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ABSTRACT
The flow of binary gaseous mixtures in microchannels, driven by a gradient of pressure, is investigated using the linearized Boltzmann equa-
tion based on a Bhatnagar-Gross-Krook-type model, able to describe general collision kernels, and diffuse reflection boundary conditions.
Semi-analytical solutions have been obtained through a transformation in integral equations and the results compared with those derived by
the McCormack model, which have revealed a good consistency with the experimental data.
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I. INTRODUCTION

In many practical problems, one is dealing not with pure gases
but with gas mixtures. A wide range of applications include scien-
tific and industrial processes. There are many gas mixtures used in
clinical and medical practice (for patient diagnostics, to calibrate
and maintain medical devices), in the food industry (to delay the
deterioration of packaged food), and in manufacturing (for weld-
ing and cutting as well as for laser processing).1 With technological
progress, the challenge has become that of integrating into a simple
micro-sized system, operations that commonly solicit a whole labo-
ratory. Microfluidic devices exploit the physical and chemical prop-
erties of liquids and gases at the microscale, offering several benefits
over conventionally sized systems (i.e., portability, easier automa-
tion and parallelization, integration of lab routines in one device,
and increase in measurement resolution).2 Since usually the charac-
teristic length of such microdevices, operating in gaseous environ-
ments, is comparable with (or smaller than) the mean free path of the
gas molecules, the gas cannot be treated as a continuous medium and
the kinetic theory of rarefied gas flows in narrow channels must be
applied.3

The kinetic description of a mixture of gases with different par-
ticle masses (and possibly with different internal energies) is not a

trivial generalization of the classical Boltzmann theory for a single
gas since the collision operators have to take into account exchanges
of momentum and energy among the different species (and also
mass exchanges, in the case of reacting mixtures). Therefore, since
it is difficult, in general, to manage the collision integral operator as
such, simplified kinetic models have been proposed in the literature
(see Refs. 4–13). Among them, the McCormack model8 has been,
over the years, the most widely used to study a great variety of prob-
lems, such as Couette and Poiseuille flows, thermal creep, and heat
transfer for mixtures, since all transport coefficients (i.e., viscosity,
thermal conductivity, diffusion, and thermal diffusion ratio) can be
correctly obtained from it by applying the Chapman-Enskog pro-
cedure.14–21 Moreover, McCormack derived a model for the cross-
collision operator of a general multicomponent monatomic mix-
ture applicable to different intermolecular force laws. Although the
McCormack model provides a simplified description of a gas mix-
ture compared to the Boltzmann true collision operator, it is still too
complex to facilitate relatively simple analytical or semi-analytical
manipulations. For monatomic gases, the model proposed by Bhat-
nagar, Gross, and Krook (BGK)22 has revealed as a valuable tool
in order to obtain approximate closed form solutions of the Boltz-
mann equation by using variational techniques or transformations
in integral equations.23,24 BGK-type models for mixtures were first
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introduced in 1956,4 and since then, many authors have focused
their research on improving the mathematical consistency and pre-
dictability of these models compared to the full Boltzmann equation
(see Refs. 5–7). In particular, the model proposed by Hamel,6 in
which both self-collisions and cross-collisions return particles dis-
tributed according to a Maxwellian with an appropriate temperature
and velocity, has recently been generalized in Ref. 12 to take into
account interaction potentials different from the Maxwell molecules.
The weak point of all these models is that they are characterized
by many free parameters, the choice of which is far from obvious.
In 2002, Andries, Aoki, and Perthame proposed in Ref. 9 a BGK
relaxation model for mixtures that has been proven to be well posed
from the mathematical point of view (correct Boltzmann collision
invariants and Maxwellian equilibria are properly recovered, and the
H theorem is fulfilled). The main idea behind this model is that
instead of approximating each of the collision operators (between
species s and r) by a BGK-type equation (as in Refs. 6 and 12),
only one global operator for each species s (i.e., taking into account
all the species r) has been introduced. As a result, the number of
free parameters appearing in the model is significantly reduced.
Even if the model presented in Ref. 9 has been derived in closed-
form by assuming Maxwell molecules and cannot match all the
transport coefficients simultaneously, it has been used as a consis-
tent tool in Ref. 25 to investigate the sound waves propagation in
microchannels. Unfortunately, a more careful analysis has revealed
that the results, although qualitatively correct, can show, in some
cases, quantitative deviations from the predictions of the McCor-
mack model,26 confirming that a correct description of the interpar-
ticle force law is of paramount importance to reproduce properly
experimental results for gas mixtures.27

Consequently, in the present paper, we propose to modify the
BGK model, introduced in Ref. 9, to make it able to describe gen-
eral collision kernels corresponding to more realistic intermolecular
potentials. Based on this modified BGK model, we report in the fol-
lowing the study of binary gas-mixture flows between parallel plates,
driven by a pressure gradient, and diffuse reflection boundary con-
ditions. These days, such a kind of investigation is no longer aca-
demic and deserves particular attention, thanks to the growing dif-
fusion of microscale technologies. In this frame, an important aspect
of the matter is to have an approximate closed form solution for
the flow rate of plane Poiseuille flow in order to use it in applica-
tions. This need typically occurs in the correction of the Reynolds
equation in lubrication theory or in modeling damping forces in
microelectromechanical systems (MEMS) devices.28,29 In order to
assess the reliability of the results obtained, we have compared the
outputs of our semi-analytical method of solution with those deriv-
ing from the direct simulation Monte Carlo (DSMC) approach. This
simulation scheme, which started with the ingenious work of Bird in
the 1960s,30 has become, over the years, a powerful tool for solving
practical physical problems, so much as to be considered an effective
alternative to experiments. In particular, we rely on two different
datasets: one obtained from a classical DSMC method, designed to
solve the true linearized Boltzmann equation (LBE) for binary gas
mixtures with hard-sphere molecules,31 and the other derived from
a variance-reduced direct simulation Monte Carlo method, specific
for low speed flows, as defined by the McCormack kinetic model.32

A further application of this modified BGK model can be found in
Ref. 26.

II. BOLTZMANN DESCRIPTION OF GASEOUS
MIXTURES

In kinetic theory, the evolution of a mixture of N elastically
scattering gases is usually described by a set of N integrodifferential
equations of Boltzmann type for the species distribution functions
fs(t, x, ξ) (s = 1, . . ., N),

∂fs

∂t
+ ξ ⋅ ∇xfs =

N
∑
r=1

Qsr
(fs, fr), (1)

where the collision operator Qsr is given by

Qsr
( fs, fr)=∫

R3∫B+

[fs(ξ′)fr(ξ′∗) − fs(ξ)fr(ξ∗)]Bsr(n ⋅V, ∣V∣) dξ∗ dn.

(2)
Here, ξ is the molecular velocity, Bsr is computed from the interac-
tion law between the sth and rth species, V = ξ − ξ∗ is the relative
velocity of the molecule of the sth species with respect to a molecule
of the rth species, n is an unit vector, and B+ is the semisphere
defined by n ⋅V = 0. The postcollisional velocities ξ′ and ξ′∗ are given
by

ξ′ = ξ −
2µsr

ms
n [(ξ − ξ∗) ⋅ n],

ξ′∗ = ξ∗ +
2µsr

mr
n [(ξ − ξ∗) ⋅ n],

where µsr
=

ms mr
(ms + mr)

stands for the reduced mass. Since in

microchannel flow applications, one usually deals with small devi-
ations from the basic equilibrium state, the Boltzmann equations (1)
and (2) can be linearized representing the distribution functions of
the species as

fs = fs,0(1 + hs) ∣hs∣ ≪ 1, (3)

with fs ,0 being the Maxwellian configuration,

fs,0 = ns,0 (
ms

2πkBT0
)

3/2
exp( −

ms

2kBT0
ξ2
). (4)

In (4), kB is the Boltzmann constant, ms and ns ,0 are the mass and the
equilibrium density of the sth species, and T0 is a reference temper-
ature. The small perturbation hs satisfies the following Boltzmann
equation:

∂hs

∂t
+ ξ ⋅ ∇xhs =

N
∑
r=1

Lsrhs, (5)

where Lsrhs is the linearized collision operator given by

Lsrhs = nr,0(
mr

2πkBT0
)

3/2
∫
R3 ∫B+

[hs(ξ′) + hr(ξ′∗) − hs(ξ) − hr(ξ∗)]

× exp(−
mr

2kBT0
ξ2
∗) ⋅Bsr(n ⋅V, ∣V∣) dξ∗ dn. (6)

Since it is difficult, in general, to manage the collision integral oper-
ator as such, simplified kinetic models have been developed in the
literature and widely used in practice.
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A. McCormack model
In 1973, McCormack proposed in Ref. 8 a simple method of

construction of linearized kinetic models of the Boltzmann equation
for gas mixtures. For the kth-order model, the method consists of
writing the collision term in the form

L̂sr
(k)hs = −γsr hs(t, x, ξ) +∑

j≤k
Aj(t, x)ψj(ξ), (7)

where γsr is a constant collision frequency and ψj is a suitably cho-
sen complete orthonormal set of functions. The expansion coeffi-
cients Aj can be evaluated by equating certain physically significant
moments of the model

(∆φ)sr = ∫ φ(ξ) fs,0 L̂sr
(k)hs dξ (8)

to the corresponding moments of the full collision operator (6), cal-
culated with the kth-order approximation to the distribution func-
tion. For a third-order model, which is the lowest order that gives
a correct hydrodynamic description, the collision term moments
corresponding to the species density (φ = 1), drift velocity (φ
= ξi), energy (φ = 1

2ξ
2), stress (φ = ξi ξj −

1
3ξ

2 δij), and heat
flux (φ = 1

2ξi (ξ2
− 5

2)) have been computed by using a third-
order, thirteen-moment approximation to the distribution function.
Thus, the explicit McCormack collision term for a binary mixture
reads

Lh(1)MC = γ1{ρ(1) + 2(1 − η(1)1,2 )c ⋅ v(1) − 2 η(2)1,2 c ⋅ q(1) + [1 −
2η(1)1,2 M12

(1 + M12)
](∣c∣2 −

3
2
)τ(1)

+ 2(1 + η(4)1,1 − η(3)1,1 − η(3)1,2 ) ci cj P̃(1)ij +
8
5
(1 + η(6)1,1 − η(5)1,1 − η(5)1,2 )(∣c∣2 −

5
2
) c ⋅ q(1)

− η(2)1,2 (∣c∣2 −
5
2
) c ⋅ v(1) + 2 η(1)1,2 c ⋅ v(2) + 2 M12 η(2)1,2 c ⋅ q(2) + η(2)1,2 (∣c∣2 −

5
2
) c ⋅ v(2)

+
2 η(1)1,2 M12

(1 + M12)
(∣c∣2 −

3
2
)τ(2) +

2 η(4)1,2

M12
ci cj P̃(2)ij +

8 η(6)1,2

5
√

M12
(∣c∣2 −

5
2
) c ⋅ q(2) − h1}, (9)

Lh(2)MC = γ2{ρ(2) +
2

M12
(1 − η(1)2,1 )c ⋅ v(2) −

2 η(2)2,1

M12
c ⋅ q(2) + [1 −

2η(1)2,1

(1 + M12)
](

∣c∣2

M12
−

3
2
)τ(2)

+
2

M2
12
(1 + η(4)2,2 − η(3)2,2 − η(3)2,1 ) ci cj P̃(2)ij +

8
5 M12

(1 + η(6)2,2 − η(5)2,2 − η(5)2,1 )(
∣c∣2

M12
−

5
2
) c ⋅ q(2)

−
η(2)2,1

M12
(

∣c∣2

M12
−

5
2
) c ⋅ v(2) +

2 η(1)2,1

M12
c ⋅ v(1) +

2 η(2)2,1

M2
12

c ⋅ q(1) +
η(2)2,1

M12
(

∣c∣2

M12
−

5
2
) c ⋅ v(1)

+
2 η(1)2,1

(1 + M12)
(

∣c∣2

M12
−

3
2
)τ(1) +

2 η(4)2,1

M12
ci cj P̃(1)ij +

8 η(6)2,1

5
√

M12
(

∣c∣2

M12
−

5
2
) c ⋅ q(1) − h2}, (10)

where it should be noted that, in combining the self- and cross-
collision terms in (5), γ’s appear only in the combinations: γ1 = γ11

+ γ12 and γ2 = γ21 + γ22. In (9) and (10), the following normalizations
have been introduced:

c =
ξ

√
2 kB

m1
T0

, f̂1,0 =
f1,0

n1,0
=

e−∣c∣
2

π3/2 , f̂2,0 =
f2,0

n2,0
=

e−
∣c∣2

M12

(πM12)3/2 ,

(11)
where M12 = m1/m2 is the mass ratio. The other symbols appearing
in (9) and (10) are defined in the following:

η(k)s,r =
ν(k)s,r

γs
(s, r = 1, 2 k = 1, . . . , 6), (12)

where the collision frequencies γs (s = 1, 2) are expressed as15,17,18

γ1 = (ψ1 ψ2 − ν(4)1,2 ν
(4)
2,1 ) (ψ2 + ν(4)1,2 )

−1,

γ2 = (ψ1 ψ2 − ν(4)1,2 ν
(4)
2,1 ) (ψ1 + ν(4)2,1 )

−1,
(13)

with

ψ1 = ν(3)1,1 + ν(3)1,2 − ν(4)1,1 , ψ2 = ν(3)2,2 + ν(3)2,1 − ν(4)2,2

and

ν(1)s,r =
16
3
µsr

ms
nr Ω11

s,r , ν(2)s,r =
64
15

(
µsr

ms
)

2

nr (Ω12
s,r −

5
2

Ω11
s,r), (14)
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ν(3)s,r =
16
5
(
µsr

ms
)

2 ms

mr
nr (

10
3

Ω11
s,r +

mr

ms
Ω22

s,r),

ν(4)s,r =
16
5
(
µsr

ms
)

2 ms

mr
nr (

10
3

Ω11
s,r −Ω22

s,r),

(15)

ν(5)s,r =
64
15

(
µsr

ms
)

3 ms

mr
nr Γ(5)s,r , ν(6)s,r =

64
15

(
µsr

ms
)

3

(
ms

mr
)

3/2
nr Γ(6)s,r ,

(16)

with

Γ(5)s,r = Ω22
s,r + (

15 ms

4 mr
+

25 mr

8 ms
)Ω11

s,r − (
mr

2 ms
)(5 Ω12

s,r −Ω13
s,r),

Γ(6)s,r = −Ω22
s,r +

55
8

Ω11
s,r −

5
2

Ω12
s,r +

1
2

Ω13
s,r .

Ωij
s,r are the Chapman-Cowling integrals which are written in terms

of the intermolecular interaction potential.14 The method to com-
pute these integrals for several molecular models (considered in the
present paper) is clarified in Appendix A.

Furthermore, the dimensionless macroscopic perturbed den-
sity (ρ(s)), velocity (v(s)), temperature (τ(s)), stress tensor (P̃(s)ij ), and
heat flux (q(s)), appearing in the McCormack model, are defined as
follows:

ρ(1) =
1
π3/2 ∫R3

h1 e−∣c∣
2

dc, ρ(2) =
1

(πM12)3/2 ∫R3
h2 e−

∣c∣2

M12 dc,

(17)

v(1) =
1
π3/2 ∫R3

ch1 e−∣c∣
2

dc, v(2) =
1

(πM12)3/2 ∫R3
ch2 e−

∣c∣2

M12 dc,

(18)

τ(1) =
1
π3/2 ∫R3

(
2
3
∣c∣2 − 1)h1 e−∣c∣

2
dc, (19)

τ(2) =
1

(πM12)3/2 ∫R3
(

2
3M12

∣c∣2 − 1)h2 e−
∣c∣2

M12 dc, (20)

P̃(1)ij =
1
π3/2 ∫R3

(ci cj −
1
3
∣c∣2 δij)h1 e−∣c∣

2
dc, (21)

P̃(2)ij =
1

(πM12)3/2 ∫R3
(ci cj −

1
3
∣c∣2 δij)h2 e−

∣c∣2

M12 dc, (22)

q(1) =
1
π3/2 ∫R3

1
2
c(∣c∣2 −

5
2
)h1 e−∣c∣

2
dc, (23)

q(2) =
1

(πM12)3/2 ∫R3

1
2
c(

∣c∣2

M12
−

5
2
)h2 e−

∣c∣2

M12 dc. (24)

B. BGK-type models
In 2002, Andries, Aoki, and Perthame proposed in Ref. 9 a BGK

relaxation model for mixtures which satisfies the following prop-
erties: the correct Boltzmann collision invariants and Maxwellian
equilibria are properly recovered, the H-theorem is fulfilled, and the
indifferentiability principle holds (when the N gases coincide, the
classical BGK model for a single gas is correctly reproduced). For a
mixture of two gases, this BGK model reads as

∂fs

∂t
+ ξ ⋅ ∇xfs = νs(Ms − fs), s = 1, 2, (25)

where νs are suitable collision frequencies (independent from the
molecular velocity ξ, but possibly dependent on the macroscopic
fields) and Ms are Maxwellian attractors,

Ms = ns(
ms

2πkBTs
)

3/2
exp[−

ms

2kBTs
∣ξ − vs∣

2
]. (26)

Auxiliary parameters vs and Ts are determined in terms of the
moments of the distribution functions f s, that is, the number den-
sity ns, the mass velocity v(s), and the temperature T(s), by impos-
ing that the exchange rates for species momenta and energies
given by the BGK operator reproduce the exact corresponding rates
calculated by the Boltzmann collision operators Qsr( fs, fr) given
by (2),

νs ms ∫
R3
ξ[Ms(ξ) − fs(ξ)]dξ =

2
∑
r=1

ms ∫
R3
ξ Qsr

( fs, fr)dξ , (27)

νs
ms

2 ∫R3
∣ξ∣2[Ms(ξ) − fs(ξ)]dξ =

2
∑
r=1

ms

2 ∫R3
∣ξ∣2 Qsr

( fs, fr)dξ.

(28)

The integrals on the right-hand side of Eqs. (27) and (28) have been
computed in Ref. 9 by considering Maxwellian molecules since in
this case, such rates can be made explicit in closed analytical form.
Recent numerical works have revealed that, to reproduce properly
experimental results for gas mixtures, a correct description of the
interparticle force law is of paramount importance.17,20,32 Since the
description of a mixture in terms of Maxwellian molecules is, on
the contrary, highly unrealistic, in the present paper, we propose
to modify the BGK model introduced in Ref. 9, by computing the
integrals on the right-hand side of Eqs. (27) and (28) for general
intermolecular forces with an approximation to the distribution
function, similar to what was done in Ref. 8. In the framework of
a linearized theory, when the distribution functions of the species fs
can be represented as in (3) and (4), the constraints (27) and (28)
give the following final expressions for the auxiliary fields appearing
in (26):

v1 = v(1) + η(1)1,2 (v(2) − v(1)), v2 = v(2) + η(1)2,1 (v(1) − v(2)), (29)

T1 = T(1) +
2m1

(m1 + m2)
η(1)1,2 (T(2) − T(1)),

T2 = T(2) +
2m2

(m1 + m2)
η(1)2,1 (T(1) − T(2)),

(30)
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where the collision frequencies η(k)s,r are the same as those defined in
(12) after the identification νs = γs (s = 1, 2) and neglecting higher
order terms,

v(s) =
1

ns,0
∫
R3
ξ fs,0 hs dξ,

T(s) = T0 +
ms

3 kB ns,0
∫
R3

(∣ξ∣2 −
3 kB

ms
T0) fs,0 hs dξ.

In this way, a new BGK model can be constructed no longer
restricted to Maxwell molecules but applicable to different and
more realistic intermolecular force laws. Introducing the normal-
izations (11), the linearized BGK collision term can be written
as

Lh(1)BGK = γ1{ρ(1) + 2(1 − η(1)1,2 )c ⋅ v(1) + 2η(1)1,2 c ⋅ v
(2)

+ [1 −
2η(1)1,2 M12

(1 + M12)
](∣c∣2 −

3
2
)τ(1)

+
2η(1)1,2 M12

(1 + M12)
(∣c∣2 −

3
2
)τ(2) − h1}, (31)

Lh(2)BGK = γ2{ρ(2) + 2(1 − η(1)2,1 )
c

M12
⋅ v(2) + 2η(1)2,1

c
M12

⋅ v(1)

+ [1 −
2η(1)2,1

(1 + M12)
](

∣c∣2

M12
−

3
2
)τ(2)

+
2η(1)2,1

(1 + M12)
(

∣c∣2

M12
−

3
2
)τ(1) − h2}, (32)

where the dimensionless macroscopic perturbed density ρ(s), veloc-
ity v(s), and temperature τ(s) are defined in (17)–(20).

We will prove in the following that this modified BGK model
is able to produce results in close agreement with those obtained
with more refined kinetic models. The advantage is that the equa-
tions which describe the BGK model are much simpler than those
which describe, for instance, the McCormack model, allowing also a
semi-analytical representation of the solution.33

III. THE POISEUILLE FLOW PROBLEM:
MATHEMATICAL FORMULATION

Let us consider a binary gaseous mixture confined between two
flat, infinite, and parallel plates located at x′ = −d/2 and x′ = d/2.
Both boundaries are held at the same constant temperature. We
assume that the mixture flows parallel to the plates, in the z′ direc-
tion, due to a pressure gradient, which is taken to be small. Under
these conditions, the Boltzmann equation can be linearized about
local Maxwellian distributions by putting

fs(x′, z′, ξ) = fs,0 [1 + kz′ + hs(x′, ξ)], s = 1, 2, (33)

where fs ,0 is written explicitly in Eq. (4), hs is the small perturba-

tion with respect to the equilibrium state, and k = 1
p
∂p
∂z′

is a con-
stant pressure gradient. Following Ref. 18, the system of linearized

Boltzmann equations reads as

ξx
∂hs

∂x′
+ kξz = Lh(s), s = 1, 2, (34)

where Lh(s) is the linearized collision operator. Since the numeri-
cal solution of Eq. (34) based on the McCormack kinetic model is
reported in Ref. 18, in the sequel, we will restrict ourselves to the
solution of Eq. (34) based on the modified BGK model introduced
in Sec. II B. To this end, it is convenient to rescale all variables
appearing in Eq. (34) as follows:

c =
ξ
v1

0
; x =

x′

v1
0 θ1

; z =
z′

v1
0 θ1

, with θ1 =
1
γ1

, v1
0 =

√
2kBT0

m1
.

Furthermore, we define Θ12 =
θ1
θ2

=
γ2
γ1

and δ = d/(v1
0 θ1), which

is the dimensionless distance between the channel walls as well as
the rarefaction parameter (inverse Knudsen number) of the species
s = 1. The unusual choice of normalizing the molecular veloci-
ties with respect to the thermal velocity of the species 1 depends
on the fact that, in this way, it becomes more evident to identify
in the equations written below, for the components of the mix-
ture, the deviations from the single gas behavior, in terms of pecu-
liar parameters such as the molecular mass ratio M12, the macro-
scopic collision frequencies ratio Θ12, and the microscopic collision
frequencies η(k)s,r .

Since the problem under consideration is one-dimensional in
space, the unknown perturbed distribution functions hs, as well as
the overall quantities, depend only on the x coordinate. Likewise,
we can reduce the dimensionality of the molecular-velocity space by
introducing the projection procedure.34 We multiply Eq. (34) [based
on the BGK-collision operator as defined in Eqs. (31) and (32)] by
1
π cz e−(c

2
y +c2

z), when s = 1, and by 1

πM3/2
12

cz e−(c
2
y +c2

z)/M12 , when s = 2,

and we integrate over all cy and cz . The resulting equations after the
projection are

cx
∂Z(1)

∂x
+ Z(1) + 1 = (1 − η(1)1,2 )v

(1)
z + η(1)1,2 v

(2)
z , (35)

cx
∂Z(2)

∂x
+ Θ12 Z(2) +

√
M12

= Θ12[
1

√
M12

(1 − η(1)2,1 )v
(2)
z +

η(1)2,1
√

M12
v
(1)
z ], (36)

where the reduced unknown distribution functions Z(s) are defined
as

Z(1)(x, cx) =
2
π k̂
∫

+∞

−∞ ∫

+∞

−∞
h1(x, c) cz e−(c

2
y +c2

z) dcy dcz , (37)

Z(2)(x, cx) =
2

π k̂ M3/2
12
∫

+∞

−∞ ∫

+∞

−∞
h2(x, c) cz e−(c

2
y +c2

z)/M12 dcy dcz ,

(38)
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with k̂ = 1
p
∂p
∂z being the dimensionless constant pressure gradient.

The macroscopic velocity fields appearing on the right-hand side of
Eqs. (35) and (36) are given by

v
(1)
z (x) =

1
√π ∫

+∞

−∞
Z(1) e−c2

x dcx, (39)

v
(2)
z (x) =

1
√π ∫

+∞

−∞
Z(2) e−c2

x/M12 dcx. (40)

Applying the same projection procedure to the linearized boundary
conditions reported in Ref. 18 describing the diffuse scattering of
gaseous particles on both walls of the microchannel, we are led to
derive the following expressions:

Z(1)(x = −
δ
2

, cx) = Z(2)(x = −
δ
2

, cx) = 0, cx > 0, (41)

Z(1)(x =
δ
2

, cx) = Z(2)(x =
δ
2

, cx) = 0, cx < 0. (42)

In addition to the bulk velocities of the gas components, we intend
to compute the mass-flow rates defined for each species by

Q(1) = −
1
δ2 ∫

δ/2

−δ/2
v
(1)
z (x)dx, (43)

Q(2) = −
1

√
M12 δ2 ∫

δ/2

−δ/2
v
(2)
z (x)dx. (44)

A. Semi-analytical solutions in integral form
Integrating Eqs. (35) and (36) along the trajectories of the

molecules with the boundary conditions (41) and (42), we get the
solutions in integral form,

Z(1)(x, cx) =
1
cx
∫

x

− δ
2 sgncx

[−1+(1−η(1)1,2 )v
(1)
z +η(1)1,2 v

(2)
z ] e

− ∣x − t∣
∣cx∣ dt,

(45)

Z(2)(x, cx) =
1
cx
∫

x

− δ
2 sgncx

[ −
√

M12 +
Θ12

√
M12

(1 − η(1)2,1 )v
(2)
z

+
Θ12

√
M12

η(1)2,1 v
(1)
z ] e

−Θ12
∣x − t∣
∣cx∣ dt. (46)

Inserting in the definitions (39) and (40) the distribution functions
(45) and (46), the integral equations for the bulk velocities of the gas
components read as follows:

v
(1)
z (x) = −1 +

1
√π

[T0(
δ
2

+ x) + T0(
δ
2
− x)]

+
(1 − η(1)1,2 )

√π ∫

δ/2

−δ/2
v
(1)
z (t)T−1(∣x − t∣)dt

+
η(1)1,2
√π ∫

δ/2

−δ/2
v
(2)
z (t)T−1(∣x − t∣)dt, (47)

v
(2)
z (x) = −

M12

Θ12
+

M12
√πΘ12

{T0[
Θ12

√
M12

(
δ
2

+ x)]

+ T0[
Θ12

√
M12

(
δ
2
− x)]} +

Θ12
√
πM12

(1 − η(1)2,1 )

× ∫

δ/2

−δ/2
v
(2)
z (t)T−1[

Θ12
√

M12
∣x − t∣]dt +

Θ12
√
πM12

η(1)2,1

× ∫

δ/2

−δ/2
v
(1)
z (t)T−1[

Θ12
√

M12
∣x − t∣]dt, (48)

where Tn denotes the Abramowitz functions defined by

Tn(x) ∶= ∫
+∞

0
sn e−s2− x

s ds. (49)

In order to solve the system of two coupled integral equations (47)
and (48), we extend a finite difference technique introduced in
Refs. 35, 36, and 24. The one-dimensional computational domain is
divided into n mesh points (for simplicity, only constant mesh steps
are considered), and the macroscopic fields (v(1)z , v(2)z ) are approx-
imated by a stepwise function. The general form of the numerical
scheme is given by

2n−1
∑
k=0

αhk ψk = βh (h = 0, . . . , 2n − 1), (50)

where

ψi = v
(1)
z (xi) (i = 0, . . . , n − 1), (51)

ψi+n = v
(2)
z (xi) (i = 0, . . . , n − 1). (52)

Following the idea reported in Ref. 24, the constant value assigned
to the functions v(1)z (x) and v(2)z (x) on every interval can be inter-
preted as either (a) the value in the midpoint or (b) the mean value
on the whole interval, so that two methods of differencing can be
defined with two possible choices for the coefficients αhk and βh. In
the following, we report only the coefficients related to the method
of differencing (a) (which can be computed more easily) since with a
resolution of n = 200 mesh points (used in the present computations
to reach very high accuracy), the two schemes approach so closely
each other that they can be considered equivalent. The detailed form
of the coefficients appearing in the scheme (50) is given by

αhk =
(1 − η(1)1,2 )

√π
[T0(

∣k − h∣
n

δ+
δ

2n
)−T0(

∣k − h∣
n

δ−
δ

2n
)] (h ≠ k),

(53)

αkk = η
(1)
1,2 +

2
√π

(1 − η(1)1,2 )T0(
δ

2n
), (54)

αh,k+n =
η(1)1,2
√π

[T0(
∣k − h∣

n
δ +

δ
2n

) − T0(
∣k − h∣

n
δ −

δ
2n

)] (h ≠ k),

(55)

αk,k+n = −η
(1)
1,2 +

2 η(1)1,2
√π

T0(
δ

2n
), (56)
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αh+n,k =
η(1)2,1
√π

{T0[
Θ12

√
M12

(
∣k − h∣

n
δ +

δ
2n

)]

−T0[
Θ12

√
M12

(
∣k − h∣

n
δ −

δ
2n

)]} (h ≠ k), (57)

αk+n,k = −η
(1)
2,1 +

2 η(1)2,1
√π

T0(
Θ12

√
M12

δ
2n

), (58)

αh+n,k+n =
(1 − η(1)2,1 )

√π
{T0[

Θ12
√

M12
(
∣k − h∣

n
δ +

δ
2n

)]

−T0[
Θ12

√
M12

(
∣k − h∣

n
δ −

δ
2n

)]} (h ≠ k), (59)

αk+n,k+n = η
(1)
2,1 +

2
√π

(1 − η(1)2,1 )T0(
Θ12

√
M12

δ
2n

), (60)

TABLE I. Poiseuille flow rate Q(s ) vs δ∗ for N12 = 1. Comparison between the outputs obtained by the modified BGK model
and those derived from the DSMC simulations designed to solve the McCormack model (McC H–S)32 and the linearized
Boltzmann equation (LBE H–S),31 for hard-sphere interactions. ∆max [defined in Eq. (64)] indicates the maximum absolute
deviation of the results of the BGK model from those obtained by the McCormack one.

DSMC (LBE H–S) DSMC (McC H–S) BGK (hard spheres)

δ∗ Q(1) Q(2) Q(1) Q(2) Q(1) Q(2) ∆max (%)

Ne–Ar

0.1 1.981 1.932 2.0350 2.0531 2.0259 2.0576 0.4
0.5 . . . . . . 1.5303 1.7019 1.5097 1.7019 1.3
1.0 1.385 1.632 1.4198 1.6863 1.3974 1.6833 1.6
2.0 . . . . . . 1.4166 1.7987 1.3951 1.7932 1.5
5.0 . . . . . . 1.6989 2.3007 1.6794 2.2901 1.1

10.0 2.271 3.151 2.3163 3.2122 2.3016 3.2027 0.6

He–Xe

0.1 2.097 2.013 2.0608 2.2266 2.0414 2.2400 0.9
0.5 . . . . . . 1.3607 1.9637 1.3225 1.9798 2.8
1.0 1.117 1.956 1.1117 2.0200 1.0701 2.0351 3.7
2.0 . . . . . . 0.9145 2.2394 0.8762 2.2486 4.2
5.0 . . . . . . 0.7914 2.9529 0.7645 2.9482 3.4

10.0 0.8584 4.040 0.8723 4.1184 0.8543 4.1063 2.1

TABLE II. Poiseuille flow rate Q(s ) vs δ∗ for N12 = 9. Comparison between the results obtained by the BGK models for
Maxwell molecules and modified for hard-sphere interactions and those derived from the DSMC simulations designed to
solve the McCormack model for rigid spheres.32 ∆max [defined in Eq. (64)] indicates the maximum absolute deviation of the
outputs of each BGK model from those obtained by the McCormack one.

BGK (Maxwell) DSMC (McC H–S) BGK (hard spheres)

δ∗ Q(1) Q(2) ∆max (%) Q(1) Q(2) Q(1) Q(2) ∆max (%)

Ne–Ar

0.1 2.0312 2.0835 0.2 2.0358 2.0796 2.0307 2.0908 0.5
0.5 1.5822 1.7949 1.2 1.5916 1.8164 1.5787 1.8283 0.8
1.0 1.5076 1.8229 1.6 1.5185 1.8521 1.5038 1.8603 0.9
2.0 1.5494 1.9947 1.6 1.5635 2.0274 1.5464 2.0283 1.0
5.0 1.9170 2.6140 1.0 1.9325 2.6416 1.9159 2.6353 0.8

10.0 2.6551 3.6938 0.4 2.6636 3.7078 2.6553 3.7069 0.3

He–Xe

0.1 2.0774 2.6214 2.0 2.1191 2.6182 2.1092 2.6685 1.9
0.5 1.5312 2.7356 3.9 1.5470 2.8470 1.5252 2.9360 3.0
1.0 1.3794 3.1183 4.9 1.3805 3.2787 1.3552 3.3854 3.2
2.0 1.2989 3.8473 4.9 1.2866 4.0473 1.2605 4.1501 2.5
5.0 1.3695 5.6880 3.4 1.3486 5.8876 1.3272 5.9469 1.6

10.0 1.6763 8.3047 1.8 1.6594 8.4565 1.6423 8.4775 1.0
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TABLE III. Poiseuille flow rate Q(s ) vs δ∗ for N12 = 0.11. Comparison between the results obtained by the BGK models
for Maxwell molecules and modified for hard-sphere interactions and those derived from the DSMC simulations designed to
solve the McCormack model for rigid spheres.32 ∆max [defined in Eq. (64)] indicates the maximum absolute deviation of the
outputs of each BGK model from those obtained by the McCormack one.

BGK (Maxwell) DSMC (McC H–S) BGK (hard spheres)

δ∗ Q(1) Q(2) ∆max (%) Q(1) Q(2) Q(1) Q(2) ∆max (%)

Ne–Ar

0.1 2.0377 2.0352 0.2 2.0374 2.0391 2.0227 2.0368 0.7
0.5 1.4915 1.6154 0.8 1.4888 1.6278 1.4636 1.6184 1.7
1.0 1.3536 1.5596 1.0 1.3523 1.5752 1.3246 1.5628 2.0
2.0 1.3136 1.6254 1.0 1.3158 1.6421 1.2888 1.6283 2.0
5.0 1.5240 2.0400 0.7 1.5311 2.0556 1.5095 2.0418 1.4

10.0 2.0572 2.8415 0.6 2.0679 2.8581 2.0493 2.8426 0.9

He–Xe

0.1 2.0640 2.0564 3.2 1.9993 2.0654 1.9741 2.0634 1.3
0.5 1.3426 1.6423 6.3 1.2631 1.6611 1.2190 1.6542 3.5
1.0 1.0773 1.5925 8.3 0.9949 1.6159 0.9489 1.6058 4.6
2.0 0.8547 1.6683 10. 0.7775 1.6943 0.7370 1.6815 5.2
5.0 0.6743 2.1059 8.9 0.6194 2.1301 0.5934 2.1156 4.2

10.0 0.6857 2.9366 5.1 0.6523 2.9578 0.6358 2.9425 2.5

βh = −1 +
1

√π
[T0((2h + 1)

δ
2n

) + T0(δ − (2h + 1)
δ

2n
)], (61)

βh+n = −
M12

Θ12
+

M12
√πΘ12

{T0[
Θ12

√
M12

((2 h + 1)
δ

2n
)]

+ T0[
Θ12

√
M12

(δ − (2 h + 1)
δ

2n
)]}, (62)

where h, k = 0, 1, . . . n − 1.

IV. RESULTS AND DISCUSSION
The results presented in the following refer to the noble gaseous

mixtures of He–Xe (that is, helium with molecular mass m1 = 4.0026
a.u. and xenon with molecular mass m2 = 131.29 a.u.) and Ne–Ar
(that is, neon with molecular mass m1 = 20.179 a.u. and argon with
molecular mass m2 = 39.948 a.u.). Thus, the present study includes
mixtures whose constituents have comparable molecular mass as
well as disparate-mass gas mixtures (composed of very heavy plus
very light molecules). In order to assess the reliability of the results
based on the modified BGK model proposed in Sec. II B, we spe-
cialize the analysis to the case of rigid-sphere interactions and com-
pare our findings with those obtained by using the direct simulation
Monte Carlo method (DSMC). In particular, we rely on the outputs
from the standard DSMC method developed to solve the linearized
Boltzmann equation for binary gas mixtures31 and those from a
variance-reduced DSMC methodology presented for the solution
of the McCormack linearized kinetic model.32 In our computa-
tions, the rigid-sphere diameters ds (s = 1, 2) of every species s are
determined as indicated in Appendix A. Thus, the diameter ratios
D12 = d1/d2 are taken equal to 0.710 97 and 0.4492 for the mixtures
Ne–Ar and He–Xe, respectively. In Tables I–III, we list the values of

TABLE IV. Poiseuille flow rate Q(s ) vs δ∗ for the He–Xe mixture. Comparison
between the results obtained by the modified BGK model for the (6-12) Lennard-
Jones (LJ) interaction potential and those derived from the McCormack model with
the same intermolecular force, for three different values of the ratio of the molar
concentrations of the two species N12. ∆max [defined in Eq. (64)] indicates the maxi-
mum absolute deviation of the outputs of the BGK model from those obtained by the
McCormack one.

McC (LJ) BGK (LJ)

δ∗ Q(1) Q(2) Q(1) Q(2) ∆max (%)

N12 = 1

0.1 2.1411 2.1932 2.1268 2.1994 0.7
0.5 1.4279 1.9216 1.4017 1.9239 1.8
1.0 1.1712 1.9761 1.1421 1.9760 2.5
2.0 0.9642 2.2001 0.9361 2.1938 2.9
5.0 0.8241 2.9310 0.8029 2.9155 2.6

10.0 0.8947 4.1231 0.8785 4.0975 1.8

N12 = 9

0.1 2.1218 2.5704 2.1132 2.6043 1.3
0.5 1.5569 2.7503 1.5392 2.7986 1.7
1.0 1.3951 3.1717 1.3730 3.2205 1.6
2.0 1.3056 3.9485 1.2797 3.9776 2.0
5.0 1.3733 5.8511 1.3423 5.8099 2.2

10.0 1.6931 8.5317 1.6521 8.3860 2.4

N12 = 0.11

0.1 2.1302 2.0583 2.1134 2.0562 0.8
0.5 1.3709 1.6547 1.3415 1.6450 2.1
1.0 1.0886 1.6080 1.0573 1.5963 2.9
2.0 0.8537 1.6867 0.8250 1.6728 3.4
5.0 0.6675 2.1234 0.6481 2.1106 2.9

10.0 0.6805 2.9516 0.6683 2.9418 1.8
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the Poiseuille flow rates Q(s) (s = 1, 2) for the two mixtures under
investigation. The analysis has been carried out for a wide range of
the rarefaction parameter (progressing from free molecular, through
transitional, to continuum regions) and for three different val-
ues of the ratio of the molar concentrations of the two species
N12 = n1,0/n2,0 = 0.11, 1, 9. To make the comparison with the data
available in the literature more straightforward, we have reported in
Tables I–III the values of the mass flow rate as a function of a rarefac-
tion parameter δ∗ according to the definition used in Ref. 18. The
relationship between δ∗ and the analogous parameter δ introduced
in Sec. III is given by

δ = δ∗
[1 + Θ12N12]

[Θ12(1 + N12)]
[

M12(1 + N12)

(1 + N12M12)
]

1/2
. (63)

As revealed by these tables, the agreement between the outputs
of the BGK and the McCormack models for intermolecular rigid-
sphere interactions is very good: the maximum absolute deviation
between the results of the two models, defined by

∆max =: max
s

[100 ∣
Q(s)BGK

Q(s)McC

− 1∣], (64)

FIG. 1. Variation of the macroscopic velocities of the (a) Ne–Ar and (b) He–Xe mixture components, in the x-direction across the gap of the channel, for N12 = 0.11 and
δ∗ = 10. Comparison between the modified BGK model (solid lines) and the McCormack model (dashed lines) for hard-sphere interactions.
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is less than 5%, in all cases considered. The largest difference in
percentage is observed for the He–Xe mixture, in the transitional
regime, regardless of the value of the molar concentrations ratio
of the two species. In Table I, we have also reported the find-
ings obtained from a DSMC method designed to solve the true
linearized Boltzmann equation for binary gas mixtures of hard-
sphere molecules.31 The comparison shows a basic good agreement
between the three approaches presented, proving that the modified
BGK model, proposed in the present paper, provides outputs very
close to those given by more refined kinetic descriptions, when the
same intermolecular potential is considered. On the contrary, the
BGK model derived in closed-form for Maxwell molecules in Ref. 9
(see also Ref. 25) reveals larger deviations from the McCormack

model, especially for the He–Xe mixture, as highlighted in Tables II
and III. Unfortunately, the BGK model, by construction, cannot
accurately reproduce the profiles of higher-order moments, such
as the heat flux, just as it happens for single monatomic gases.
In order to prove more clearly that the modified BGK model,
proposed in the present paper, can be applied with general col-
lision kernels and that it gives always outputs very close to the
McCormack model, provided that the same intermolecular poten-
tial is considered, we report in Table IV also the values of the
Poiseuille flow rates Q(s) corresponding to the (6-12) Lennard-
Jones (LJ) molecular model. Since the effect of using different
interaction potentials is more evident in disparate-mass gas mix-
tures, Table IV shows only the findings related to the He–Xe

FIG. 2. Variation of the macroscopic velocities of the (a) Ne–Ar and (b) He–Xe mixture components, in the x-direction across the gap of the channel, for N12 = 1 and δ∗ = 10.
Comparison between the modified BGK model (solid lines) and the McCormack model (dashed lines) for hard-sphere interactions.
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mixture. In this table, the values related to the McCormack model
have been obtained by numerically solving the problem described
in Appendix B [Eqs. (B1)–(B4)] with diffuse reflection boundary
conditions through a deterministic finite-difference method.33 The
results reported in Ref. 17 have been used to validate our numerical
code.

In order to inspect more deeply the physical processes going on
in both gas mixtures, we report in Figs. 1–6 the velocity profile of the
Ne–Ar and He–Xe mixture components as a function of the distance
across the gap of the channel, specializing the analysis to rigid-sphere
interactions. We have included in these pictures the solutions of the
integral equations (47) and (48) in the two opposite regions of rar-
efaction: the near-continuum regime (δ∗ = 10) and the near-free

molecular flow regime (δ∗ = 0.1), for three different values of the
ratio of the molar concentrations of the two species (N12 = 0.11,
1, and 9). To further validate the reliability of our semi-analytical
results, we have also reported in Figs. 1–6 the outcomes derived from
a numerical solution of the linearized McCormack model. In all the
pictures presented, the lightest component of each mixture has been
labeled with superscript 1, while the heaviest one with superscript 2.

A. Near-continuum regime
Concerning the Ne–Ar mixture, Figs. 1–3 reveal that, in the

near-continuum limit, both species have the same macroscopic
velocity fields. On the contrary, for the He–Xe mixture, two

FIG. 3. Variation of the macroscopic velocities of the (a) Ne–Ar and (b) He–Xe mixture components, in the x-direction across the gap of the channel, for N12 = 9 and δ∗ = 10.
Comparison between the modified BGK model (solid lines) and the McCormack model (dashed lines) for hard-sphere interactions.
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FIG. 4. Variation of the macroscopic velocities of the (a) Ne–Ar and (b) He–Xe mixture components, in the x-direction across the gap of the channel, for N12 = 0.11 and
δ∗ = 0.1. Comparison between the modified BGK model (solid lines) and the McCormack model (dashed lines) for hard-sphere interactions.

different velocity profiles are shown. This contrasting behavior of
the two mixtures is related to their different relaxation times to
equilibrium. As already pointed out in Ref. 25, the analysis of the
gas-mixture equations is more difficult than the comparable single
component gas theory because of the many different scales which
now enter in the approach to equilibrium. There is the approach of
the distribution function to a Maxwellian distribution, and in addi-
tion, there is the equilibration of the species (i.e., the vanishing of
differences in velocity and temperature among the species). In the
sixties, Grad conjectured that when a binary gas mixture is made up
of species with very different molecular masses, the approach of the
gas to equilibrium should exhibit very different relaxation times.38

First, the light species and then the heavy species reach approximate
local Maxwell equilibrium, in times of the orders of the different

species self-collision times: θ1 for the light-species and θ2 for the
heavy species. Equilibration between the species can only be attained
thereafter on a time scale of order θ∆. When one assumes compara-
ble number densities n1 ≃ n2, the times characterizing these different
epochs are expected to stand in the ratios38

θ1

θ2
≃
θ2

θ∆
≃ (

m1

m2
)

1/2
, (65)

with m1 and m2 being the molecular masses of the light and heavy
species, respectively. If (m1/m2) is very small, as it happens for
disparate-mass gas mixtures, then θ∆ becomes of the order of a
typical macroscopic time. One can easily prove that Grad conjec-
ture (65) is satisfied by the BGK model proposed in the present
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FIG. 5. Variation of the macroscopic velocities of the (a) Ne–Ar and (b) He–Xe mixture components, in the x-direction across the gap of the channel, for N12 = 1 and
δ∗ = 0.1. Comparison between the modified BGK model (solid lines) and the McCormack model (dashed lines) for hard-sphere interactions.

paper, using Eq. (13) to calculate Θ12 = θ1/θ2 = γ2/γ1. This feature is
shared with the linearized McCormack model presented in Sec. II A,
whose outputs have recently been compared with flow rate measure-
ments under isothermal conditions, showing good agreement with
the experimental data.27 Therefore, one can conclude that the relia-
bility of the results provided by the BGK model is mainly related to
its ability to correctly reproduce the trend to equilibrium of a binary
gaseous mixture. In the light of these remarks, the greater complexity
of the McCormack model is not completely justified, except in rela-
tion to its ability to appropriately describe higher-order moments of
the distribution function (as the heat-flow rate).

To explain in more detail the different behavior of the two
mixtures, we can resort to a qualitative analysis of the integral

equations given by Eqs. (47) and (48). In the near-continuum
regime, the integrals in Eqs. (47) and (48) give the main contri-
bution to the velocities of gas components. For mixtures such as
Ne–Ar, whose constituents have comparable molecular mass, such
that Θ12 ≃ 1 and M12 ≃ 1, the velocity profiles of the two species
are symmetric by interchanging superscripts 1 and 2 (as the results
reported in Figs. 1–3 show). In this case, Eq. (47) reduces to the
equation for the velocity field of a single-component gas since the
terms (−η(1)1,2 v

(1)
z ) and (η(1)1,2 v

(2)
z ) cancel out. On the contrary, for

mixtures such as He–Xe, whose constituents have very different
molecular mass, such that Θ12 ≪ 1 and M12 ≪ 1, the velocity pro-
files of the two species are not symmetric anymore (see Figs. 1–3).
In this case, Eq. (47) reduces to the equation for the velocity
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FIG. 6. Variation of the macroscopic velocities of the (a) Ne–Ar and (b) He–Xe mixture components, in the x-direction across the gap of the channel, for N12 = 9 and
δ∗ = 0.1. Comparison between the modified BGK model (solid lines) and the McCormack model (dashed lines) for hard-sphere interactions.

field of a single-component gas only when η(1)1,2 → 0, that is, for
N1,2 ≫ 1.

B. Near-free molecular flow regime
In the near-free molecular flow regime, the integrals appear-

ing in Eqs. (47) and (48) vanish. For mixtures such as Ne–Ar, whose
constituents have comparable molecular mass (Θ12 ≃ 1 and M12 ≃ 1),
the macroscopic velocity fields v(1)z and v

(2)
z are close to each

other, while a greater discrepancy is predicted by formulas (47) and
(48) for the velocity profiles of disparate-mass gas mixtures (Θ12
≪ 1 and M12 ≪ 1). This trend is clearly observed in Figs. 4–6.
Moreover, Eq. (47) predicts that, in the near-free molecular flow
regime, the macroscopic field profiles of the lightest species of both
mixtures coincide with those obtained for a single gas, regardless of

the value N12 taken by the ratio of the molar concentrations of the
two species.

V. CONCLUDING REMARKS

In the present paper, we have analyzed the properties of a
BGK-type collision operator of the linearized Boltzmann equa-
tion designed to describe mixtures of monatomic gases. We have
shown that this BGK model, originally derived in closed form for
Maxwell molecules in Ref. 9, can be modified (in its linearized
form) to take into account general and more realistic intermolec-
ular force laws. In order to assess the reliability of this modified
BGK model, we have studied the Poiseuille problem, that is, the
flow of a binary gas mixture through a microchannel, driven by a
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small pressure gradient. Semi-analytical solutions of the linearized
BGK-Boltzmann equations have been presented, and the results
are compared with those derived by the direct simulation Monte
Carlo (DSMC) approach.31,32 In particular, we have considered two
different datasets: one obtained from a classical DSMC method,
designed to solve the true linearized Boltzmann equation for binary
gas mixtures with hard-sphere molecules, and the other derived
from a variance-reduced direct simulation Monte Carlo method,
specific for low speed flows, as defined by the McCormack kinetic
model.

The variance reduction ideas, presented first in Ref. 39, have
effectively addressed the limitation suffered by the standard DSMC
method for low Mach number flows, allowing the simulation of
arbitrarily small deviations from equilibrium. While, originally, the
variance reduction formulation has been used to solve the Boltz-
mann equation for single component gases,40 in more recent years,
these ideas have been applied to construct an efficient algorithm
for handling simplified kinetic models for mixtures, as the McCor-
mack one.32 The outputs of this variance-reduced DSMC method,
designed to solve the McCormack linearized kinetic model, have
been compared with the discrete ordinate solutions of the same
kinetic model for different channel flows,18 and a good agreement
between the two approaches has been found. This proves the relia-
bility of the DSMC computations that can rightly be considered an
effective alternative to the experiments. In this framework, the mod-
ified BGK model proposed in the present paper, which is described
by a set of equations much simpler than the ones the McCormack
model uses (allowing also a semi-analytical representation of the
solution), can be helpful to improve the computational efficiency
of the DSMC scheme. This is basically due to the fact that, in the
simplified description offered by the BGK model, the influence of
the main parameters which determine the macroscopic behavior of
a binary mixture (as the time scales characterizing the approach to
the equilibrium and the microscopic collision frequencies respon-
sible for the deviation from the single-gas equations) can easily be
assessed.
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APPENDIX A: COMPUTATION OF THE
CHAPMAN-COWLING INTEGRALS

In the following, we report the explicit expressions of the Ωij
s,r

integrals for the intermolecular interaction potentials taken into
account in the present paper.

1. Maxwell molecules
The Maxwell molecular model represents an important special

case of the inverse power-law interaction potential,

Usr
=

Ksr

rν−1 , (A1)

when ν = 5. In (A1), r is the distance between the center of the
molecules and Ksr is the interparticle force law constant. In this case,

the Ω-integrals are given by14

Ωij
s,r =

Ai(5)
2

¿
Á
ÁÀπKsr

µsr Γ( j +
3
2
), (A2)

where the symbol Γ denotes the gamma function, while the constants
Ai(5) represent the dimensionless collision cross sections, whose val-
ues are tabulated in Ref. 14. The constants K11 and K22 can be written
in terms of the single gas viscosity coefficients ηs(s = 1, 2) with the
aid of the first Chapman-Enskog expressions for these quantities,

ηs =
1

3π
(

2 ms

Kss )

1/2
(kBT)

A2(5)
, (A3)

while K12 may be determined from the method of the combination
rule,8

K12
= (K11 K22

)
1/2. (A4)

In order to specify the force constants K11 and K22, the experimen-
tal data on the viscosities ηs of the single gases at the temperature
T = 300 K have been used, given in Ref. 37.

2. Hard-sphere molecules
Rigid elastic spherical molecules may be regarded as a limiting

case of the inverse power-law potential model (A1) corresponding
to ν = ∞. For this rigid sphere model, the Ω-integrals read

Ωij
s,r =

(j + 1)!
8

[1 −
(1 + (−1)i

)

2 (i + 1)
](

π kB T0

2µsr )

1/2
(ds + dr)

2, (A5)

where ds is the molecular diameter of species s. Following Ref. 17, the
rigid-sphere diameters ds (s = 1, 2) of every species s are computed
via the expression

ηs = 1.016 034 ⋅
5

16

√
mskBT
√πd2

s
(A6)

and the experimental data on the viscosities ηs of the single gases at
the temperature T = 300 K, reported in Ref. 37.

3. (6-12) Lennard-Jones model
In this model, the potential of intermolecular force is given by

Usr
= 4 �sr

[(
dsr

r
)

12

− (
dsr

r
)

6

], (A7)

where r is the distance between the center of the molecules, �sr

is the depth of the potential well (the maximum energy of attrac-
tion), and dsr is the reference collision diameter [defined so that
Usr(dsr) = 0]. In this case, the Ω-integrals cannot be evaluated
analytically in closed form and numerical integrations have to
be used. In the present paper, we consider the results of this
numerical work tabulated in Ref. 41, assuming the same tempera-
ture as that for the Maxwell molecules and the rigid spheres, i.e.,
T = 300 K.
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APPENDIX B: POISEUILLE FLOW PROBLEM DESCRIBED BY THE McCORMACK MODEL
In order to obtain the McCormack model equations describing flows of binary mixtures between two parallel plates driven by pressure

gradients, we multiply Eq. (34) [based on the McCormack-collision operator as defined in Eqs. (9) and (10)] by 1
π cz e−(c

2
y +c2

z), when s = 1,

and by 1

πM3/2
12

cz e−(c
2
y +c2

z)/M12 , when s = 2, and we integrate over all cy and cz . Then, we multiply Eq. (34) by 1
π (c2

y + c2
z − 2) cz e−(c

2
y +c2

z), when

s = 1, and by 1

πM3/2
12

[(
c2

y + c2
z

M12
) − 2] cz e−(c

2
y +c2

z)/M12 , when s = 2, and we integrate again over all cy and cz . The resulting equations after the

projection are

cx
∂Z(1)

∂x
+ Z(1) + 1 = (1 − η(1)1,2 )v

(1)
z − η(2)1,2 q(1)z + (1 + η(4)1,1 − η(3)1,1 − η(3)1,2 ) cx P̃(1)xz

+
4
5
(1 + η(6)1,1 − η(5)1,1 − η(5)1,2 ) (c2

x −
1
2
) q(1)z −

1
2
η(2)1,2 (c2

x −
1
2
) v
(1)
z + η(1)1,2 v

(2)
z

+ M12 η(2)1,2 q(2)z +
1
2
η(2)1,2 (c2

x −
1
2
) v
(2)
z +

1
M12

η(4)1,2 cx P̃(2)xz +
4
5
η(6)1,2

√
M12

(c2
x −

1
2
) q(2)z , (B1)

cx
∂Z(2)

∂x
+ Θ12 Z(2) +

√
M12 = Θ12[

1
√

M12
(1 − η(1)2,1 )v

(2)
z −

1
√

M12
η(2)2,1 q(2)z +

1
(M12)

3/2 (1 + η(4)2,2 − η(3)2,2 − η(3)2,1 ) cx P̃(2)xz

+
4

5
√

M12
(1 + η(6)2,2 − η(5)2,2 − η(5)2,1 ) (

c2
x

M12
−

1
2
)q(2)z −

η(2)2,1

2
√

M12
(

c2
x

M12
−

1
2
) v
(2)
z +

1
√

M12
η(1)2,1 v

(1)
z

+
η(2)2,1

(M12)
3/2 q(1)z +

η(2)2,1

2
√

M12
(

c2
x

M12
−

1
2
) v
(1)
z +

η(4)2,1
√

M12
cx P̃(1)xz +

4
5
η(6)2,1 (

c2
x

M12
−

1
2
) q(1)z ], (B2)

cx
∂Y(1)

∂x
+ Y(1) = −η(2)1,2 v

(1)
z +

8
5
(1 + η(6)1,1 − η(5)1,1 − η(5)1,2 ) q(1)z

+ η(2)1,2 v
(2)
z +

8
5

η(6)1,2
√

M12
q(2)z , (B3)

cx
∂Y(2)

∂x
+ Θ12 Y(2) = Θ12[ −

η(2)2,1
√

M12
v
(2)
z +

8
5
√

M12

×(1 + η(6)2,2 − η(5)2,2 − η(5)2,1 ) q(2)z +
η(2)2,1

√
M12

v
(1)
z +

8
5
η(6)2,1 q(1)z ],

(B4)

where the reduced unknown distribution functions Z(s) are defined
in Eqs. (37) and (38), while the functions Y (s) are given by

Y(1)(x, cx) =
2
π k̂
∫

+∞

−∞ ∫

+∞

−∞
h1(x, c) cz (c2

y +c2
z−2) e−(c

2
y +c2

z) dcy dcz ,

(B5)

Y(2)(x, cx) =
2

π k̂ M3/2
12
∫

+∞

−∞ ∫

+∞

−∞
h2(x, c) cz

×[(
c2

y + c2
z

M12
) − 2] e−(c

2
y +c2

z)/M12 dcy dcz . (B6)

The macroscopic fields appearing on the right-hand side of Eqs.
(B1)–(B4) read as

v
(1)
z (x) =

1
√π ∫

+∞

−∞
Z(1) e−c2

x dcx, (B7)

v
(2)
z (x) =

1
√π ∫

+∞

−∞
Z(2) e−c2

x/M12 dcx, (B8)

q(1)z (x) =
1

2√π ∫
+∞

−∞
[(c2

x −
1
2
)Z(1) + Y(1)] e−c2

x dcx, (B9)

q(2)z (x) =
1

2√π ∫
+∞

−∞
[(

c2
x

M12
−

1
2
)Z(2) + Y(2)] e−c2

x/M12 dcx,

(B10)

P̃(1)xz (x) =
1

√π ∫
+∞

−∞
cx Z(1) e−c2

x dcx, (B11)

P̃(2)xz (x) =
1

√π ∫
+∞

−∞
cx Z(2) e−c2

x/M12 dcx. (B12)
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