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Abstract—Side-channel attacks are a concrete and practical
threat to the security of computing systems, ranging from high
performance platforms to embedded devices. In this work, we will
provide a brief systematization of the current existing approaches
to analyze the side-channel vulnerability of an implementation,
or automatically implement countermeasures, relying on method-
ologies typical of compiler systems. We will dedicate a spotlight to
a significant progress in the countermeasures techniques which is
represented by the application of dynamic compilation techniques
to prevent a side-channel attacker from devising a model of
the attacked application. We conclude the work highlighting
promising research directions in this field.

Index Terms—Side Channel Attacks, Automated Countermea-
sure Application, Code Morphing, Compilers

I. INTRODUCTION

THE ongoing process of deployment of a low-power com-
puting and communication infrastructure denominated

Internet of Things (IoT) calls for a systematic and effective
approach at preventing security violations considering an
attacker able to physically seize the target device. In such
a scenario, a large variety of computing platforms, ranging
from high-end embedded devices, such as home gateways and
mobile phones, to extremely low-power microcontrollers, are
required to perform tasks such as data encryption, endpoint
authentication and digital signatures.

It is well understood that side-channel attacks (SCAs)
represent one of the prime threats to the security of such
systems due to both the low amount of resources required
to lead them and the relative scarcity of systematically de-
ployed countermeasures with respect to more common system-
level attacks. A practical example of such a side-channel
exploitation for an attack was given in [1], where the authors
derive the encryption and authentication key of smart bulbs via
differential power analysis, providing the practical grounds to
allow them to deploy a worm on the said, ubiquitously present,
embedded devices. The scientific literature proposing SCA
countermeasures is rich, and provides effective solutions which
are commonly tailored to a specific cryptosystem or platform,
with the intent of maximizing their efficiency or minimiz-
ing their impact on computational performances and energy
efficiency. However, the large variety of devices involved in
the design space of IoT systems, paired with the significant
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amount of specific knowledge of the SCA framework highlight
another requirement to progress towards widely deployed and
efficient SCA countermeasures. Indeed, automation in side-
channel analysis and countermeasure deployment is poised to
be a key enabler in secure IoT development. In particular,
automating the analysis and countermeasure deployment of
software implementations of cryptographic primitives is an
impactful research direction. Indeed, the higher turn-over of
software versions with respect to hardware platforms, coupled
with the reusable nature of software written in high level
languages such as C or C++ makes the automation of SCA
countermeasure deployment appealing.

Arguably, the best established methodological infrastruc-
ture to automatically analyze and translate software imple-
mentations into executable objects is the one provided by
classical compiler technologies. In this context, pioneering
works tackling the execution-time side-channel such as [2],
[3] have shown the effectiveness of employing methodologies
from the compiler technology to both analyze and remove
timing leakages from existing C code. An instance of such
a systematic application is the removal of the archetypal
execution time side-channel arising from unbalanced branches
in an if construct, transforming the information leaking if
into a predicated execution via arithmetic if-conversions. Given
the effectiveness of employing compiler based analyses and
code transformations to automatically apply countermeasures,
subsequent works [4] started applying local substitution tech-
niques to assembly-level code representations, or relying on
the type-system of a domain specific language translator [5]
to automatically insert countermeasures against either power
or Electro-Magnetic (EM) SCAs. This lead to a systematic
use of the code transformation passes in a compiler to insert
countermeasures, together with a dedicated dataflow analysis
to optimize their insertion [6], [7]. A significant contribution
from the use of dynamic compilation techniques to provide
SCA countermeasures comes from the so-called code morph-
ing approach. Introduced in [8], such a technique provides a
countermeasure against power/EM SCAs by means of a peri-
odical randomized recompilation of the cryptographic primi-
tive implementation. The randomized recompilation modifies
the executable code and effectively yields a moving target for
the attacker, while preserving the code semantics.
Contributions. We provide a taxonomy of the current state-
of-the-art of the application of compiler techniques to the
analysis and automated securization of software cryptographic
implementations. In particular, we split them in three main
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avenues, namely side-channel vulnerability analyses, static
code transformations inserting countermeasures, and code
morphing. The description of each avenue will provide an
outlook on the existing techniques summarizing the core ideas,
the employed methodologies, and reporting the degree of
automation and effectiveness. We conclude our work pointing
out challenges and opportunities for future research.

II. BACKGROUND

This section summarizes the background notions in com-
piler design, SCAs and SCA countermeasures needed to
properly frame our systematization of the existing works.
Compiler structure. The traditional structure of a static
compiler is the concatenation of three major components: the
front-end, the optimizer and the back-end, which typically
known as the compiler pipeline. The compiler propagates
through the pipeline a representation of the analyzed source
code of the program with a format known as the Intermediate
Representation (IR). Multiple IRs can be employed along the
compiler pipeline, depending on their suitability to perform
a given analysis. The front-end tests the correctness of the
source code according to the grammar describing the language,
and usually builds a first IR of the input program to capture
its syntactic structure in the so-called Abstract Syntax Tree
(AST) [9]. Subsequently, the front-end runs on the AST a
set of analyses such as type soundness checking and type
inference, together with some simple code transformations
(e.g., dead code elimination). The optimizer portion of the
compiler pipeline receives the IR of the program from the
front-end and performs a set of analyses and transformations
aimed at improving the code performance or reducing the code
size, while preserving its original semantics. It is typical to
employ a Control-Flow Graph IR for this set of analyses, i.e., a
representation of the program as a graph where each program
statement corresponds to a node and the edges reflect data
dependencies among them. The so-called dataflow analysis
framework employs the Data-Flow Graph (DFG) representa-
tion of the program, i.e., a graph where each node is a program
statement and the edges exiting from a node computing an
intermediate variable are entering in the nodes where such a
variable is required to be available to perform the computation.
A dataflow analysis computes a property for each node of the
DFG, e.g., whether or not a given definition of a variable (i.e.,
an assignment of the result of a computation to it) reaches a
given point in the DFG without other definitions in between.

After analyses and code transformations are performed by
the optimizer, the resulting IR of the program is passed to the
compiler back-end. The compiler back-end translates the pro-
gram IR into a sequence of instructions of the target Instruction
Set Architecture (ISA). Such a process involves tasks such as
instruction selection (picking a semantic preserving mapping
between the IR statements and the ISA instructions), register
allocation (allocating the variables to the ISA registers), and
instruction scheduling to take advantage of the architectural
features exposed by the target platform.

Dynamic compilation frameworks, often known as Just-In-
Time (JIT) compilers follow conceptually the same pipeline

of a static compiler, although they substantially differ in when
the translation process is performed. Indeed, a static compiler
executes the translation from the source language to the target
ISA assembly all at once, thus performing no operations while
the emitted program is run on the target platform. Dynamic
compilers instead perform only a part of the compilation
process, typically up to some point in the optimizer or the
back-end and emit a machine-readable form of the IR known
as bytecode. The compilation process is completed when the
bytecode is run on the target platform. Dynamic compilers thus
generate the binary code while running on the target platform,
exploiting knowledge coming from profiling the execution
of a previous version of generated binary code, improving
execution speed and code size dynamically.
Side Channel Attacks and Countermeasures. A typical SCA
workflow starts from modeling the side-channel behavior of a
device assuming that either the plaintext or ciphertext of the
implemented cryptosystem is available. The attacker chooses
to model a small portion of the computation (e.g., 8 bit in
an xor operation) involving both the known value and the
secret key. For each possible value of the key, a side-channel
behavior model is derived and subsequently the actual side-
channel (e.g., power consumption) is measured. All the key-
dependent side-channel models are compared with the actual
measured value, finding out which one is the best fit. Knowing
the best fitting model reveals the actual value of the secret
key. Since the side-channel measurements are affected by both
random and systematic noise, the goodness of fit of a model to
the actual device behavior is performed employing statistical
tests, over a significant amount of side-channel samples.

Countermeasures aimed at protecting cipher implementa-
tions can be classified as hiding, masking and more recently
morphing. Essentially, hiding [10] employs random delays
or additional hardware energy dissipation elements to con-
ceal the useful side-channel signal. Masking countermea-
sures [10]–[12] provide a formally proven lower bound on
the computational effort required to the attacker to subvert
the protection as they invalidate the correlation between the
quantities employed to predict the power consumption and
the actual values processed by the underlying device. In a
masked implementation, each sensitive intermediate value is
represented as split in a number of shares, s, which are
all needed for its reconstruction. For example, s shares are
obtained as s− 1 random values and the xor combination of
them with the original input. The target algorithm is modified
to perform the entire computation on the set of share-split
values recombining them only at the end. The instantaneous
power consumption is independent from the original (non-
masked) value, as unpredictable random values are newly
generated at each run of the cipher. The third category of
SCA countermeasures, morphing was first proposed in [8]
and relies on dynamically changing the code computing target
cipher, while maintaining semantic equivalence. In the SCA
context, a partial recompilation at run-time results in a moving
target for the SCA attacker which can no longer determine
a working side-channel model for the chosen portion of the
computation as it may either be executed by means of a
different sequence of instructions at each run. A typical way
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to evaluate the effectiveness of SCA countermeasures is to
consider the amount of measurements to be collected required
for an attacker to be successfully extracting the key. Indeed,
provided a proper side-channel model is chosen (i.e., one
taking into account the effects of the masking, if present), it is
always possible to obtain a working SCA with an arbitrarily
large amount of measurements. Indeed, it is not uncommon
to evaluate the robustness of a SCA countermeasure in terms
of the amount of Measurements To Disclose (MTD) the key.
A system designer will thus choose a set of countermeasures
which guarantee that the MTD will exceed the number of
cryptographic primitive execution with the same key during
the lifetime of the device.

III. COMPILER TECHNIQUES AGAINST SCAS

In this section we will provide an overview of the works
which approached the problem of side-channel security in soft-
ware employing compiler based approaches. In particular, we
will classify the approaches in three main research directions:
side-channel vulnerability analyses, static code transforma-
tions inserting countermeasures, and code morphing.
Side Channel Vulnerability Analyses. Typical, non-profiled
SCAs apply a divide-et-impera strategy to reconstruct the
cipher key through piecewise modeling of its effects on the
side-channel behavior of the implementation. To this end, the
attacker analyzes manually in detail the hardware/software
stack on which the cryptographic primitive is implemented
to determine an intermediate value for which a side-channel
model can be computed guessing a small amount of key
material. As a consequence, it is possible to provide a measure
of the resistance against SCAs of a specific instruction consid-
ering the amount of key material involved in the computation
of its result. Performing such an analysis by hand is both
tedious and error prone as it is essentially replicating manually
the computation of a static dataflow analysis performed by
a compiler on a suitable representation of the cryptographic
implementation (i.e., the data flow graphs).

The authors of [6] proposed a so-called security oriented
dataflow analysis that quantifies the resistance against non pro-
filed SCAs employing the amount of key material involved in
the computation of a given intermediate value in the intermedi-
ate representation (IR) of the instructions of the cryptographic
primitive at hand in the optimizer stage of the LLVM compiler
framework. A summary of the modifications to the compiler
pipeline done in [6] are reported in Figure 1, where gray boxes
indicate modified or added passes. The proposed solution
starts by analyzing a set of attributes employed to mark the
plaintext and cipher-key in the source C code, providing the
initial assignments for the fixed point solver of the dataflow
analysis. In the same paper the authors also proposed to
automatically insert a Boolean masking countermeasure only
on the instructions that are computed to be below a given
SCA resistance threshold. A dataflow analysis similar to the
one of [6] was employed in [13] to compute an analogous
score of resistance against active SCAs, in particular against
the so-called differential fault analysis technique.

Static analysis techniques have been proposed also with the
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Fig. 1. Representation of the LLVM compiler pipeline (added and modified
passes in gray), including the passes implementing the security oriented
dataflow analysis proposed in [6] and the additional passes where SCA
countermeasures are automatically applied

purpose of validating the soundness of a protected implemen-
tation. In particular, the Quantified Masking Strength (QMS)
approach [14], [15] analyzes a masked implementation of a
symmetric cipher translating the problem of quantifying the
amount of randomness involved in each masked intermediate
value in a formula solvable through a Satisfiability Modulo
Theory (SMT) prover. The proposed method has the advantage
of being exact in determining the strength of the applied
protection, albeit at the cost of running an SMT on relatively
large formulas. To the end of improving the running time of
the QMS approach, the authors of [16] proposed to employ
a specific type-system to augment C sources and perform
automated deductions on whether an intermediate variable
is uniformly distributed as the result of the application of
a masking strategy or not. Such a static analysis technique
is significantly faster than the QMS approach at the cost
of precision in determining the protection status for some
intermediate variables. Indeed, a hybrid approach resorting to
a SMT solver approach only in the cases where the static
analysis proposed by [16] is not accurate has the potential of
being both accurate and reasonably fast. An approach similar
to the one proposed in [14], targeted at detecting differential
fault attack sensitive locations was proposed in [17], where the
authors also automate the procedure to derive the differential
relations required to perform a differential fault attack.
Static Code Transformations to Insert Countermeasures.
The first instance of an automated countermeasure insertion
against timing SCAs was reported in [2], where the authors
devised a domain specific language for the description of
asymmetric cryptographic primitives, emitting the code of an
implementation automatically equipped to avoid secret-key
dependencies of the computation time. A different approach,
following an information theoretic analysis of the timing side
channel leakage to provide an automated quantification of
the said information was proposed in [18], [19]. A survey
and critical analysis of the mentioned countermeasures and
other compiler-based techniques to remove timing leakages
is available in [3]. Considering power analysis based side-
channels, applying a well defined masking countermeasure to
a symmetric encryption algorithm implementation can be seen
from a compiler standpoint as a peephole optimization, i.e.,
a local transformation on the code replacing an instruction
sequence with a corresponding one, while preserving the
end-to-end semantics of the transformed code. The locality
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of such a process is witnessed by [4], [20], where the
authors operate a lexical substitution on assembly code to
replace unprotected operations with protected ones, driven by a
physical-measure derived leakage index. A different approach
to automatically generate protected code is to employ a domain
specific language and a dedicated translator as in [5], where a
type inference mechanism was employed to determine which
portion of the assembly emitted required masking. The first
canonical compiler approach employing a dataflow driven code
transformation applying a provably secure masking scheme
was reported in [6]. The countermeasure application takes
place in the compiler backend (see Figure 1), employing ad-
hoc machine instructions to avoid countermeasure removal by
the compiler backend. An integrated approach to the applica-
tion of provably secure masking countermeasures considering
a high level (i.e., AST level) representation of the source to
be protected was proposed in [12]. In the aforementioned
work, the authors defined a type-system and its inference
rules to allow the automated computation of the sites where
masked instructions should be inserted, as well as masks
should be refreshed, to attain the so-called strong non interfer-
ence property on the masked implementation. An alternative
countermeasure strategy, relying on the insertion of dummy
computations which result in fake SCA targets, was proposed
in terms of an automatically performed code transformation
pass in [21], [22]. The work exploits a dataflow representation
of the algorithm to faithfully duplicate the behavior of the
encryption acting with the actual secret key onto exact clones
acting on a fake key acting as a red herring for the attacker.

Finally, considering the possibility of performing automated
hardening of a software cipher implementation against fault
attack, the authors of [23], tackle the issue of fault attacks
aimed at altering the number of iterations executed or the
exit condition in loops. Attacks of this kind can result in
catastrophic security failures, e.g., obtaining a faulty AES
ciphertext where the tenth round was skipped, together with
the corresponding correct ciphertext allows to derive the entire
secret key. The approach proposed in [23] adds redundant
checks of invariants at the loop exit points (e.g., it adds redun-
dant checks on the loop iteration counter) effectively hardening
the code against single instruction skip faults. The authors
of the paper also take care of preventing redundant code
elimination passes from eliminating the duplicated checks, and
avoiding the straightforward duplication of instructions with
side effects. The resulting emitted code is validated against a
simulated instruction skip fault model finding that 95% of the
loops are effectively hardened, with 14% performance penalty.
Code Morphing based Countermeasures. The application
of dynamic compilation techniques to software cryptographic
primitives was proposed as a way to prevent an attacker
from devising the side-channel behavior model required to
perform an SCA. In [8] the authors proposed to embed a
tailored dynamic re-compiler that changes the implementation
of a block cipher at runtime, while preserving the semantic
equivalence at the ends. The net effect of the dynamic recom-
pilation is to significantly increase the MTD for the protected
implementation, as a result of the high variability introduced
in the actual computation. Whilst the ad-hoc dynamic compiler
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Fig. 2. High level overview of a code morphing countermeasure relying on
code versioning [24]. The runtime code polymorphism is achieved through a
randomized choice of code fragments to be executed at runtime among a set
of statically generated ones

requires a significant amount of time to compute a new variant
of the cipher implementation, it is possible to amortize this
overhead over multiple encryptions, provided that the number
of runs of the same variant of the cipher implementation is
lower than the MTD by a safe margin. The authors of [8] report
a ≈ 20% performance overhead compared to an unprotected
implementation, on their testbed platform.

With the intent of extending the approach proposed in [8]
to platforms where the code segment cannot be written at
runtime (e.g., microcontrollers) and reduce the overhead of the
dynamic recompilation, the authors of [7], [24] proposed an
alternative way to achieve runtime code variability, exploiting
a code versioning strategy. The MEET approach, sketched in
Figure 2, statically generates code variants for a given set of
instructions, encased in a selection construct with a choice
driven by a random number. The net effect at runtime is
that, despite the code is entirely statically generated (hence
removing the dynamic code generation overhead), the runtime
execution path is still randomized and still providing a moving
target to the side-channel attacker. In [7] refined and extended
the versioning approach introducing also a lightweight mecha-
nism to incrementally refresh values of masked look-up tables,
showing that the MTD for the whole solution exceeds 100M.

The issue of reducing the overhead for dynamic code
generation was tackled by the authors of [25], leveraging the
dynamic compiler generation framework presented in [26].
The authors of [25] propose a solution, called Odo, where
the dynamic compiler is generated as an instance tailored to
the target cipher, effectively achieving faster code generation
at runtime and small code size overheads. The same work
leverages the spatial and temporal efficiency of the JIT com-
pilers to enhance the morphed code by adding delay generation
and insertion features, having a tunable random distribution,
to the generated compiler. The random delays are generated
as a randomized forward jump over a fixed length straight-
line instruction sequence which does not act on the cipher
state. The instructions composing the sequence are chosen in
such a way that it is not possible to distinguish them from
actual useful instructions present in the cipher. Finally, the
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presented solution also takes care of generating the instructions
switching the memory protection mechanisms on platforms
where a write-xor-execute policy is enforced on main
memory, allowing the proposed solution to run also on write-
protected code memory platforms.

IV. DISCUSSION AND FUTURE DIRECTIONS

Notwithstanding the significant amount of research efforts
and results in applying compiler techniques to analyze SCA
vulnerabilities and automatically insert countermeasures, there
are still a number of promising research avenues which de-
serve further attention. In the area of automated vulnerability
analysis and countermeasure application, the current works
either provide sound proofs of feasibility, with precise re-
sults, on small portions of symmetric cryptographic primitives
(e.g., [14], [15]) employing a combination of tools, or provide
approximate results on entire ciphers [6] completely integrated
in a production grade compiler. Combining precision and
acceptable speed into a unified framework, and implementing
the corresponding solution into a widely accepted compiler
toolchain is thus a natural development of the current state-of-
the-art. Furthermore, the current analysis and countermeasure
insertion techniques focus on an execution model which maps
one-to-one the architecture level view onto the actual compu-
tation being performed. Such a model was proven to be poten-
tially mismatched with the actual execution and side-channel
leakage model in case of superscalar architectures [27]. An
interesting research direction in this respect is to integrate the
microarchitectural information on the compilation target into
the side-channel analysis and countermeasure insertion passes
in the compiler, matching what is currently a well established
practice to obtain high performance compiled code.

Considering the case of code morphing countermeasures, a
challenging and interesting open question is to provide formal
security guarantees on the effectiveness of code-polymorphism
based countermeasures. Indeed, while [8] still stands unbro-
ken, and the table based method [24] passed a non-specific t-
test run with 100M samples, no formal framework describing
the lowering of the signal-to-noise ratio provided by morphing
countermeasures has been developed. From a performance
standpoint, the overhead imposed by dynamic recompilation
or code versioning, although acceptable [7], [24], [25], is
still non negligible. Investigating more efficient techniques
to perform code morphing without sacrificing the provided
security margin is still an interesting topic for research. In
particular, a possible research direction is the one of adapting
the traditional strategies for bytecode execution acceleration
to perform code morphing.
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