Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.

Aronne Dell’Oca¹, Giovanni Michele Porta¹, Alberto Guadagnini¹,², Monica Riva¹,²

¹Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy

²Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA

Correspondence to: aronne.delloca@polimi.it

Keywords: adaptive discretization, solute transport, randomly heterogeneous media.
Abstract
We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy’s law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions.
1 Introduction

A critical challenge to the characterization of solute transport in heterogeneous porous materials is the development of numerical methodologies rendering suitable approximations of the space-time dynamics of concentration fields in the presence of marked spatial contrasts of the medium hydraulic parameters, such as conductivity.

This study is focused on transport of non-reactive chemicals in heterogeneous porous media at the continuum scale, as described through the classical Advection Dispersion Equation (ADE). Effective dispersion coefficients appearing in the ADE accounts (in principle) for the enhancement of solute dispersion due to the unresolved velocity variability at scales which are not explicitly included in the model (see, e.g., Bijeljic and Blunt, 2006; Dentz and de Barros, 2015; de Barros and Dentz, 2016). This picture is consistent with the dispersion setting in capillary tubes (Taylor, 1953; Salles et al., 1993) where hydrodynamic dispersion arises from enhanced diffusion due to the presence of a spatial velocity distribution. The advection term appearing in the ADE accommodates the resolved details of the velocity field emerging from the solution of the flow problem. In the past two decades a considerable amount of literature focuses on the analysis of transport features which are not consistent with the ADE formulation (most notably, e.g., long tails of solute breakthrough curves, corresponding to long residence times of solute mass within the domain). These observations has substantiated the development of models which can capture non-Fickian (or so-called anomalous) transport features. These are based on approaches which include space-time non local theories (e.g., Cushman and Ginn, 1993; Guadagnini and Neuman, 2001; Morales-Casique et al., 2006a, b), continuous time random walk (CTRW, Berkowitz et al., 2006), fractional derivatives (Zhang et al., 2007) and multi-rate mass transfer concepts (Haggerty et al., 2004). All of these effective formulations include nonlocal transport terms, a framework relating all of them being presented by Neuman and Tartakovsky (2009).

According to a number of recent studies, the ability of the ADE-based mathematical formulation to interpret solute transport processes in randomly heterogeneous media is largely tied to the level of
descriptive detail associated with the characterization of the system properties. For example, results of Riva et al. (2008, 2010) suggest that apparent non-Fickian features observed in field-scale data are captured by the use of an ADE through an appropriate description of the (random) three-dimensional heterogeneity of the aquifer, and hence of the velocity field. In this context, the space-time resolution selected to approximate the ADE can have a considerable impact on the ability of the model to interpret observed results (e.g., Lawrence and Rubin, 2007). It is then relevant to be able to approximate the ADE with a sufficiently refined space-time resolution to retain the relevant details of the input heterogeneous conductivity (or trasmisivity) field, as the spatial organization of preferential pathways can imprint important transport features of transport (Edery et al., 2014). An a priori selection of the most suitable space and time discretization becomes then a challenging task. This aspect is exacerbated in highly heterogeneous media where solutes can typically travel relatively fast along preferential pathways and reside for long times in low-velocity regions.

A convenient way to design a mesh according to which the space-time domain is discretized is to rely on a setting characterized by a uniform numerical grid in space and a fixed time step across the simulation window. In this context, an appropriate discretization grid can be identified through a typical grid convergence analysis. The latter is based upon the solution of the numerical problem through diverse space / time discretization levels, obtained through a sequential uniform refinement of the spatial mesh and of the time step. This type of approach can lead to unaffordable computational costs as the domain size increases and/or a detailed description of the tracer plume is needed. Adaptive discretization techniques provide a valuable alternative. The basic idea of adaptive discretization is to exploit the features of the solution to increase or decrease automatically the space and time resolution associated with the numerical approximation. As a consequence, the element and time step size (and eventually the element shape) is not chosen a priori, but dynamically adjusted. This is typically obtained upon relying on a specific error indicator. A series of previous works provides examples of implementation of adaptive grids in the context of numerical modeling of flow (Knupp, 1996; Cao and Kitanidis, 1999; Cirpka et al., 1999; Mehl and Hill, 2002; Bresciani et al., 2012;
Jayasinghe, 2015) and solute transport scenarios in homogenous (see, e.g., Pepper and Stephenson, 1995; Kavetski et al., 2002; Saaltink et al., 2004; Younes and Ackerer, 2010) and heterogeneous (see, e.g., Huang and Zhan, 2005; Klieber and Rivière, 2006; Chueh et al., 2010; Gedeon and Mallants, 2012; Amaziane et al., 2014; Mansell et al., 2002 and references therein) porous media. Amaziane et al. (2014) employ both space and time adaptive technique for simulating radionuclide transport in block-wise heterogeneous media. In their approach, these authors did not incorporate the anisotropic features of the solution to guide the spatial adaptation of the grid. Jayasinghe (2015) implement an anisotropic spatial and temporal step refinement for single- and two-phase flow taking place in a homogenous field scale scenario. An advantage of anisotropic mesh adaptivity is that the size, orientation and shape of the elements are optimized to match the directional features of the problem considered.

Our study is viewed in this context. A distinctive original aspect of our work is that we combine anisotropic mesh and time step adaptation to simulate solute transport within randomly heterogeneous media. We characterize heterogeneity of the considered porous systems in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. This conceptualization of the medium is at the basis of a large body of works in the field of stochastic groundwater hydrology (see, e.g., Dagan, 1989 amongst others). By performing a detailed study on single realizations of the conductivity field, our work provides an assessment of the reliability of adaptive grid techniques to be employed within uncertainty quantification and model calibration procedures.

Our works starts from the anisotropic mesh and time step adaptive discretization technique recently proposed by Esfandiar et al. (2014, 2015). The latter relies on the a posteriori recovery-based error estimators for space and time discretization errors presented by Micheletti and Perotto (2010) and Porta et al. (2012a,b). Esfandiar et al. (2015) assess the impact of employing a space and time adaptation procedure in the context of parameter estimation. They do so upon comparing parameter estimates obtained through inverse modeling of solute transport within a laboratory-scale block-wise
heterogeneous flow cell. Their results show that implementation of the space-time adaptive methodology yields improved quality of parameter estimates as compared against those obtained using fixed uniform discretization characterized by a seemingly sufficient resolution.

Here, we extend the adaptive discretization technique of Esfandiar et al. (2015) and apply it to modeling solute transport in single realizations of randomly heterogeneous porous media. We follow the typical procedure of solving the flow problem on a fixed numerical grid. The latter is designed to honor the spatial structure of the random conductivity field. The resulting velocity field may exhibit a complex spatial arrangement, including the occurrence of high velocity regions where flow is channeled and large stagnant zones that may originate non-Fickian solute transport features displayed by spatially averaged solute breakthrough curves (Edery et al., 2014). Spatial dynamic adaptation entails performing coarsening and refinement of the computational mesh/grid at each time step. In this context, a critical challenge to an effective implementation of dynamically adaptive spatial meshes is the requirement of projecting the velocity field onto the adapted mesh. The latter could be characterized by local element sizes which may be unrelated to the original mesh employed to characterize flow across the hydraulic conductivity field.

Here, we investigate two diverse strategies guiding the anisotropic meshes adaptation. The error estimator associated with each of these strategies is assessed on the basis of spatial gradients of (i) solute concentration only, or (ii) both concentration and fluid velocity components. With reference to the latter implementation, we follow the procedure proposed by Porta et al. (2012a) to combine diverse error indicators to drive mesh adaptation. Embedding the velocity components in the error estimator is an original feature of our study and is consistent with the feedback between the spatial derivatives of the components of the velocity vector and the observed folding, stretching, mixing and spreading of the evolving concentration plume. The latter have emerged as remarkable features, which are particularly evident in highly heterogeneous media (see, e.g., Le Borgne et al., 2015).
To assess the quality of the adaptive methodologies implemented, we focus on the temporal evolution of both local and spatially integrated concentrations as well as global spreading and mixing indicators. These include the second centered spatial moment of concentration and the scalar dissipation rate.

The rest of the study is organized as follows. Section 2 describes the problem setting, Section 3 being devoted to a brief recounting of the main features of the adaptive methodology of Esfandair et al. (2014, 2015). Results and comparisons of the adaptive space-time discretization techniques are illustrated in Section 4. Conclusions are drawn in Section 5.

2 Problem Setting

2.1 Mathematical and Numerical Model

We consider a two-dimensional rectangular domain, Ω, of height $H = 0.14 \, m$ and width $L = 0.04 \, m$. We denote the horizontal and the vertical direction with y, z, respectively (see Fig. 1). The Advection Dispersion Equation (ADE) reads

$$\frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C - \nabla \cdot (D \mathbf{C}) = 0,$$

(1)

where $C = C(x, t)$ [-] is solute concentration at location x and time t, \mathbf{v} [LT^{-1}] is the velocity vector (v_y and v_z respectively denote horizontal and vertical velocity components), and D [L^2T^{-1}] is the local dispersion tensor given by

$$D = (\alpha_T + D_m) \delta_{ij} + (\alpha_L - \alpha_T) \frac{v_i v_j}{|\mathbf{v}|} \quad \text{with} \quad i, j = y, z.$$

(2)

Here, α_T [L] and α_L [L] respectively are transverse and longitudinal dispersivity; D_m [L^2T^{-1}] is molecular diffusion; δ_{ij} is the Kronecker’ delta; and $|\mathbf{v}|$ is the velocity modulus. We set $\alpha_T = \alpha_L = \alpha = 10^{-3} \, m$ and $D_m = 10^{-9} \, m^2/s$ in our showcase examples. The imposed boundary conditions for Eq.s (1)-(2) are (see also Fig. 1c) as follows: a time-varying concentration C_{BC} is set along the bottom edge of the domain, according to $C_{BC} = e^{3-t}$; impermeable boundary conditions are prescribed along the vertical edges; and a free boundary condition is imposed at the top of the domain,
\[\nabla \cdot \mathbf{v} = 0 \quad , \quad \mathbf{v} = -\frac{K}{\phi} \nabla h , \]

(3)

where \(h \) [L] is hydraulic head, and \(\phi \) [-] is porosity, which we take as uniform and set as \(\phi = 0.35 \).

The imposed boundary conditions for Eq. (3) are (see also Fig. 1b): fixed head along the bottom edge, \(h_{BC} \); no-flow along the vertical edges; and imposed constant vertical velocity, \(v_{z,BC} = 7.0 \times 10^{-3} \text{ m/s} \), at the top boundary. The hydraulic conductivity of the porous medium is modeled as an isotropic random field \(K = K_\sigma e^{Y(y,z)} \text{ [LT}^{-1}] \), \(K_\sigma = 10^{-9} \text{ m/s} \) being the geometric mean of \(K \) and \(Y \) a zero-mean second-order stationary random process characterized by the isotropic exponential covariance function

\[C_Y = \sigma_Y^2 e^{-\frac{|r|}{l}} . \]

(4)

Here, \(r \), \(\sigma_Y^2 \), \(l \) respectively are the separation vector (or lag) between two points in space, variance and correlation length of \(Y \). In our examples, we set \(l = 0.02 \text{ m} \), corresponding to \(H/l = 7 \) and \(L/l = 2 \).

We consider a mildly (\(\sigma_Y^2 = 1 \)) and a strongly (\(\sigma_Y^2 = 5 \)) heterogeneous \(Y \) field, to explore the effects of increasing level of complexity of the velocity and concentration distributions on the grid adaptation strategy. The heterogeneous conductivity fields are synthetically generated by the widely used and tested code SGSIM (Deutsch and Journel, 1998) on a uniform grid with \(n_y = 50 \) and \(n_z = 175 \) elements, respectively along the \(y \) and \(z \) directions. Note that this corresponds to characterize the conductivity field through 25 generation points per correlation length, which ensures attaining a high level of descriptive detail of the heterogeneity in \(K \). Hereinafter we label as \(\Delta K \) the size of the square.
element of the uniform mesh employed for generating K. Fig. 1a depicts the realization of Y employed for the test case with $\sigma_Y^2 = 5$.

Transport simulations are performed across a time window of length $T = 4t_{\text{PV}}$ and $T = 2t_{\text{PV}}$, respectively for $\sigma_Y^2 = 5$ and $\sigma_Y^2 = 1$, $t_{\text{PV}} = H / v_{\text{z,BC}} = 200$ s corresponding to a pore volume. A global Péclet number $Pe = lv_{\text{z,BC}} / (D_m + v_{\text{z,BC}} \alpha)$ can be defined as the ratio between average diffusion-dispersion and advective time scales. In our numerical test cases $Pe = 20.0$.

Following Esfandiar et al. (2014, 2015), we discretize Eq.s (1)-(2) by means of a stabilized finite element method, which is based on a streamline diffusion technique (Brooks and Hughes, 1991). Spatial discretization is performed upon relying on a spatial mesh $\mathcal{T}_h = \{ E \}$, which results in a conformal discretization of Ω into triangular elements E. Discretization of the time window $[0, T]$ is performed upon introducing the time levels $\{ t^0 = 0, \ldots, t^n = T \}$, which define the set $\{ I_k \}$ of the time intervals I_k of amplitude $\Delta t^k = t^{k+1} - t^k$. Time discretization is performed through the standard θ-method (Quarteroni et al., 2007). We resort to an implicit scheme and set $\theta = 2/3$ to guarantee the unconditionally absolute stability of the θ-method. The numerical solution of the flow problem in Eq. (3) relies on a standard finite element of degree two for the pressure. As such, velocity components are obtained as piecewise linear functions through Eq. (3).

Fig. 1b depicts the resulting spatial distribution of the natural logarithm of the modulus of v, $\log(|v|)$, for $\sigma_Y^2 = 5$. Note the complexity of the structure of the velocity field, as evidenced by the presence of a clearly defined low-velocity region and two preferential pathways characterized by large velocities (identified by black dashed curves in Fig. 1b). Fig. 1c depicts the concentration field at $t = 0.5t_{\text{PV}}$ calculated on the same uniform mesh for $\sigma_Y^2 = 5$ (see details in Section 2.3).

2.2 Observables
We introduce here the quantities which constitute the key target outputs for the purpose of our analyses. We consider the temporal variation of solute concentration at given locations within the computational domain, i.e.,

\[C_F(t) = C(y_F, z_F, t) \quad \quad C_S(t) = C(y_S, z_S, t) \quad (5) \]

where \(P_F = (y_F, z_F) \) and \(P_S = (y_S, z_S) \) indicate the locations in the domain where \(|v| \) is largest and lowest, respectively (i.e., subscripts \(F \) and \(S \) respectively correspond to fast and slow regions). We find \((y_F = 3.8 \times 10^{-2} \text{m}; \quad z_F = 3.8 \times 10^{-2} \text{m})\) and \((y_S = 1.5 \times 10^{-2} \text{m}; \quad z_S = 3.6 \times 10^{-2} \text{m})\) for the highly heterogeneous test case \((\sigma^2_F = 5)\), as depicted in Fig. 1c. Otherwise, we obtain \((y_F = 4 \times 10^{-3} \text{m}; \quad z_F = 6.9 \times 10^{-2} \text{m})\) and \((y_S = 1.8 \times 10^{-2} \text{m}; \quad z_S = 3.3 \times 10^{-2} \text{m})\) for the field with \(\sigma^2_F = 1\).

We also consider section-averaged concentrations, mimicking typically observed breakthrough curves, i.e.,

\[\bar{C}_i = \frac{1}{L_y} \int C(y, z_i, t) dy \quad \quad \text{with} \quad \quad i \in \{1, 2, 3\}, \quad (6) \]

where \(\bar{C}_1\) is evaluated at \(z_1 = H/4\), \(\bar{C}_2\) at \(z_2 = H/2\), and \(\bar{C}_3\) at \(z_3 = H\) (see Fig. 1c).

We then focus on globally integrated quantities, which can quantify spreading and mixing of the plume within the domain. To this end, we consider the second centred spatial moment of the concentration plume along the \(z\)-direction, which has a relevant role for the characterization of solute plume spreading and is defined as

\[S_z(t) = \frac{1}{M(t)} \int_{\Omega} \left[z - z_{AV}(t) \right]^2 C(x, t) d\Omega \quad \quad \text{with} \quad \quad M(t) = \int_{\Omega} C(x, t) d\Omega, \quad (7) \]

where \(z_{AV}\) is the center of mass of the plume at time \(t\), i.e.,

\[z_{AV}(t) = \frac{1}{M(t)} \int_{\Omega} z C(x, t) d\Omega. \quad (8) \]

We finally consider the scalar dissipation rate
\[\mathcal{X}(t) = \int_{\Omega} \nabla C^T D \nabla C \, d\Omega \]

which quantifies the rate of mixing of the plume and is markedly important for the study of mixing-driven reactive transport (see, e.g., De Simoni et al., 2005, and references therein).

2.3 Fixed Uniform Discretization

We solve flow (Eq. (3)) and transport (Eq. (1)) in the set-up described in Section 2.1 for a series of fixed uniform triangular meshes, each associated with an increased level of spatial discretization and decreased width of the time step. Increasing levels of space-time refinement are analyzed until convergence of the numerical results is attained. As a convergence criterion, we impose that all of the integrated quantities of interest (Eq.s (6)-(9)) do not exhibit a relative absolute error larger than 1% and that the pointwise breakthrough curves (see Eq. (5)) do not exhibit a relative absolute error larger than 5% between two consecutive levels of refinement. As a starting grid, corresponding to a first level of discretization, we select a structured Cartesian grid where the distances \(\Delta y \) and \(\Delta z \) between two nodes along the \(y \) and \(z \) axes coincide with \(\Delta K \). The resulting mesh, here termed \(G_1 \), is formed by \(n_{G_1} = 17,500 \) triangles. As a second level of discretization (corresponding to mesh \(G_2 \)), we subdivide each conductivity element into four sub-elements, each of which is composed of two triangles. In this configuration, the length of the edges of the triangles are \(\Delta y = \Delta z = \Delta K / 2 \) and \(G_2 \) comprises \(n_{G_2} = 70,000 \) elements. We proceed according to this strategy until we reach a level of refinement corresponding to \(\Delta y = \Delta z = \Delta K / 6 \) for mesh \(G_6 \). The latter is then composed of \(n_{G_6} = 630,000 \) triangles. With reference to the time step, we analyze three different values, i.e., \(\Delta t_1 = 10^{-1} \, s \), \(\Delta t_2 = 5 \times 10^{-2} \, s \) and \(\Delta t_3 = 2.5 \times 10^{-2} \, s \). Our results indicate that the quantities of interest introduced in Section 2.2 attain convergence at \(G_5 \) (formed by \(n_{G_5} = 437500 \) triangles) and for \(\Delta t_2 = 5 \times 10^{-2} \, s \). In the following, the results associated with \(G_6 \) and \(\Delta t_2 = 5 \times 10^{-2} \, s \) represent our reference solution for the fixed time-space discretization and results for the adaptive procedure will be compared against these.
3 Adaptive Discretization Technique

We briefly recall here the main features of the adaptive discretization methodology. The latter has been previously applied to shallow water modeling (Porta et al., 2012b) and computational fluid dynamics (Micheletti et al., 2010) settings. Esfandiar et al. (2015) applied this procedure to analyze solute transport within homogeneous and block-wise heterogeneous porous media.

The adaptive technique is grounded on the definition of an *a posteriori* error estimator for the global (space-time) discretization error

\[\eta_{ht} = \eta_{ht}^A + \eta_t, \]

where \(\eta_{ht}^A \) is an anisotropic spatial error estimator that enables us to optimize the size, shape, orientation of the mesh elements and \(\eta_t \) is an error estimator for the time discretization. We compute the two terms in Eq. (10) by relying on recovery-based error estimators (Zienkiewicz and Zhu, 1987), in the form introduced by Micheletti and Perotto (2010) and Porta et al. (2012b).

3.1 Anisotropic Mesh Adaptation

Let \(C_h \) be the piece-wise linear finite element approximation of concentration in the solution of Eq. (1), which is defined on mesh \(\mathcal{T}_h \). We follow Porta et al. (2012a) and Micheletti and Perotto (2010) and introduce the local anisotropic estimator

\[
\left[\eta_{E,E}(t) \right]^2 = \frac{1}{\lambda_{1,E}\lambda_{2,E}} \int \left\{ \lambda_{1,E}^2 \left[\mathbf{r}_{1,E} \cdot \left(P_R \left(C_h(t) \right) - \nabla C_h(t) \right) \right]^2 \\
+ \lambda_{2,E}^2 \left[\mathbf{r}_{2,E} \cdot \left(P_R \left(C_h(t) \right) - \nabla C_h(t) \right) \right]^2 \right\} d\Delta E \quad E \in \mathcal{T}_h, \quad t > 0
\]

Here, \(\lambda_{i,E} \) and \(\mathbf{r}_{i,E} \) (\(i = 1, 2 \)) respectively identify the eigenvalues and the eigenvectors of the tensor \(\mathbf{M}_E \), defining the mapping between a reference triangle \(\hat{E} \) and the generic element \(E \) of \(\mathcal{T}_h \) (see Fig. 2a). Note that \(\lambda_{i,E} \) are measures of the length of the semi-axes of the ellipse circumscribing \(E \), while \(\mathbf{r}_{i,E} \) identify the directions of these semi-axes (Formaggia and Perotto, 2001, 2003). The quantity \(P_R \left(C_h(t) \right) \) represents the recovered spatial gradient of \(C_h \) at time \(t \). As depicted in Fig. 2b, \(P_R \left(C_h(t) \right) \)
is computed as the area-weighted average of the discrete gradient $\nabla C_t (t)$ within the patch ΔE of triangles sharing at least one vertex with E. The a posteriori estimator of the global error associated with the finite element spatial discretization of the concentration field is computed as

$$\left[\eta^A_C(t) \right]^2 = \sum_{E \in \Omega_h} \left[\eta^A_{E,C}(t) \right]^2 \quad t > 0.$$

Eq. (12) represents an anisotropic error estimate, because it directly involves the anisotropic quantities $\lambda_{i,E}$ and $\mathbf{r}_{i,E}$ identifying the size, shape, and orientation of element E. We refer to Porta et al. (2012a, b) and Micheletti and Perotto (2010) for a rigorous illustration of the error estimator in Eq.s (11)-(12) and its application. This adaptation strategy and the associated results will be referred to as G_{VC} in the following.

Together with Eq. (12), we consider in this work an additional version of the error estimator. The latter is constructed with the aim of embedding the spatial variability of the velocity components. Let us then assume that the field $\tilde{v}_h = (u_h, \tilde{v}_h)$ represents the piece-wise linear interpolation of the velocity field on the adapted mesh \mathcal{T}_h. We introduce the dimensionless components

$$U_h = \frac{u_h - \min(u_h)}{\max(u_h) - \min(u_h)}, \quad V_h = \frac{\tilde{v}_h - \min(\tilde{v}_h)}{\max(\tilde{v}_h) - \min(\tilde{v}_h)},$$

which we embed in the following definition for the error estimator

$$\left[\eta^{A,E}_{U,h}(t) \right]^2 = \begin{cases} 0, & \text{if } C_{h,E}(t) < 10^{-7} \\ \frac{1}{\lambda_{1,E}^2 \lambda_{2,E}^2 \Delta E} \int \left\{ \lambda_{1,E}^2 \left[\mathbf{r}_{1,E} \cdot \left(P_R \left(U_h \right) - \nabla U_h \right) \right]^2 \\ + \lambda_{2,E}^2 \left[\mathbf{r}_{2,E} \cdot \left(P_R \left(U_h \right) - \nabla U_h \right) \right]^2 \right\} d\Delta E, & \text{if } C_{h,E}(t) \geq 10^{-7} \end{cases}$$

Here, $C_{h,E}(t)$ represents the average concentration in the mesh triangle E at time t. We can also define an error estimator $\eta^{A,V}_E(t)$ upon replacing U_h with V_h in Eq. (14). It is then possible to use Eq. (14) to obtain global error estimates η^A_U and η^A_V in the form of Eq. (12). Note that the error estimator in Eq. (14) is defined as a measure of the variability of the dimensionless velocity component U_h, and is also
conditional to the value of local concentration $C_{h,t}(t)$. This choice is consistent with our aim, which is directed towards targeting grid refinement across portions of the domain where solute mass is present, i.e., where transport phenomena are active at a given time.

We aim here at embedding in a unique error indicator the information on the spatial distribution of concentration and on the velocity components. Following Porta et al. (2012b), we then define a global error estimator

$$\eta_{UV}^4(t)^2 = \frac{1}{3} \left([\eta_1^4(t)]^2 + [\eta_2^4(t)]^2 + [\eta_3^4(t)]^2 \right)$$

where the concentration field and the velocity components are jointly employed to guide the grid adaptive procedure. This adaptation strategy and the associated results will be referred to as G_{VUV} in the following. Note that an error estimator in which different quantities are combined has been previously employed in Porta et al. (2012a) in the context of shallow water equations. Here, we apply the same concept to the numerical solution of Eq. (1), where the velocity components are parameters (and not unknowns) of the problem. We do so on the basis of the observation that the solution of Eq. (1) requires projecting the velocity components onto the grid employed to compute concentration. We use a linear interpolation of the velocity field between the mesh employed to solve Eq. (3) and the mesh where C_h is computed. The indicator in Eq. (15) is designed to control the error associated with the solution of C_h as well as the one related to the interpolation of U_h, V_h.

The final goal of our procedure is to construct an anisotropic spatial mesh driven by the estimator in Eq. (12) or Eq. (15). Let us assume here that C_h, U_h, V_h are known piece-wise linear functions on a generic grid \mathbb{T}_h. Our aim is then to generate a new mesh, which is designed to minimize the selected error, conditional to a given number of mesh elements. For the purpose of our demonstration, we set the number of elements of the adapted grid to $N_{ele} \approx 10^4$. The mesh adaptation procedure can be summarized as follows:
1. We set a global tolerance τ and impose that the same error τ_E is assigned to each triangle E of \mathcal{T}_h; this criterion is typically denoted as the error equidistribution principle (Formaggia and Perotto, 2003).

2. We solve a constrained local optimization problem in each triangle E of the mesh yielding the optimal values of $\lambda_{1,E}^{\text{new}}$ and $\lambda_{2,E}^{\text{new}}$ ($i = 1, 2$) for all triangles in the mesh \mathcal{T}_h (see, e.g., Formaggia and Perotto, 2003). This allows computing a metric tensor field $\mathbf{M}^{\text{new}}_{E,0}$.

3. We aim at adapting a mesh such that the number of elements (i.e., the mesh cardinality) is fixed \textit{a priori}. To this end, we apply a global and uniform rescaling of the metric tensor field $\mathbf{M}^{\text{new}}_{E,0}$ to obtain a new tensor field $\mathbf{M}^{\text{new}}_E$, which is associated with the desired number of elements. Note that the rescaling of the metric field relies on an \textit{a priori} estimation of the area of the elements, which can be obtained from the optimized quantities $\lambda_{1,E}^{\text{new}}$ and $\lambda_{2,E}^{\text{new}}$, i.e., it does not require to iteratively generate the mesh $\mathcal{T}^{\text{new}}_h$.

4. Once $\mathbf{M}^{\text{new}}_E$ is known, we generate the adapted mesh $\mathcal{T}^{\text{new}}_h$ through the metric-based mesh generator BAMG (Hecht, 2012).

Some constraints are imposed to the mesh adaptation procedure to guarantee the robustness of the methodology. Excessive element clustering is locally prevented by setting a minimum threshold value ($p_{\text{min}} = 10^{-9}$ in our test cases) for the product $\lambda_{1,E}^{\text{new}} \lambda_{2,E}^{\text{new}}$ within the local optimization solution. This is tantamount to assigning a lower limit on the element area, because $|E| = \hat{E} \lambda_{1,E}^{\text{new}} \lambda_{2,E}^{\text{new}}$. In this work we do not impose any constraint on the maximum size of grid elements. Note that it would be possible to control the maximum size of an element, e.g., by imposing an upper bound to the product $\lambda_{1,E}^{\text{new}} \lambda_{2,E}^{\text{new}}$.

3.2 Time Step Adaptation
Time step adaptation is implemented upon relying on a recovery-based estimate of the time discretization error. We aim at predicting the time step Δt^k that can be used at each time level t^k for the subsequent advancement in time. The recovery-based estimator for the time discretization error within time interval $I_{k-1} = [t^{k-1}, t^k]$ is then defined as (Porta et al., 2012b)

$$
\left[\eta_{i,k-1}^t (x) \right]^2 = \Delta t^{k-1} \left| \frac{\partial C_R (x)}{\partial t} \bigg|_{t^{k-1}} - \frac{C_h^k (x) - C_h^{k-1} (x)}{\Delta t^{k-1}} \right|^2 dt
$$

(16)

where $C_R (x)$ is a recovered solution, coinciding with the parabola which interpolates the concentration values $[C_h^{k-2} (x), C_h^{k-1} (x), C_h^k (x)]$ at times $[t^{k-2}, t^{k-1}, t^k]$, respectively (see Fig. 3a); and $C_h^k (x)$ is the numerically computed concentration at time t^k and at point x. Note that the multiplicative factor Δt^{k-1} in Eq. (16) renders the time error estimator dimensionless, consistent with the spatial error estimator in Eq. (12) and Eq. (15). In this work, the estimator in Eq. (16) is always evaluated on the basis of the concentration C_h, because flow is steady-state and the fluid velocities are then constant in time (even if variable in space). The recovery-based error estimator in Eq. (16) is evaluated at each i-node, i.e., N_i, of the current mesh \mathcal{T}_h. The time error estimator over the whole space domain is obtained as an area weighted average

$$
\left[\eta_{i,k-1}^t \right]^2 = \left[\Delta t^{k-1} \rho_{i,k-1}^t \right]^2
$$

(17)

with

$$
\left[\rho_{i,k-1}^t \right]^2 = \frac{\sum_{E \in \mathcal{E}_h} \left(1/3 \sum_{N_i \in E} \left[\eta_{i,k-1}^t (N_i) \right]^2 \right)^2 |E|}{\left[\Delta t^{k-1} \right]^2 \sum_{N \in \mathcal{E}_h} |E|}
$$

(18)

The new time step is computed by (a) substituting in (17) Δt^{k-1} with Δt^k in order to obtain a time error estimator associated with interval I_k, i.e. $\eta_{i,k}^t$; (b) imposing a tolerance for time error estimator, $\eta_{i,k}^t = \tau_{i,k}^{\infty} = 10^{-6}$. As a result we obtain (Porta et al., 2012b; and Esfandiar et al., 2014)
The predicted time step in Eq. (19) is constrained by a minimum and a maximum value. These are respectively set to $\Delta t_{\text{MIN}} = 0.05 \text{s}$ (which coincides with the value selected for the uniform grid $G6$) and $\Delta t_{\text{MAX}} = 30 \text{s}$ (which is chosen to avoid excessive coarsening of the time discretization).

3.3 Solution adaptation procedure

We detail here all the steps we follow to obtain the numerical solution of Eq. (1) through our adaptive strategy. As a first step, we compute a reference velocity field by solving the flow problem in Eq. (3) on a fixed uniform and sufficiently fine grid \mathcal{T}^F. This enables us to obtain the numerical approximation of the fluid velocity field $v_h\left(\mathcal{T}_h^F\right) = \left(u_h\left(\mathcal{T}_h^F\right), v_h\left(\mathcal{T}_h^F\right)\right)$. In this study we set $\mathcal{T}_h^F = G3$ to achieve a good balance between accuracy and computational costs.

We then illustrate in the following the way we employ the space-time adaptive procedure for a generic time level t^k. We do so by assuming the concentration $C_{h}^{k} = C_{h}\left(t^{k}\right)$ and the grid \mathcal{T}_{h}^{k} to be known. The adaptive solution is employed to compute C_{h}^{k+1}, the adapted grid \mathcal{T}_{h}^{k+1} and the new time level t^{k+1}.

These are obtained through the following steps:

1. Obtain the velocity field $\tilde{v}_h = \tilde{v}_h\left(\mathcal{T}_h^k\right)$ upon projecting $v_h\left(\mathcal{T}_h^F\right) = \left(u_h\left(\mathcal{T}_h^F\right), v_h\left(\mathcal{T}_h^F\right)\right)$ onto the grid \mathcal{T}_h^k. This is here performed through linear interpolation.

2. Solve the transport scenario, as described in Eq. (1), by employing the velocity field $\tilde{v}_h = \tilde{v}_h\left(\mathcal{T}_h^k\right)$ to determine the advective and dispersive parameters. This allows obtaining $C_{h}^{k+1}\left(\mathcal{T}_h^k\right)$.

3. Apply the mesh adaptation procedure relying on estimator in Eq. (12) or Eq. (15) and compute \mathcal{T}_{h}^{k+1}. As detailed in Section 3.2, we obtain this adapted grid so that the number of elements of \mathcal{T}_{h}^{k+1} is approximately equal to 10^4.
4. Project the concentration fields $C_h^{k-1}, C_h^k, C_h^{k+1}$ onto the new grid Ω_h^{k+1} to obtain the adapted time step Δt^k. The next time level for the simulation is then defined as $t^{k+1} = t^k + \Delta t^k$.

The procedure is then repeated until $t^{k+1} \geq T$. Note that step 4 of the above procedure can be performed only when $k > 1$, i.e., the two steps $\Delta t^0, \Delta t^1$ are associated with a fixed time step Δt_{MIN}, which is assigned a priori, as anticipated in Section 3.2.

4 Results

We illustrate here the comparison of numerical results associated with the observables described in Section 2.2 and obtained relying on: (a) space-time adaptive methodology guided by error estimators based on the concentration fields only, i.e., Eq. (12), or the joint use of the concentration and velocity fields, i.e., Eq. (15); and (b) fixed time step and fixed uniform spatial discretization. In the latter case, we focus in the following on results obtained with a fixed discretization time interval set to Δt_2 and grids G6 and G1, respectively corresponding to the reference solution, and to a uniform grid characterized by a number of elements of the same order of magnitude as the two adaptive methodologies considered. We discuss results obtained for the highly heterogeneous field ($\sigma_Y^2 = 5$) in Section 4.1, and those obtained for mild heterogeneity ($\sigma_Y^2 = 1$) in Section 4.2.

4.1 Highly heterogeneous domain ($\sigma_Y^2 = 5$)

The selected realization of the log-conductivity field is depicted in Fig. 1a. Fig. 1b depicts the natural logarithm of the velocity modulus, i.e. $\log(|v|)$, as obtained from the numerical discretization of the flow problem on the fixed uniform grid G3. As noted in Section 2.1, Fig. 1b reveals the presence of two high velocity channels (see dashed curves in Fig. 1b), which act as preferential pathways for fluid flow and are expected to drive transport behavior. An approximately circular low velocity region centered around location $z = 0.035$ m, $y = 0.02$ m is also identified (see dash-dotted circle in Fig. 1b). Fig. 1c depicts the resulting concentration field at $t = 0.5$ t_{PV}. As a general observation, one can note
that solute mass distribution across the domain is largely influenced by the structure of the velocity field, part of the mass being delayed due to the presence of the above mentioned low velocity region. We start our analysis by focusing on the early-time features of the adapted mesh and resulting concentration fields when applying adaption strategies G_{CUV} and G_{VC}. We compare the ensuing results against those obtained by the reference solution. Fig. 4 depicts the concentration field obtained at $t = 0.05 \, t_{PV}$ by the three discretization strategies (Fig. 4a-c) and the adapted meshes (Fig. 4d-e). We present concentrations in logarithmic scale, because small concentration values are critical to evaluate early arrivals and tailing, which are often of interest in practical applications. All panels of Fig. 4 are focused on a limited region located in the proximity of the inflow boundary. Analysis of Fig. 4a-c shows that G_{CUV} and G_{VC} yield a solution which is consistent with G_6. We note that two solute fingers appear at early times. This is due to the channeling in the velocity field around the low velocity region zone highlighted in Fig. 1b. The analysis of the spatial topology of the adapted grid G_{VC} reveals that the element size is relatively coarse in the proximity of the forward solute fringe (see Fig. 4d). This can be seen, e.g., in the region $y = [0, 0.01] \, m \times z = [0.04, 0.05] \, m$ and is consistent with the observation that concentrations vary between approximately 10^{-7} and 10^{-4} in this region, i.e., the concentration gradient is lower than that associated with other portions of the domain (see Fig. 4b). As a consequence, the log-concentration field rendered by G_{VC} appears to be characterized by a local loss of accuracy. We also observe that some oscillations (of the order of 10^{-6}-10^{-5}) appear in the solution. This is evident, for example, around location $(y \approx 0.02 \, m, \, z \approx 0.02 \, m)$. The emergence of these oscillations might be linked to the interpolation of the solution between adapted meshes, which is in turn associated with some errors in the presence of relatively coarse elements. The adapted mesh G_{CUV} is characterized by elements of small size all along the forward solute fringe. This is related to the observation that adaptation is also guided by the spatial gradients of U_h and V_h, which are embedded in Eq.s (14)-(15). As a result, the solution rendered by G_{CUV} is capable of reproducing the fine scale details of the reference log-
concentration field, which are partially lost in G_{VC}. We also observe that the shape of the triangular elements is nearly isotropic when the velocity components are considered for mesh adaptation, consistent with the isotropic correlation model selected for the spatial covariance of conductivity.

Fig. 5 depicts the log-concentration field for time $t = 1.5 \, t_{PV}$, as given by (a) G_6, (b) G_{VC}, and (c) G_{cUV}. From a preliminary visual inspection, the concentration field displays smooth variations and the three solutions appear to be very similar. Solute mass remains trapped in the low velocity region located in the bottom part of the domain (see also Fig. 1b), solute being almost uniformly distributed across the system for $z > 0.07$ m. These features of the solution are reflected in the adapted meshes.

Grid G_{VC} is refined within the low conductivity zone where relatively high concentration gradients arise (see Fig. 5d). Mesh G_{cUV} is formed by elements of comparable size throughout a vast portion of the domain, i.e., at all locations where $C > 10^{-7}$ (see Fig. 5c and Fig. 5e). At these late times, visual inspection of the results indicates that the solutions obtained for G_6, G_{VC} and G_{cUV} share some similarities, even as the adapted meshes display marked differences. Fig. 6 depicts a magnification of the log-concentration field and of the adapted grids around the low velocity area at $t = 1.5 \, t_{PV}$. The solution associated with mesh G_{VC} exhibits local variations of the order of 10^{-6}-10^{-5}. These are particularly evident at $z \approx 0.015$ m, i.e., the light blue fringes of logC observed in Fig. 6b do not appear in the reference solution (Fig. 6a) and when G_{cUV} is considered (Fig. 6c). As previously noted, this result can be linked to local differences of the element size of the grids associated with G_{VC} and G_{cUV}. We observe that G_{cUV} is composed of elements of mostly uniform size. Only mild variations in the element shape and orientation are detected in Fig. 6e and Fig. 5e. This implies that the footprint of the concentration field on the mesh topology is barely effective. Otherwise, the mesh G_{VC} is completely tied to the concentration field gradients and displays marked variations of the element size and shape around the low velocity area.
The evolution of the time step, Δt, as a function of time is depicted in Fig. 7 for G_{VCUV} (red curve) and G_{VC} (blue curve). The lowest (Δt_{MIN}) and largest (Δt_{MAX}) allowed time step are also reported in Fig. 7. The time steps at early times practically coincide with Δt_{MIN}, due to the rapid temporal variation of the concentration field. As time advances, values of Δt larger than Δt_{MIN} are allowed. This is so because the solute plume spreads over an increased portion of the domain and diffusive/dispersive process gain importance leading to a reduced time variation of the concentration fields. The combination of the time step and mesh adaptivity yields a relative speed up of the computational costs. The ratio of the CPU time required by G_{VCUV} and G_6, $CPU_{VCUV/G6}$, and by G_{VC} and G_6, $CPU_{VC/G6}$, is respectively equal to $CPU_{VCUV/G6} = 1.27 \times 10^{-1}$ and $CPU_{VC/G6} = 1.56 \times 10^{-1}$.

We now proceed to analyze the behavior of the selected quantities of interest described in Section 2.2. Fig. 8a depicts the section-averaged concentrations $C_i(t)$, with $i = 1, 2, 3$, evaluated for G_6 (see Fig. 1c). Asymmetry is a recurring feature of all C_i results. This behavior is linked to the level of heterogeneity of the conductivity field (see, e.g., Riva et al., 2008, 2010; Edery et al., 2015). A marked tailing behavior appears at late times. This is particularly evident in C_1, due to the presence of the low velocity region where solute accumulates at early times and from which it is subsequently slowly released by diffusion-dispersion. For the sake of clarity, the comparison between the results obtained with the strategies considered is then highlighted across a set of subpanels, each focusing on specific parts of the $C_i(t)$ curves. Fig. 8b depicts details of the early times behavior of C_1 for G_6 (black curve), G_1 (green curve), G_{VC} (blue curve) and G_{VCUV} (red curve). Overall, we observe that the differences between section-averaged concentrations rendered by the various solutions are relatively small (of the order of 10^{-5}). This can be also seen for intermediate and late solute arrivals, respectively in Fig.s 8c and 8d. We observe that the fixed mesh G_1 tends to underestimate the section-averaged concentration for late arrivals, the adaptive grids reproducing quite consistently the results given by G_6. The two adaptive strategies also well reproduce the peak concentration given by G_6. Otherwise,
G1 tends to underestimate the largest concentration by approximately 10^{-3} at both locations z_1 and z_2, as depicted in Fig. 8c.

Fig. 9 illustrates comparisons between results obtained with the diverse meshes tested for local values of concentrations C_F and C_S in Eq. (5). Note that, even as the two locations considered are quite close in the domain, the local concentration dynamics exhibit very different characteristics at these points. For example, C_F peaks at $t = 0.1 \cdot PV$, while C_S attains the largest value at $t = 1.5 \cdot PV$ and then slowly decreases. The delay observed at these two locations reflects the fact that transport is advection dominated at location P_F, while solute mass exchanges around location P_S are dominated by diffusion and transverse dispersion.

Fig. 9 shows a magnification of C_F at early (Fig. 9b), intermediate (Fig. 9c), and late (Fig. 9d) times for G_6 (continuous black curves), G_1 (green curves), G_{VC} (blue curves) and G_{VCUV} (red curves). The differences between G_1 and G_6 can reach values up to 10^{-2} and are particularly evident for $t < 0.1 \cdot PV$, i.e., as long as C_F increases with time (see Fig.s 9b-c). The two adapted meshes are here in close agreement with G_6. Note that at these early times the two adaptive strategies tend to render later solute arrivals at P_F, while G_1 yields earlier solute arrivals (due to numerical diffusion). The difference between the solutions given by all the strategies tend to reduce to values below 10^{-4} for $t > 0.1 \cdot PV$ (Fig.s 9c-d). We observe that the solution associated with G_{VC} displays oscillations of the order of 10^{-5} which are visible at the forward and backward tails. Such oscillations are related to the small inaccuracies noted in Fig. 4 and Fig. 5, and are explained by observing that the local element size at location P_F is characterized by large variations across time.

The temporal variation of concentration C_S (i.e., concentration at point P_S) is depicted in Fig.s 9e-f. Considerable differences appear between G_1 and G_6, while the adaptive solutions closely adhere to the results given by the reference solution. For example, one can see that the time of occurrence of a concentration value $C_S = 10^{-3}$ is largely overestimated by G_1 (see Fig. 9e).
We then consider the evolution of global indicators of spreading and mixing of solute mass in the domain, i.e., S_{zz} in Eq. (7) and χ in Eq. (9). Fig. 10a depicts a comparison between S_{zz} evaluated with G_6 (black curve), G_1 (green curve), G_{vCUV} (red curve) and G_v (blue curve). Only limited differences can be noted between the four solutions, G_1 only slightly overestimating S_{zz} for $t < 0.25 t_{PV}$ and otherwise underestimating it. Fig. 10b reveals a marked difference between the scalar dissipation rate χ obtained through G_1 when compared against reference results obtained through G_6. Otherwise, G_v and G_{vCUV} provide values of χ which compare extremely well with the reference solution G_6. This result suggests that, while different meshing strategies may have a reduced impact on the prediction of spreading, they can heavily affect the prediction of mixing, an aspect which can be of relevance also with reference to the simulation of reactive processes.

As a final term of comparison, Fig. 11 depicts the global a posteriori error estimator η^A_C (Eq. (12)) for G_6 (black curve), G_1 (green curve), G_{vCUV} (red curve) and G_v (blue curve). Note that the value of the estimator provides an approximation of the computational error in the $H1$ seminorm (i.e., based on the gradients of the concentration). Inspection of Fig. 11 reveals that G_1 shows the highest value of η^A_C across all simulation times. Mesh G_6 renders the smallest value of η^A_h for $0.05 t_{PV} < t < t_{PV}$. Note that the slope of the curves for G_v and G_{vCUV} is smaller than that of the curve for G_6 within the interval $0.05 t_{PV} < t < t_{PV}$. The smallest slope given by the adaptive procedures within the highlighted temporal interval is consistent with the observation that, even if the spatial gradients in the solution are smearing out, the plume spreads across the z directions. The total plume size increases and the assigned number of elements N_{ele} needs to be cover an area of the domain which increases with time. As a consequence of these dynamics, the reduction in η^A_C is less marked in the adaptive procedure than in G_6. The elements of the adaptive grid G_v tend to concentrate around the low velocity region at late times, i.e., $t > t_{PV}$ (see Fig. 4). This allows for a proper resolution of concentration gradients which arise around the low velocity region, leading to a sensible reduction of
\(\eta_c^A \) (see the marked negative slope of the blue curve in Fig. 11). Interestingly, the values of \(\eta_c^A \) associated with \(G_{vc} \) and \(G_{vCUV} \) are smaller than those related to \(G6 \) for \(t < 0.05t_{PV} \), when \(\eta_c^A \) reaches its largest value. Moreover, inspection of meshes \(G_{vc} \) and \(G_{vCUV} \) at times \(t < 0.05t_{PV} \) reveals that almost all \(N_{ele} \) elements are properly placed near the inlet, with elements having an average size smaller than the one of the uniform elements in \(G6 \). Therefore, it is reasonable to assume that adaptive grids may lead to a slightly more accurate spatial solution at these early times than the reference \(G6 \).

4.2 Mildly heterogeneous domain (\(\sigma_{Y}^2 = 1 \))

We focus here on the test case with \(\sigma_{Y}^2 = 1 \), to assess the sensitivity of the results to the heterogeneity of the porous medium. The \(Y \) field here considered has been generated with the same seed number used for the case with \(\sigma_{Y}^2 = 5 \) to preserve the key features of the spatial structure of the velocity field depicted in Fig. 1b. We omit results related to section-averaged concentrations \(\bar{C} \), which display a satisfactory agreement between \(G6 \) and the two adaptive strategies. Fig. 12a depicts the temporal evolution of the local concentrations \(C_S \) and \(C_F \) for \(G6 \). We recall that the location of the two points \(P_F \) and \(P_S \) is not the same as in the highly heterogeneous test case examined in Section 4.1.

The overall behaviors of \(C_S \) and \(C_F \) are not dramatically different, reflecting the reduced influence of the heterogeneity on the concentration, as opposed to the highly heterogeneous setting. Fig. 12b depicts a magnification of \(C_S \) at early times. Note the good agreement between the results obtained for \(G6 \), \(G_{vc} \) and \(G_{vCUV} \). A good agreement between the results obtained via \(G6 \), \(G_{vc} \) and \(G_{vCUV} \) is also evidenced at early time for \(C_F \) (not shown) and at late time for both \(C_F \) and \(C_S \) (see Fig. 12d).

The two adaptive strategies well reproduce the observed peak of \(C_F \), as shown in Fig. 12c. A result of similar quality also holds for the peak of \(C_S \) (not shown). Results obtained via \(G1 \) display the smallest peak and heaviest tails, features which can be attributed to the action of numerical dispersion.

Fig. 13 depicts the time evolution of (a) \(S_{zz} \) and (b) \(\chi \). Similar to the case for \(\sigma_{Y}^2 = 5 \), we note that the temporal evolution of \(S_{zz} \) and \(\chi \) associated with \(G_{vc} \) and \(G_{vCUV} \) is in good agreement with the
results obtained through $G6$. Figs 13a-b highlight that solute spreading, as represented by S_{zz}, is overestimated and the scalar dissipation rate χ is underestimated for mesh $G1$, a feature which is related to reduced concentration gradients. The adaptive mesh G_{CUV} provides the smallest S_{zz} and the highest χ values. This is in agreement with the observed general tendency of providing a more compact and sharp evolution of the injected plume by using this adaptive strategy.

5 Conclusions

We apply a space-time adaptive methodology guided by a posteriori error estimator for solving solute transport in porous media with spatial distributions of log conductivity Y characterized by mild and high levels of heterogeneity. We quantify heterogeneity in terms of the variance, σ_Y^2, of Y, which we set to $\sigma_Y^2 = 1$ or 5 in our examples. The heterogeneous conductivity fields are synthetically generated on a uniform grid (termed $G1$). We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale.

The key goal of our work is to test the applicability of an automatic mesh and time step adaptation procedure to solve solute transport in such conditions. We implement two strategies to guide the space adaptive procedure. In the first strategy, labeled as G_{VC}, the mesh is adapted solely on the basis of the spatial gradients of the concentration field. The second strategy, labeled as G_{CUV}, embeds the spatial gradients of both concentration and velocity components to guide the error estimator. We perform a series of numerical tests and compare the results of the implemented adaptive strategies against those obtained through fixed uniform discretizations. The number of elements of the adapted meshes is kept constant in time and is approximately equal to the number of elements employed in $G1$. The time step is allowed to change within a given range of values ($\Delta t_{MIN}, \Delta t_{MAX}$). The fixed uniform discretization strategies are set such that the spatial meshes are structured and tailored to the spatial structure of Y and the time step is fixed to Δt_{MIN}. Our results lead to the following major conclusions:
1. For the highest level of heterogeneity considered ($\sigma_Y^2 = 5$), convergence of the numerical results, as quantified by local and spatially-averaged quantities, is achieved for a numerical uniform grid ($G6$) whose element size is six times smaller than element of $G1$. This result indicates that, in general, it may not be appropriate to routinely employ the same spatial discretization to describe the random conductivity field and numerically approximate solute mass transport. The results associated with grid $G6$ are then taken as a reference against which we test our grid adaptation strategies.

2. Comparison of the results obtained by solving the transport problem on $G1$ against those resulting from the mesh adaptation strategy indicates that only mild differences can be observed when section-averaged concentration and global solute spreading indicators are considered. Otherwise, the use of an appropriate discretization strategy is markedly relevant when local concentration values and global mixing are of concern. This result suggests that mesh adaptation techniques may be well suited to simulation of reactive transport processes.

3. Both adaptive strategies, G_{ec} and G_{ecuv}, can reproduce the results obtained through $G6$ in terms of section-averaged and local concentration values, as well as global spreading and mixing metrics. This result is achieved upon reducing the computational cost by approximately one order of magnitude.

4. The two adaptive strategies lead to different meshing of the computational domain along time. Embedding information on both velocity and concentration in the mesh adaptation strategy yields to a more uniform distribution of mesh elements where solute mass is not negligible. However, the two strategies analyzed yield similar results with reference to (section-averaged) concentration breakthrough curves, global mixing and spreading indicators. A key difference is that local concentration values obtained through G_{ec} exhibit oscillations at locations characterized by low concentration gradients and relatively coarse elements. This highlights
the importance of controlling the largest element size in the adaptive procedure, when such low values of concentration are of interest.

5. The space-time evolution of the G_{vc} and G_{vcuv} meshes suggests that the former is more appropriate to grasp the main features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant, while the latter yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions.
References

Fig. 1. Test case with $\sigma^2_Y = 5$: (a) Spatial distribution of the log-conductivity field Y, (b) spatial distribution of the (natural) logarithm of the velocity modulus, (c) solute concentration field at $t = 0.5 t_{PV}$. High-velocity channels (dashed lines) and the low velocity region (dash-dotted line) are highlighted in (b). Locations associated with section averaged concentrations \bar{C}_1, \bar{C}_2, \bar{C}_3 and local concentrations C_F, C_S are identified in (c) (see text for definitions). Imposed boundary conditions for the flow and transport problems are respectively included in panels (b) and (c).
Fig. 2. Spatial error estimator $\eta_{E,E}^\alpha(t)$ in (11): definition sketch of (a) the anisotropic setting, and (b) the recovered gradient $P_R(C_h)$.
Fig. 3. Time derivative recovery procedure: (a) recovered solution C_R (dotted and dashed lines) versus linear interpolant of values C_h (continuous line) and (b) comparison between the time derivatives $\partial C_R / \partial t$ (dotted and dashed lines) and $\partial C_h / \partial t$ (continuous lines).
Fig. 4. Test case with $\sigma_y^2 = 5$: spatial distribution of the concentration field (in logarithmic scale) within a subset of the domain close to inlet at time $t = 0.05 t_{PV}$, for discretization (a) G_6; (b) G_{VC}; (c) G_{VCUV} and the associated adapted meshes for (d) G_{VC}; (e) G_{VCUV}.
Fig. 5. Test case with $\sigma_y^2 = 5$: spatial distribution of the concentration field (in logarithmic scale) within the simulation domain at time $t = 1.5t_{PV}$, for discretization (a) G_6; (b) G_{VC}; (c) G_{VCUV} together with the associated adapted meshes for (d) G_{VC}; (e) G_{VCUV}.
Fig. 6. Test case with $\sigma_y^2 = 5$: spatial distribution of the concentration field (in logarithmic scale) in the low velocity region evidenced in Fig. 1b for $t = 1.5 t_{PV}$ and discretization (a) G_6; (b) G_{vC}; (c) G_{vCUV} together with the associated adapted meshes for (d) G_{vC}; (e) G_{vCUV}.
Fig. 7. Test case with $\sigma_\tau^2 = 5$: temporal evolution of the adaptive time step, Δt.

$\Delta t_{\text{MAX}} = 1.5 \times 10^{-1}$

$\Delta t_{\text{MIN}} = 2.5 \times 10^{-4}$
Fig. 8. Test case with $\sigma_y^2 = 5$: temporal evolution of the section-averaged concentrations \overline{C}_1 (continuous curves), \overline{C}_2 (dashed curves), and \overline{C}_3 (dotted curves), for (a) $G6$. Panels (b-d) display the comparisons between solutions given by $G1$, $G6$, G_{vc}, G_{vcuv}, associated with early times (b), peak (c) and late times (d), as indicated in panel (a).
Fig. 9. Test case with \(\sigma_y^2 = 5 \): temporal evolution of the local concentration values \(C_F \) (continuous curves) and \(C_S \) (dashed curves), for (a) G6. Panels (b-f) display the comparisons between solutions given by G1, G6, \(G_{VC} \), \(G_{VCUV} \) related to specific time intervals for \(C_F \) (b-d) and \(C_S \) (e-f) as indicated in panel (a).
Fig. 10. Test case with $\sigma_Y = 5$: time evolution of (a) solute plume spreading, S_{zz}, and (b) scalar dissipation rate, χ.
Fig. 11. Test case with $\sigma^2_Y = 5$: Time evolution of the *a posteriori* estimator $\eta^4_C(t)$ in Eq. (12).
Fig. 12. Test case with $\sigma_y^2 = 1$: time evolution of the local concentration values C_F (continuous curves) and C_S (dashed curves), for (a) G6. Panels (b-d) display the comparisons between solutions given by $G1$, $G6$, G_{VC}, G_{VCF} and related to specific time intervals for C_F (c-d) and C_S (b,d), as indicated in panel (a).
Fig. 13. Test case with $\sigma_Y^2 = 1$: temporal evolution of (a) solute plume spreading, S_∞, and (b) scalar dissipation rate, χ.