
in the meanwhile. The prediction algorithm is based on higher-
order Markov Chains and is experimentally verified in a realistic
scenario involving a dual-arm robot employed in a small part
collaborative assembly task.

Index Terms—Cognitive Human-Robot Interaction; Intelligent
and Flexible Manufacturing; Planning, Scheduling and Coordi-
nation;

I. INTRODUCTION

IN the last years, collaborative robots have become faster,
smarter, more accurate and reliable. However, challenges

remain in adaptability [1], decision making and robustness to
changing and uncertain situations, especially when a continu-
ing interaction with the human co-worker is expected. Apart
from safety-related research studies [2], [3], which aim at
minimising the interference between the human and the robot,
cognitive algorithms proved to be capable of enhancing the
effectiveness of the collaboration [4]. Such algorithms allow
robots to understand the behaviour of their fellow human
team-mates in order to anticipate, and adapt to them, [5].
A significant literature is focused on the task assignment
problem. For example, Chen et al. [6] describe a genetic algo-
rithm for a collaborative assembly station which minimises the
assembly time and costs. In [7], a trust-based dynamic sub-
task allocation strategy for manufacturing assembly processes
has been presented. The method, which relies on a Model
Predictive Control (MPC) scheme, accounts for human and
robot performance levels, as well as on their bilateral trust
dynamics. Furthermore, in [8], the authors proposed a multi-
layered planner for task allocation, sequencing and execution
using AND/OR graph and A∗ graph search. Similarly, in
[9] Tsarouchi et al. proposed an intelligent decision-making
method that allows human-robot task allocation according to
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their capabilities.
By taking inspiration from real-time processor scheduling
policies, Gombolay et al. [10] developed a multi-agent task
sequencer, where task specifications and constraints are solved
using a MILP (Mixed Integer Linear Programming) algorithm,
showing near-optimal task assignments and schedules. A simi-
lar approach has been also derived in [11]. Recently, in [12] an
approach based on game theory has been proposed to estimate
the objective of the human, through the measured interaction
force, and to adapt the robot objective accordingly.
In the context of the so called Industry 4.0, it is paramount
to develop digital models of each agent taking part in the
manufacturing process, [13], should this agent be a robot, a
machinery, or the human operator. Tracking humans activities
and predicting the best instant when the robot should be
available to give assistance is a crucial prerequisite for a fluent
collaboration. Hawkins et al. [14] developed an inference
mechanism based on Hidden Markov Models (HMMs) allow-
ing the robot to predict when particular robot actions would be
appropriate, based on the current state of the human worker.
HMMs have been also adopted in [15] to recognise and
label sequences of activities based on occupancy grids. The
approach capitalises on the multi-modal perception algorithm
discussed in [16]. With the aim of reducing the worker’s
waiting time, Kinugawa et al. [17] developed an online learn-
ing algorithm to feed an adaptive task scheduling system for
the collaborative robot. Other approaches based on neural
networks [18], or Dynamic Bayesian Networks (DBN) [19]–
[21] have been developed to investigate the mutual adaptation
of hybrid human-robot teams by modelling motion patterns. In
[22], Li et al. proposed a framework based on variable order
Markov models (VOMM) to predict activity patterns using
causal relationships between actions. Variable order stochastic
automata were also used before in [23]. Other works focusing
on high-order stochastic processes, but not applied to robotics,
can be found in [24]–[26]. This work presents a method to
model and predict human activity patterns, in order to endow
the robot with all the information needed to take the best
action. In a nutshell, the method developed in this research
allows to give answers to the following questions:

1) Which activity is the human more likely to perform
next?

2) What is the time when an activity requiring assistance
is expected to be initiated by the human?

In particular, we focus on an assembly task where both the
human and the robot have individual subtask assignments and
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a joint action has to be performed in order to finalise the
assembly. The collaborative operation requires the two agents
to be available at the same time in order to be initiated, while
the two individual operations can be initiated at any time
instant. Based on the need for the robot to predict the human
activity pattern, this paper introduces a method to infer the
waiting time for a certain action to be performed by the human.
In the reported example, this action would be the collaborative
operation. Figure 1 reports a pictorial representation of the
dependencies between the agents (human and robot) and the
developed algorithms. In particular, a prediction mechanism is
used both to infer the human’s current activity and to predict
his/her behaviour in terms of the next assembly steps to be
performed. The outcome of this algorithm is then used to feed
a scheduling algorithm, that allows the robot to decide which
action to perform in order to be at the same time assistive and
productive. The basic assumption underlying this work is that
the behaviour of the robot has little influence on the (future)
decisions of the human. Moreover, as we believe that workers
still represent an added value at the shop-floor, the method we
propose allows the robot to adapt to the human behaviour and
pace, and not vice-versa. The developed method is verified
experimentally within a collaborative assembly task.
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Fig. 1. A pictorial representation of the interdependencies within a collabo-
rative workstation.

The remainder of this work is organised as follows. Sec-
tion II describes the working assumptions and the developed
methodology. Section III reports a comparison with state of the
art methods. Section IV introduces the use case, the validation
setup, the implementation details and discusses the outcome of
the experiments. Section V offers some concluding remarks.

II. MODELLING AND PREDICTION OF ACTIVITY PATTERNS

In typical collaborative assembly stations, positions are
related to stocks where parts or tools are located. Figure 2
sketches a generic collaborative station. The robot and the
human worker are sharing the same workspace and collaborate
in the advancement of the task. In this situation, it is crucial for
the robot to synchronise with its fellow human worker in order
to minimise the cycle time of the operation. The algorithm
developed in this paper addresses this issue and is composed
of two main parts. The former takes the sequence of all labeled
activities up to the current time instant and models them in
terms of a stochastic process. The latter tries to infer its future
evolution in time. In the following, the approach adopted in
this paper is further detailed.
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Fig. 2. Example of collaborative assembly layout. The human operates in four
possible positions, numbered from 1 to 4. The robot task must be synchronous
with the one assigned to the human. For example, the robot should promptly
pick up a part dropped by the human in position 4.

A. Modelling activity patterns

Human assembly sequences usually form quasi-repetitive
patterns. In other words, the sequence of human activities
can be modelled through a time series, which is the output
of a certain dynamic process. Assuming the set of available
activities to be enumerable and finite, i.e ∀k,Ak ∈ A =
{1, 2, . . . ,m} ⊂ N where Ak is the ongoing activity at discrete
time instant k, the behaviour of the human fellow co-worker
can be modelled through the following discrete-time process

Ak+1 = f (Ak, Ak−1, Ak−2, . . . , Ak−n)

tk+1 = tk + g (Ak)
(1)

where tk ∈ R+∪{0} represents the time instant corresponding
to the transition from Ak−1 to Ak and g (a) = T a > 0
is the duration of activity a ∈ A. In the prediction model
(1) we do not explicitly account for robot actions and their
influence on the sequence of human actions. However, as the
parameters of model will be constantly updated using online
data, the identified model will be be indirectly influenced by
robot actions in case they have influence on human ones. A
possible time evolution of the process is represented in Fig. 3.
The dynamic system in (1) is more easily identifiable in two
stages. First, we address the identification of the underlying
discrete event process governing the evolution of activities
(i.e. the first equation), regardless of their duration. Then, we
provide a model for the duration of the activities, that will be
described later on.

Fig. 3. Example of behaviour of the human: tk represents the time instant
corresponding to the activation of activity Ak , while t̄ represents the current
time-stamp.
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Given the stochasticity of the underlying discrete process 
governing the sequence of activities, we describe the prob-
ability distribution of a certain activity at discrete-time k + 1, 
given the previous history. Common manufacturing or assem-
bly activities are difficult to model as Markov Chains, i.e. 
implying that the next activity only depends on the current 
one. Better results can be achieved if the human behaviour is 
modelled as a higher-order Markov Chain. We are interested 
in computing the probability associated to the next activity (or 
more in general to the next sequence of activities, if evaluated 
recursively) given the sequence of the previous ones, i.e.

P (Ak+1 = a |Ak = k0, Ak−1 = k1, . . . , Ak−n = kn ) . (2)

Differently from usual Markov Chains, generic higher-order 
Markov Chains require mn+1 (m − 1) parameters to be esti-
mated, resulting in an exponential complexity with respect to 
the order of the stochastic process to be identified.
The work from Raftery [24], [25] proposed an efficient way 
to describe higher-order Markov Chains using Mixture Transi-
tion Distribution (MTD) models. Specifically, the probability 
distribution in (2) is represented as

P (Ak+1 = a |Ak = k0, . . . , Ak−n = kn ) ≈

≈
n∑

i=0

λiP (Ak+1 = a |Ak−i = ki )
(3)

hence as a convex combination (mixture) of multiple-steps
transition probabilities. This model, that corresponds to usual
Markov Chains for n = 0, requires only m2 (n+ 1) pa-
rameters. Using the canonical representation for categorical
sequences, the sequence {Ak} can be written in terms of state
vectors Xk, which are columns of zeros, except for a 1 in
row Ak + 1. For example, if Ak = 2, Xk would correspond
to Xk =

[
0 1 0 . . .

]T
.

According to the work from Raftery, [24], a prediction of the
probability distribution X̂k+1 at time k+ 1 can be computed
as

X̂k+1 =

n∑
i=0

λiQiXk−i (4)

where m×m matrix Qi denotes the i-steps transition probabil-
ity matrix that can be simply evaluated through count statistics.
As for the online estimation of the weights λi from data, dif-
ferently from Ching et al. [26] who adopted an estimate of the
stationary distribution X∞, we introduce a data-driven proce-
dure. Using all the available evaluations until the present time
instant one can evaluate the squared norm of the prediction er-

ror, i.e.
∥∥∥X̂k+1 −Xk+1

∥∥∥2 = ∥
∑n

i=0 λiQiXk−i −Xk+1∥
2.

By stacking all these evaluations available for different values
of k, i.e.Q1Xk−2λ1 +Q2Xk−3λ2 + . . .

Q1Xk−3λ1 +Q2Xk−4λ2 + . . .
...

−

 Xk

Xk−1

...

 = Aλ− b

the optimal solution for the λi’s parameters can be obtained
by a non negative least-squares problem of the following type:

min
λ

∥Aλ− b∥2 subject to
n∑

i=0

λi = 1, and λi ≥ 0 (5)

where the column vector λ collects all the unknown param-
eters λi, while the regression matrix A and vector b can be
simply evaluated from data.

B. Prediction of human activities and their duration

So far, the human behaviour has been modelled as a
sequence of activities, regardless of their duration. In order
to predict in the most effective way when a certain activity is
undertaken by the human, it is necessary to account for their
time durations as well. We here assume that the duration of
activity a ∈ A, i.e. T a, can be modelled as a stochastic variable
with a strictly positive lower bound, i.e. T a ≥ T a

min > 0.
In order to estimate the waiting time needed for the certain
activity a to show up, say τa, we can combine this information
with the one described in the previous subsection. In particular,
at the present continuous time instant t̄, given the sequence
of the last activities (possibly including the currently running
one) Ak, Ak−1, . . . , Ak−n, we would like to estimate the
probability distribution of the waiting time for the beginning
of a certain activity a, i.e. P (τa ≤ t |Ak, Ak−1, . . . , Ak−n ).
The key idea is to construct the reachability tree of the higher-
order Markov Chain described earlier and evaluate the time
spent to traverse each possible branch which terminates with
the desired activity a ∈ A. To do so, as the reachability tree
is, in principle, infinite, we first define a prediction horizon
∆T meaning that the given probability will be computed up
to the instant t = t̄+∆T .
The probability associated to each branch can be simply
computed using (3) by multiplying the probability of each arc
of the branch, i.e.

pbranch =
∏

(i,j)∈branch

p(i,j).

As for the waiting time associated to each branch τbranch, this
is simply the sum of the duration of each activity T a, i.e

τbranch =
∑

j:(i,j)∈branch

T j .

Notice that the elapsed time of the ongoing activity as well
as the tails of the activities exceeding the prediction horizon
∆T have to be removed. The time associated to each branch
is computed as the sum of stochastic variables which are
not, in general, identically distributed. Moreover, neither the
associated distribution nor its parameters are a priori known.
Since it may turn out to be difficult to select a model to
describe the probability distribution of the duration of each
activity, in this work we used directly the statistics associated
to recently acquired samples. Figure 4 also reports an example
of distribution of duration of a certain activity.
Finally, given the distributions of the times associated to each
branch, the overall distribution of the waiting time of the
activity a can be simply computed as a weighted sum of the
waiting times associated to each branch, i.e.

P (τa ≤ t |Ak, Ak−1, . . . , Ak−n ) =

=
∑

branch

pbranchP (τbranch ≤ t). (6)
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Fig. 4. Example of prediction of human future activities. The transition
probabilities associated to each arc are evaluated using (3). The lower bounds
on the duration of each activities are used to prune branches of the tree
that surely exceed the given prediction horizon ∆T . For all the remaining
branches (three in the reported example), the corresponding distributions of
waiting times τbranch are computed and used within (6) to estimate the
distribution of the waiting time needed for a certain activity to show up. In
this example, the probability distribution of the waiting time of activity 4, i.e.
τ4, is computed.

Algorithm 1 Reachability Tree Expansion
1: procedure TREEEXPAND(Qi, λi,∆T, a ∈ A)
2: while true do
3: set the root as an expanded leaf;
4: if all leaves expanded then
5: return;
6: else
7: pick a non expanded leaf;
8: if current leaf corresponds to activity a then
9: mark current node as expanded;

10: else
11: compute (4);
12: append m leaves to the current node;
13: for each leaf do
14: set τbranch =

∑
j:(i,j)∈branch T

j
min;

15: evaluate pbranch;
16: if τmin

branch > ∆T or pbranch < ε then
17: mark current node as expanded;

Figure 4 reports an example of the application of the developed
method, while Algorithm 1 summarises the steps required to
construct the reachability tree.
When the described algorithm is run continuously at a certain
frequency, an updated estimation of the waiting time for a
certain activity to arrive is available at each iteration. As an
example, Fig. 6 reports the typical behaviour of the output of
the algorithm corresponding to a certain activity sequence.
The overall block diagram is reported in Fig. 5.

III. COMPARISON WITH EXISTING METHODS

Markov Chains, or in general HMMs, have been extensively
used in the literature to model and predict human behaviour

in collaborative tasks, [14], [15]. A possible drawback, which
is inherent in the Markov’s assumption, is that they restrict
the modelling capabilities to strictly Markovian processes,
without the ability to capture periodic or repetitive patterns
of actions which are common in assembly stations. In fact, in
manufacturing environments (and especially in assembly) the
next activity to be performed does not depend solely on the
current one (Markov’s assumption). In other words the process
has a memory longer than one step (the whole sequence of
assembly steps). Also, the authors of [22] reported the same
limitation of HMMs to model long-term causality dependen-
cies between actions. In order to evaluate the performance
in terms of prediction error of the proposed algorithm, the
sequence 1 → 2 → 3 → 1 → 2 → 4 → 3 → 5 has been
repeated for 75 times, and random mutations with probability
3% have been applied. The same resulting sequence has
been processed with different algorithms. Figure 7 reports
the average 1-step ahead prediction error for the analysed
methods. It can be noticed that the proposed method sensibly
outperforms the others, especially for high lengths of the FIFO
buffer. The reason is due to the least-squared optimisation
method which provide robustness to the algorithm in case
of quasi-periodic patterns. Moreover, the limited prediction
capabilities of Markov Chains in case of higher-order causality
can be also appreciated. Finally, it is worth noticing that the
memory storage required by the VOMM method proposed in
[23] is linear with respect to the length of the FIFO buffer,
and significantly higher then the one required by the methods
based on Markov chains, which, in turn, does not depend on
the length of the FIFO buffer. It is worth noticing that, in order
to obtain a good performance, the length of the FIFO buffer
should be at least twice as long as the order of the system,
see (1). On the other hand, for better performance in case of a
sudden change of pattern, the length of the FIFO buffer should
be kept at a minimum. It follows that a rough knowledge of
length of the typical pattern is necessary for the algorithm to
achieve the best prediction accuracy.
A temporal Bayesian Network is used in [19] to infer the
best time for the robot to act, so that the waiting time is
minimised for both the human and the robot. While similar in
its objectives, [19] assumes that the conditional dependencies
between the human actions are known, while in our work they
are learnt and constantly updated using previous observations.
In addition, the work in [19] assumes Gaussian distributions
for the durations of the activities. This appears to be a
limiting assumption, often violated in practice. In our approach
we adopt instead a data-driven approach by storing all the
durations in a database as statistical populations, see also
Fig. 5.
Finally, the work in [17] introduced a model for the prediction
of the worker’s arrival time at a certain working position within
an automotive assembly process. Based on this prediction,
a collaborative robot decides the appropriate timing of its
assistive action. Though similar in purpose, our work is more
focused on the small parts assembly problem, which does
not require significant movements of the operator within the
assembly station. Moreover, while the work by Kinugawa
et al. describes a method to predict the end time of the
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Fig. 5. Block diagram of the overall algorithm showing its two major components: (1) modelling patterns, and (2) prediction and estimation of waiting times.

Fig. 6. Example of sequence of activities (top) and corresponding typical
behaviour of the estimate of the waiting time of activity 4, i.e. τ4, (bottom)
evaluated and continuously updated during time.

ongoing operation, the present work is focused on a long-term
prediction of human behaviour and not just to the ongoing
activity.

IV. USE-CASE AND EXPERIMENTS

In order to test the effectiveness of the proposed approach,
a realistic use case of human-robot collaborative assembly
has been set up. The collaborative workspace consists of an
ABB dual-arm robot YUMI equipped with a suction tool and
a parallel gripper. A MICROSOFT KINECT depth camera is
used to acquire the positions of the human’s hands in order to
evaluate the sequence of operations. The human and the robot
actively cooperate to perform the assembly of a PCB board to
be accommodated within an IP 54 plastic enclosure. A picture
of the experimental setup is shown in Fig. 8.

A. Task description and implementation

The human is responsible for an autonomous task which
consists in assembling an integrated circuit into a socket al-
ready soldered onto a PCB. In turn, the robot is responsible for
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Fig. 7. Comparison of different methods in terms of prediction error: the
presented algorithm (n = 7, blue), the VOMM method proposed in [23]
(purple), a Markov Chain model (n = 0, red), a higher-order Markov Chain
models trained with the algorithm proposed by Ching et al. in [26] (n = 7,
yellow).
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Boxes
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Collaborative
area
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Fig. 8. Layout of the experimental setup: the human can access six stations,
the central one being dedicated to the collaboration with the robot.

verifying the quality of the resulting assembly. The different
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(a) Human’s autonomous task (b) Robot’s autonomous task

(c) Collaborative task

Fig. 9. Different phases of the assembly procedure. IC insertion (top left): the human takes a PCB board from the red box on the left and an IC from the
red rightmost box, inserts the IC in the pre-soldered socket, and finally fills the feeder. Quality check (top right): the robot takes a PCB from the feeder,
accommodates it within a fixture, then it takes a picture of the PCB using the in-hand camera, and finally drops it on the feeder. Flat assembly and finalisation
(bottom): the human takes a plastic enclosure from the left tray and places it in the fixture in front of the robot within the collaborative area, the robot picks
a verified PCB and places it inside the enclosure, the human takes a flat cable from the right red box, meanwhile the robot takes the cap from a feeder and
assists the human while fixing the cable on it, the robot accommodates the cap on the enclosure and finally stores the finished part.

WAIT 0.5 s

WaitingTime >

QualityCheck

WAIT FOR HUMAN

WAIT FOR HUMAN

Fig. 10. Workflow of the robot program: based on WaitingTime, i.e. the p-
percentile tp returned by the algorithm, the first decision the robot takes is
whether to wait for the human to initiate the collaborative operation (on the
right, grey box) or to start the autonomous subtask (on the left, green box).
The collaborative operation (in the middle, orange box) starts when initiated
by the human.

phases of the assembly procedure are shown in Fig. 9. The
method developed in this work and described in Section II is
able to compute the probability distribution of the waiting time
for a certain human activity to show up. Should this activity
require some kind of assistive behaviour from the robot, it is
essential for the robot task planner to know whether a subtask
can be initiated or not. Within the present use case, the robot
is responsible for an autonomous activity (quality check) but

also for being of assistance to the human in holding, like a
third hand, the cap while the operator is fixing the flat cable.
Therefore, the waiting time for the collaborative operation
is constantly estimated and, when needed, compared to the
execution time of the quality check. In particular, the algorithm
described in Section II computes the distribution of the waiting
time and returns a specified p-percentile tp.
If the time remaining before the collaborative operation is
larger than the time the robot needs to complete the quality
inspection of one part, the robot initiates its autonomous task.
Otherwise, the robot waits in order to be ready to assist the
human during the collaborative operation. This behaviour has
been coded within the robot programming language and the
corresponding flow chart is reported in Fig. 10.
The algorithm to predict the human activity patterns, sketched
in Fig. 4, has been coded within an INTEL NUC Core i3
with 16 GB of memory and runs at the same frequency of
the KINECT skeleton tracking routine (30 Hz). At the same
frequency, the waiting time for the collaborative action is
evaluated and communicated, through an Ethernet connection
to the robot controller which in turn runs the algorithm shown
in Fig. 10, coded in its native language. Every time a human
activity is terminated, the higher-order Markov Chain model is
updated by computing the parameters Qi and λi in (4), using
the optimisation algorithm described in Section II solved by
the open-source library QuadProg++.

B. Experiments and discussion

For validation, two different experiments have been run. In
the first one, the algorithm developed in this work has been
enabled. The second experiment has been run for comparison:
the algorithm developed in this paper has been disabled and the
robot keeps executing its autonomous task, unless the human
operator has already initiated the collaborative operation. In
other words, the robot implements a purely reactive strategy.
Figure 11(b) reports the sequence of activities performed by

the robot and the human, together with the estimate of the



7

Four cycles in 133.4 s

0 20 40 60 80 100 120 140 160 180 200

Robot

Human

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

(a) Reactive approach

0 20 40 60 80 100 120 140 160 180 200

Robot

Human

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

Duration of QualityCheck

Four cycles in 113.6 s

(b) Proactive approach

Fig. 11. Execution of the collaborative assembly experiment with the reactive
(top) and the proactive (bottom) approach. The top Figures shows the sequence
of activities of the human left hand and of the robot (blue and red represent
autonomous activities, while the collaborative operation is marked in green).
The bottom figures show the predicted time to collaboration (picking a box
from the left tray, see Fig. 8) as compared to the ground truth (black).

waiting time until the request for collaboration. As one can see,
after a training phase lasting around 60 s, which is required
for the method to collect enough data to solve the optimisation
problem in (5), the robot is able to schedule the right operation,
i.e. to wait for the human to initiate the collaborative task
instead of initiating its autonomous assignment, which would
have caused the human to wait before being assisted.
For comparison, during the second experiment the same as-
sembly task is executed without the proposed algorithm, i.e.
using a purely reactive approach. Differently from the previous
case, the robot is always assigned to the autonomous task,
unless the human has already initiated the collaborative part.
As one can notice from Fig. 11(a) the overall execution of
the last complete four assembly cycles takes around 20 s
more (133.4 s vs. 113.6 s with the proposed approach), which
corresponds to an increase of 17% in terms of throughput, thus
confirming that the proactive behaviour developed in this work

allows for a more fluent and efficient task execution. Moreover,
in collaborative applications, and because of safety limitations,
robots are typically slower than caged industrial manipulators.
Thanks to the developed technology, the possibility to reduce
the cycle time and thus improve the efficiency of the assembly
cycle would further boost the return on investment (ROI) of
collaborative robots. As a further confirmation, Fig. 12 reports

Reactive Proactive

28
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32

33

34

35

36

37

Fig. 12. Distribution of cycle times of the whole assembly sequence with the
two approaches. The proactive approach described in this paper is responsible
of a higher throughput as well as a reduced variability in cycle times.

the distribution of the cycle time corresponding to the reactive
and the proactive approaches. As already stated, the proactive
approach proposed in this paper outperforms the reactive one
in terms of a reduced cycle time (Wilcoxon signed rank right-
tail test, r = 0.9848), Fig. 12 also shows that the variability
can be reduced (F-test, r = 0.9705) by adopting a proactive
behaviour. Overall, the prediction algorithm detailed in Section
II performs well in predicting the time before the next demand
for collaboration from the human. As one can see from Fig.
11(b), the estimated waiting time is slightly underestimated
with respect to the ground truth value, and results in a saw-
toothed profile with respect to time, as expected.
So far the, a one piece flow pattern has been adopted by
the human operator. In different production scenarios, some
other patterns can be also adopted. Another experiment has
been performed to test the capabilities of the algorithm. In
particular, the human adopted pattern which consisting in two
consecutive IC insertions and two consecutive collaborative
operations. The results are reported in Fig. 13. It is worth
noticing that the duration of the time interval between the
beginning of two consecutive collaborative operations now
assumes a bimodal distribution. For this reason, any other
approach based solely on this information will be surely
less precise than any other method that attempts to model
what happens between two consecutive events with a higher
granularity. In Fig. 13 a comparison between the method
developed in this paper and a purely data-drive approach is
reported. The latter is obtained by collecting the time intervals
between two consecutive requests for collaboration (up to the
present time instant), and the prediction is made extracting
the same percentile from the obtained distribution. As one
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can notice the proposed method significantly outperforms the 
other in predicting the remaining time before the next demand 
for collaboration from the human operator.

0 50 100 150 200 250

Robot

Human

0 50 100 150 200 250
0

10

20

30

40

Duration of QualityCheck

Fig. 13. Execution of the collaborative assembly experiment with the
proactive approach. Here the human adopts a different pattern which consists
in two consecutive IC insertions and two consecutive collaborative operations.
The notation is identical to the one of Fig. 11, except from the blue curve
which represents a purely data-drive approach.

V. CONCLUSIONS

An algorithm to recognise and predict human activity
patterns during collaborative assembly operations has been
proposed. Its output consists in an estimate of the remaining
time until a certain operation, which requires assistance from
the robot, will be performed again by the human. This estimate
is fed to the robot controller, where an algorithm is responsible
for the scheduling of robot tasks. In particular, the robot can
decide whether to initiate an autonomous task or to wait
in order to be ready to promptly assist the human, when
needed. For validation, a realistic demonstration consisting
in a collaborative assembly task of small parts has been
setup. Thanks to the developed algorithm, each cycle of the
collaborative task requires a significantly reduced amount of
time, as compared to the case when the algorithm is not
enabled.
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