
Stream Processing Languages in the Big Data Era

Martin Hirzel
IBM Research, USA
hirzel@us.ibm.com

Guillaume Baudart
IBM Research, USA

Guillaume.Baudart@ibm.com

Angela Bonifati
Lyon 1 University, France
angela.bonifati@univ-lyon1.fr

Emanuele Della Valle
Politecnico di Milano, Italy
emanuele.dellavalle@polimi.it

Sherif Sakr
University of Tartu, Estonia

sherif.sakr@ut.ee

Akrivi Vlachou
University of Piraeus, Greece

avlachou@aueb.gr

ABSTRACT
This paper is a survey of recent stream processing lan-
guages, which are programming languages for writing
applications that analyze data streams. Data streams, or
continuous data flows, have been around for decades.
But with the advent of the big-data era, the size of data
streams has increased dramatically. Analyzing big data
streams yields immense advantages across all sectors of
our society. To analyze streams, one needs to write a
stream processing application. This paper showcases
several languages designed for this purpose, articulates
underlying principles, and outlines open challenges.

1. INTRODUCTION
We have entered the big-data era: the world is

awash with data, and more data is being produced
every second of every day. Data analytics solu-
tions must contend with data being big both in the
static-data sense of an ocean of many bytes and
in the streaming sense of a firehose of many bytes-
per-second. In fact, driven by the realization that
static data is merely a snapshot of parts of a data
stream, the data technology industry is focusing in-
creasingly on data-in-motion. Analyzing the stream
instead of the ocean yields more timely insights and
saves storage resources [6].

Stream processing languages facilitate the devel-
opment of stream processing applications. Stream-
ing languages simplify common coding tasks and
make code more readable and maintainable, and
their compilers catch programming mistakes and
apply optimizing code transformations. The land-
scape of streaming languages is diverse and lacks
broadly accepted standards. Stephens [79] and John-
ston et al. [56] published surveys on stream process-
ing languages in 1997 and 2004. Much has hap-
pened since then, from database-inspired streaming
languages to the rise of big data and beyond. Our
survey continues where prior surveys left o↵, focus-
ing on streaming languages in the big-data era.

A stream is a sequence of data items, and the
length of a stream is conceptually infinite, in the
sense that waiting for it to end is ill-defined [70]. A
streaming application is a computer program that
consumes and produces streams. A stream process-
ing language is a domain-specific language designed
for expressing streaming applications. The goal of a
stream processing language is to strike a balance be-
tween the three requirements of performance, gen-
erality, and productivity. Performance is about an-
swering high-throughput input streams with low-
latency output streams. Generality is about making
it possible to handle a variety of processing needs
and data formats. And productivity is about en-
abling developers to write good code quickly.

Traditionally, programming languages have been
characterized by their paradigm, including imper-
ative, functional, declarative, object-oriented, etc.
However, for streaming languages, the paradigm is
not the most important characteristic; most stream-
ing languages are more-or-less declarative. More
important characteristics include the data model
(e.g., relational, XML, RDF), execution model (e.g.,
synchronous, big-data), and target domain and users
(e.g., event detection, reasoning, end-users). Sec-
tion 2 surveys languages based on these character-
istics. Section 3 generalizes from individual lan-
guages to extract recurring concepts and principles.
Section 4 does the inverse: instead of looking at
what most streaming languages have in common, it
explores what most streaming languages lack. Fi-
nally, Section 5 concludes our paper.

2. STREAM PROCESSING LANGUAGES
There is much diversity in stream processing lan-

guages, stemming from di↵erent primary objectives,
data models, and ways of thinking. This section
surveys eight styles of stream processing languages.
Each subsection introduces one of these styles using
an exemplary language, followed by a brief discus-
sion of important other languages of the same style.

SIGMOD Record, June 2018 (Vol. 47, No. 2) 29

2.1 Relational Streaming

1 Select IStream(Max(len) As mxl,
2 MaxCount(len) As num,
3 ArgMax(len, caller) As who)
4 From Calls[Range 24 Hours Slide 1 Minute]

Figure 1: CQL code example.

In 2004, Arasu et al. at Stanford introduced CQL
(for Continuous Query Language) [11]. CQL has
been designed as an SQL-based declarative language
for implementing continuous queries against streams
of data, such as the LinearRoad benchmark [10].
The design was influenced by the TelegraphCQ sys-
tem, which proposed an SQL-based language with a
focus on expressive windowing constructs [29]. Fig-
ure 1 illustrates a CQL code example that uses a
time-based sliding window (per minute within the
last 24 hours) over phone calls to return the max-
imum phone call length along with its count and
caller information.

IStream,
DStream,
RStream

Windows
(count,

time, 6)
σ, π, γ,

S
tre

am
s

R
el

at
io

ns

6
6

Figure 2: CQL algebra operators.

The semantics of CQL are based on two phases of
data, streams and relations. As Figure 2 illustrates,
CQL supports three classes of operators over these
types. First, stream-to-relation operators freeze a
stream into a relation. These operators are based
on windows that, at any point of time, contain a his-
torical snapshot of a recent portion of the stream.
CQL includes time-based and tuple-based windows,
both with optional partitioning. Second, relation-
to-relation operators turn relations into another re-
lation. These operators are expressed using stan-
dard SQL syntax and come from traditional rela-
tional algebra, such as select (�), project (⇡), group-
by-aggregate (�), and join (./). Third, relation-to-
stream operators thaw a relation back into a stream.
CQL supports three operators of this class: IStream,
DStream, and RStream (to capture inserts, deletes,
or the entire relation).

Streaming SQL dialects were preceded by tempo-
ral relational models such as the one by Jensen and
Snodgrass in the early ’90s [55]. In their model, each
temporal relation has two main dimensions: a valid
time record and transaction time. Besides Tele-

graphCQ, another CQL predecessor was GSQL [35].
In addition to the standard SQL operators (e.g., �,
⇡, �, ./), GSQL supported a merge operator that
combines streams from multiple sources in order as
specified by ordered attributes. GSQL supported
joins as long as it could determine a window from
ordered attributes and join predicates.

CQL has influenced the design of many systems,
for example, StreamInsight [5] and StreamBase [76].
Jain et al. described an approach to unify two di↵er-
ent proposed SQL extensions for streams [54]. The
first, by Oracle, was CQL-based and used a time-
based execution model that could model simultane-
ity. The second, by StreamBase, used a tuple-based
execution model that provided a way to react to
primitive events as soon as they are seen by the
system. SECRET goes beyond Jain et al.’s work to
comprehensively understand the results of various
window-based queries (e.g., time- and tuple-based
windows) [19]. Zou et al. showed how to turn a
stream of queries into a stream query by stream-
ing their parameters [89]. Chandramouli et al. pre-
sented TiMR, which implemented temporal queries
over the MapReduce framework [27]. And finally,
Soulé et al. [77] presented a type system and small-
step operational semantics for CQL via translation
to the Brooklet stream-processing calculus [78].

2.2 Synchronous Dataflow

1 node tracker (speed, limit : int) returns (t : int);
2 var x: bool; cpt: int when x;
3 let
4 x = (speed > limit);
5 cpt = counter((0, 1) when x);
6 t = current(cpt);
7 tel

Figure 3: Lustre code example.

Synchronous dataflow (SDF) languages were in-
troduced to ease the design of real-time embedded
systems. They allow programmers to write a well-
defined deterministic specification of the system. It
is then possible to test, verify, and generate em-
bedded code. The first dataflow synchronous lan-
guages Lustre [25] (Caspi and Halbwachs) and Sig-
nal [60] (Le Guernic, Benveniste, and Gautier) were
proposed in France in the late 1980s. A dataflow
synchronous program is a set of equations defining
streams of values. Time proceeds by discrete logi-
cal steps, and at each step, the program computes
the value of each stream depending on its inputs
and possibly previously computed values. This ap-
proach is reminiscent of block diagrams, a popu-
lar notation to describe control systems. Figure 3
presents a Lustre code example that tracks the num-

30 SIGMOD Record, June 2018 (Vol. 47, No. 2)

ber of times the speed of a vehicle exceeds the speed
limit. The counter cpt starts with 0 and is incre-
mented by 1 each time the current speed exceed
the current limit (when x). The return value t main-
tains the last computed value of cpt between two
occurrences of x (current (cpt)).

Compared to the other languages presented here,
SDF languages are relatively low level and target
embedded controllers. The focus is on compiling ef-
ficient code that executes in bounded memory with
a predictable execution time. In particular, this im-
poses that the schedule and communication rates
can be statically computed by the compiler. Addi-
tional static analyses reject programs with potential
initialization or causality issues. Compilers produce
imperative code that can be executed in a control
loop without communication bu↵ers triggered by
external events or on a periodic signal (e.g., every
millisecond). The link between logical and real time
is left to the designer of the system.

The dataflow synchronous approach has inspired
multiple languages: Lucid Synchrone [73] combines
the dataflow synchronous approach with functional
features à la ML, StreamIt [80] focuses on e�cient
parallel processing of large streaming applications,
and Zélus [20] is a Lustre-like language extended
with ordinary di↵erential equations to define contin-
uous-time dynamics. Lustre is also the backbone
of the industrial language and compiler Scade [34]
routinely used to program embedded controllers in
many critical applications.

2.3 Big-Data Streaming

1 stream<float64 len, rstring caller > Calls = CallsSrc() {}
2 type Stat = tuple<float64 len, int32 num, rstring who>;
3 stream<Stat> Stats = Aggregate(Calls) {
4 window Calls: sliding , time(24.0⇤60.0⇤60.0), time (60.0);
5 output Stats : len = Max(Calls.len),
6 num = MaxCount(Calls.len),
7 who = ArgMax(Calls.len, Calls . caller);
8 }

Figure 4: SPL code example.

The need to handle diverse data and processing
requirements at scale motivated several recent big-
data streaming languages and systems [3, 4, 24, 26,
51, 59, 69, 81, 87]. Each of them makes it easy
to integrate operators written in general-purpose
languages and to parallelize them on clusters of
multicore computers. Hirzel et al. introduced the
SPL language as part of the IBM Streams product
in 2010 [50, 51]. Figure 4 shows an example for
a similar use-case as Figure 1. Line 1 defines a
stream Calls by invoking an operator CallsSrc , and
Lines 3-8 define a stream Stats by invoking an op-

erator Aggregate. An SPL program explicitly speci-
fies a directed graph of stream edges and operator
nodes. Streams carry tuples; in the examples, tu-
ple attributes contain primitive values, but in gen-
eral, they can also contain compound values such
as other tuples or lists. Operators create and trans-
form streams; operators are defined by users or li-
braries, not built into the language. Operators can
be further configured upon invocation, for example,
with windows or output assignments. To facilitate
distribution, SPL’s semantics are defined to require
minimal synchronization between operators [77].

Like SPL, the core concept of other languages for
big-data streaming is also that of a directed graph of
streams and operators. This graph is an evolution
of the query plan of earlier stream-relational sys-
tems. In fact, one can view Aurora [2], Borealis [1],
and Spade [47] as the evolutionary links between
relational and big-data streaming languages. They
still focused on relational operators while already
encouraging developers to explicitly code graphs.

Unlike SPL, which is a stand-alone language, later
big-data streaming systems o↵er languages that are
embedded in a general-purpose host language, typ-
ically Java. MillWheel focused on key-based parti-
tioned parallelism and semi-automatic handling of
out-of-order data [3]. Naiad focused on supporting
both streaming and iterative batch analytics [69],
using elaborate timestamps and a LINQ-based sur-
face language [66]. Spark Streaming emulated stream-
ing by repeated computations on immutable in-me-
mory data batches [87]. Storm o↵ered at-least-once
semantics via bu↵ering and acknowledgements [81].
Trill used batching to improve throughput and of-
fered an extensible aggregation framework [26]. Heron
displaced Storm by adding several improvements,
such as a back-pressure mechanism [59]. Beam picks
up where MillWheel left o↵, giving programmers
ways to reconcile event time and processing time [4].
And finally, Flink focuses on supporting both real-
time streaming and batch analytics [24].

All of the above-listed big-data streaming sys-
tems o↵er embedded languages for specifying more-
or-less explicit stream graphs. An embedded lan-
guage is an advanced library or framework that
makes heavy use of host-language abstractions such
as lambdas, generics, and local variable type infer-
ence. For instance, LINQ integrates SQL-inspired
query syntax in a general-purpose language [66].
Embedded languages o↵er simple interoperability
with their host language, as well as leveraging host-
language tools and skills [52]. On the downside,
since they are not self-contained, they are hard to
isolate clearly from the host language, inhibiting de-
bugging, optimization, and standardization.

SIGMOD Record, June 2018 (Vol. 47, No. 2) 31

2.4 Complex Event Processing

1 stream<Alert> Alerts = MatchRegex(Calls) {
2 param
3 partitionBy : caller ;
4 predicates : {
5 tooFarTooFast =
6 geoDist(First (loc), Last(loc)) >= 10.0
7 && timeDist(First(ts), Last(ts)) <= 60.0; };
8 pattern : ”.+ tooFarTooFast”;
9 output

10 Alerts : who=caller, where=Last(loc), when=Last(ts);
11 }

Figure 5: CEP example.

Complex event processing (CEP) uses patterns
over simple events to detect higher-level, complex,
events that may comprise multiple simple events.
CEP can be considered either as an alternative to
stream processing or as a special case of stream pro-
cessing. The latter consideration has led to the def-
inition of CEP operators in streaming languages.
For example, the MatchRegex [49] operator imple-
ments CEP in the library of the SPL language [51]
(Section 2.3). MatchRegex was introduced by Hirzel
in 2012, influenced by the MATCH-RECOGNIZE pro-
posal for extending ANSI SQL [88]. Compared to
its SQL counterpart, MatchRegex is simplified, syn-
tactically concise, and easy to deploy as a library
operator. MatchRegex is implemented via code gen-
eration and translates to an automaton for space-
and time-e�cient incremental computation of ag-
gregates. However, it omits other functionalities
beyond pattern matching, such as joins and report-
ing tasks. Figure 5 shows an example for detecting
a complex event when simple phone-call events oc-
cur over 10 miles apart within 60 seconds. Line 8
defines the regular expression, where the period (.)
matches any simple event; the plus (+) indicates
at-least-once repetition; and tooFarTooFast is a sim-
ple event defined via a predicate in Lines 5–7. The
First and Last functions reference corresponding sim-
ple events in the overall match: in this case, the
start of the sequence matched by .+ and the simple
event matched by tooFarTooFast.

One of the earliest languages for complex event
queries on real-time streams was SASE [86]. The
language was designed to translate to algebraic op-
erators, but did not yet support aggregation or reg-
ular expressions with Kleene closure, as used in Fig-
ure 5. The Cayuga Event Language o↵ered aggre-
gation and Kleene closure, but did so in a hand-
crafted syntax instead of familiar regular expression
syntax [42]. The closest predecessor of MatchRegex
was the Match-Recognize proposal for extending
SQL with pattern recognition in relational rows [88].

It used regular-expression syntax as well as aggre-
gations. Like MatchRegex, it is embedded in a host
language that supports orthogonal features via op-
erators such as joins. Another take on CEP using
regular expressions was EventScript [33], which al-
lowed the patterns to be interspersed with action
blocks. While most CEP pattern matching is inher-
ently sequential, Chandramouli et al. generalized it
for out-of-order data streams [28], a topic further
discussed in Section 4.1.

Recently, CEP is also supported by several big-
data streaming engines, such as Trill [26], Esper [45],
and Flink [24], the latter exhibiting a CEP library
since its early 1.0 version. Indeed, the high through-
put and low latency nature of these engines make
them suitable for CEP’s real time analytics.

2.5 XML Streaming
In 2002, Diao et al. [44] presented YFilter, which

implemented continuous queries over XML stream-
ing data using a subset of the XPath language [32].
YFilter applied a multi-query optimization that used
a single finite state machine to represent and evalu-
ate several XPath expressions. In particular, YFil-
ter exploited commonalities among path queries by
merging the common prefixes of the paths so that
they were processed at most once. This shared
processing improved performance significantly by
avoiding redundant processing for duplicate path
expressions.

Before YFilter, which processed streams of XML
documents, came NiagaraCQ, which processed up-
date streams to existing XML documents [30], bor-
rowing syntax from XML-QL [43]. NiagaraCQ sup-
ported incremental evaluation to consider only the
changed portion of each updated XML file. It sup-
ported two kinds of continuous queries: change-
based queries, which trigger as soon as new relevant
data becomes available, and timer-based queries,
which trigger only at specified time intervals. XSQ
is an XPath-based language for not just filtering but
transforming streams of XML documents [71]. And
XMLParse is an operator for XML stream transfor-
mation in a big-data streaming language [67].

2.6 RDF Streaming
In 2009, Della Valle et al. called the semantic web

and AI community to investigate how to represent,
manage, and reason on heterogeneous data streams
in the presence of expressive domain models (cap-
tured by ontologies) [38]. Those communities were
still focusing on static knowledge bases, and solu-
tions to incorporate changes were too complex to
apply to big data streams. Della Valle et al. pro-

32 SIGMOD Record, June 2018 (Vol. 47, No. 2)

posed to name this new research area stream reason-
ing [41], and the sub-area focused on the semantic
web RDF Stream Processing (RSP) [82]. This sec-
tion presents RSP, while Section 2.7 elaborates on
stream reasoning.

RSP research extended the semantic web stack [8]
to represent heterogeneous streams, continuous
queries, and continuous reasoning. Inspired by
CQL [11], Della Valle et al. proposed Continuous
SPARQL (C-SPARQL, [37]), inspiring multiple ex-
tensions [7, 23, 61]. In 2013, a W3C community
group1 was established to define RSP-QL syntax [39]
and semantics [40]. In RSP-QL, an RDF stream
is an unbounded sequence of time-varying graphs
ht, ⌧i, where t is an RDF graph and ⌧ is a non-
decreasing timestamp. A RSP-QL query is a con-
tinuous query on multiple RDF streams and graphs.

1 REGISTER STREAM :out
2 AS CONSTRUCT RSTREAM { ?x a :Hub }
3 FROM NAMED WINDOW :lwin
4 ON :in [RANGE PT120M STEP PT10M]
5 FROM NAMED WINDOW :swin
6 ON :in [RANGE PT10M STEP PT10M]
7 WHERE {
8 WINDOW :lwin{
9 SELECT ?x (COUNT(⇤) AS ?totalLong)

10 WHERE { ?c1 :callee ?x. }
11 GROUP BY ?x }
12 WINDOW :swin{
13 SELECT ?x (COUNT(⇤) AS ?totalShort)
14 WHERE { ?c2 :callee ?x. }
15 GROUP BY ?x }
16 GRAPH :bg {?x :hasStandardDeviation ?s }
17 FILTER ((?totalShort � ?totalLong/12)/?s > 2)
18 } GROUP BY ?x

Figure 6: RSP-QL example.

Figure 6 illustrates an RSP-QL query that con-
tinuously identifies communication hubs. The idea
is to find callees who appear more frequently than
usual. Line 1 registers stream out and Line 2 sends
the query result on that stream. Lines 3-6 open a
short 10-minute tumbling window swin and a long
2-hour sliding window lwin on the input stream in.
Lines 8-11 and 12-15 count the number of calls
per callee in the long and short window, respec-
tively. Lines 16-17 fetch the standard deviation of
the number of calls for each callee from a static
graph, join it with the callees appearing in both
windows, and select callees two standard deviations
above average.

2.7 Stream Reasoning
Automated reasoning plays a key role in modern

information integration where an ontology o↵ers a
conceptual view over pre-existing autonomous data
1
http://www.w3.org/community/rsp/

1 SubObjectPropertyOf(
2 ObjectPropertyChain(: calls : calls) : gossips
3)
4 TransitiveObjectProperty(: gossips)
5
6 REGISTER STREAM GossipMeter AS
7 SELECT (count(?x) AS ?impact)
8 FROM NAMED WINDOW :win
9 ON :in [RANGE PT60M STEP PT10M]

10 WHERE { :Alice :gossips ?x }
Figure 7: Stream reasoning example with
two ontological axioms and a RSP-QL query.

sources [63]. In this setting, the reasoner can find
answers that are not syntactically present in the
data sources, but are deduced from the data and the
ontology. This query-answering approach is called
ontology-based data access [72].

As RDF is the dominant data model in reason-
ing for data integration, RDF streaming languages
(Section 2.6) bridge the gap between stream pro-
cessing and ontology-based data integration. Della
Valle et al. opened up this direction, showing how
continuous reasoning can be reduced to periodic
repetition of reasoning over a windowed ontology
stream [37]. Figure 7 shows an RSP-QL query
that uses reasoning to continuously count how
many people : Alice gossips with. Consider an RDF
stream with the triples h : Alice : calls :Bob, ⌧ii and
h :Bob : calls : Carl, ⌧i+1i. Lines 1-4 define : gossips as
the transitive closure of : calls . When the window
contains these two triples, the RSP-QL query re-
turns 2, because : Alice : gossips :Bob directly call-
ing him, but the system can also deduce that she
: gossips : Carl indirectly via :Bob.
While conceptually simple, this kind of reasoning

is hard to do e�ciently. Barbieri et al. [14] and Ko-
mazec et al. [57] pioneered it optimizing the DRed
algorithm observing that in stream processing dele-
tion becomes predictable. The current state-of-the-
art is the work of Motik et al. [68].

In parallel, Ren and Pan proposed an alterna-
tive approach via truth maintenance systems [74].
Calbimonte et al. exploited ontology-based data
access [22]. Heintz et al. developed logic-based
spatio-temporal stream reasoning [36]. Anicic et al.
bridged stream reasoning with complex event pro-
cessing grounding both in logic programming [7].
Beck et al. used answer set programming to model
expressive stream reasoning tasks [17] in Ticker [18]
and Laser [16]. Inductive stream reasoning, i.e., ap-
plying machine-learning to RDF streams or to on-
tology streams, is also an active field [15, 31, 62].

2.8 Streaming for End-Users
We use the term end-users to refer to users with-

out particular software development training. Prob-

SIGMOD Record, June 2018 (Vol. 47, No. 2) 33

Figure 8: ActiveSheets example.

ably the most successful programming tool for end-
users is spreadsheet formulas. And from the early
days of VisiCalc in 1979 [21], spreadsheet formulas
have been reactive in the sense that any changes
in their inputs trigger an automatic recomputation
of their outputs. Therefore, in 2014, Vaziri et al.
designed ActiveSheets, a spreadsheet-based stream
programming model [84]. Figure 8 gives an exam-
ple that implements a similar computation as Fig-
ure 1. Cells A3:B8 contain a sliding window of re-
cent call records, which ActiveSheets updates from
live input data. Cells D6:F6 contain the output
data, (re-)computed using reactive spreadsheet for-
mulas. The formula E6=COUNTIF(A3:A8,D6) counts
how many calls in the window are as long as a
longest call. The formula F6=INDEX(B3:B8,F2) uses
the relative index F2 of the longest len to retrieve
the corresponding caller. ActiveSheets was influ-
enced by synchronous dataflow, discussed in Sec-
tion 2.2. Of course, spreadsheets are not the only
approach for end-user programming. For instance,
MARIO constructed streaming applications auto-
matically based on search terms [75]. Linehan et
al. used a controlled natural language for specifying
event processing rules [65]. And TEM used model-
driven development based on a spreadsheet [46].

3. PRINCIPLES
The previous section described concrete stream

processing languages belonging to several families.
This section takes a cross-cutting view and explores
concepts that many of these languages have in com-
mon by identifying the language design principles
behind the concepts. The views and opinions ex-
pressed herein are those of the authors and are not
meant as the final word. Explicitly articulating
principles demystifies the art of language design.
We categorize language design principles according
to the three requirements from Section 1, namely
performance, generality, and productivity.

The performance requirement is addressed by
streaming language design principles P1–P4:

P1 Windowing principle. Windows turn stream-
ing data into static data suitable for optimized
static computation. For instance, in CQL, win-
dows produce relations suitable for classic rela-

tional algebra [9], optimizable via classic rela-
tional rewrite rules (see Figure 2).

P2 Partitioning principle. Key-based partitions
enable independent computation over disjoint
state, thus simplifying data parallelism. For
instance, MatchRegex performs complex event
processing separately by partition [49] (see
Line 3 of Figure 5). Principles P1 and P2 also
simplify advanced state management, e.g., in
key-value stores for operator migration [48].

P3 Stream graph principle. Streaming applications
are graphs of operators that communicate al-
most exclusively via streams, making them easy
to place on di↵erent cores or machines. This
principle is central to the big-data languages in
Section 2.3 such as SPL [51] (see Figure 4).

P4 Restriction principle. The schedules and com-
munication rates in a streaming application are
restricted for both performance and safety. For
instance, Lustre can be compiled to a simple
imperative control loop without communication
bu↵ers [25] (see Section 2.2).

The generality requirement is addressed by
streaming language design principles P5–P8:

P5 Orthogonality principle. Basic language fea-
tures are irredundant and work the same in-
dependently of how they are composed. For in-
stance, in CQL, relational-algebra operators are
orthogonal to windows [9] (see Section 2.1).

P6 No-built-ins principle. The core language re-
mains slim and regular by enabling extensions
in the library. For instance, in SPL, relational
operators are not built into the language, but
are user-defined in the library instead [51] (see
Lines 3–8 of Figure 4).

P7 Auto-update principle. The syntax of conven-
tional non-streaming computation is overloaded
to also support reactive computation. For in-
stance, ActiveSheets uses conventional spread-
sheet formulas, updating their output when
input cells change [84] (see Figure 8). The
Lambda or Kappa architectures [58] take this
to the extreme by combining batch and stream-
ing outside of the language.

P8 General-feature principle. Similar special-case
features are replaced by a single more-general
feature. For instance, operator parameters in
SPL [51] accept general uninterpreted expres-
sions, including predicates for the special case
of CEP [49] (see Lines 4–7 of Figure 5).

The productivity requirement is addressed by
streaming language design principles P9–P12:

34 SIGMOD Record, June 2018 (Vol. 47, No. 2)

Language Performance Generality Productivity

CQL P1 P2 P3 P5 P8 P9

Lustre P4 P5 P6 P7 P8 P9 P10 P11 P12

SPL P1 P2 P3 P5 P6 P8 P9 P11 P12

MatchRegex P2 P5 P6 P8 P9 P10 P12

YFilter P4 P5 P6 P9 P10

RSP-QL P1 P3 P5 P6 P8 P9 P10 P11

ActiveSheets P1 P2 P4 P5 P6 P7 P8 P9 P10

Table 1: Which of the languages that served
as examples in Section 2 satisfy which of the
language design principles in Section 3.

P9 Familiarity principle. The syntax of non-
streaming features in streaming languages is
the same as in non-streaming languages. This
makes the streaming language easier to learn.
For instance, CQL [11] adopts the select-from-
where syntax of SQL (see Figure 1).

P10 Conciseness principle. The most concise syntax
is reserved for the most common tasks. This in-
creases productivity since there is less code to
write and read. For instance, regular expres-
sions represent “followed-by” concisely via jux-
taposition e1 e2 (see Line 8 of Figure 5).

P11 Regularity principle. Data literals, patterns
that match them, and/or declarations all use
similar syntax. For instance, RSP-QL uses pat-
tern syntax resembling concrete RDF triples
(see Line 10 of Figure 6).

P12 Backward reference principle. Code direction is
consistent with both scope and control domi-
nance, for readability. For example, Lustre de-
clares variables before their use (see Figure 3).

3.1 Principles Summary
Good language design is driven by principles, but

it is also an exercise in prioritizing among these
principles. For instance, CQL satisfies P9 (fa-
miliarity principle) by adopting SQL’s syntax and
CQL violates P12 (backward reference principle) by
adopting SQL’s scoping rules. Table 1 summarizes
principles by language. Only two of the twelve prin-
ciples (P5 and P9, shown in bold) are uniformly cov-
ered, both related to the ease of use of the language
(separation of concerns and syntax familiarity). Al-
though some of the languages exhibit fewer princi-
ples, Table 1 does not provide a comparative metric
for quantifying the coverage of each principle; such
a metric would be hard to agree upon. Satisfying
more principles does not automatically imply sat-
isfying the associated requirement better. While
we formulated the principles from the perspective
of streaming languages, we do not claim to have

invented them: many are well-known from the de-
sign of other programming languages. For instance,
the orthogonality principle was a stated aim of the
Algol 68 language specification [83]. Now that we
have seen concepts that are present in most stream-
ing languages, the next section will explore what is
commonly missing or underdeveloped.

4. WHAT’S NEXT?
In the Big Data era, the need to process and

analyze a high volume of data is a fundamental
problem. Industry analysts point out that besides
volume, there are also challenges in variety, veloc-
ity, and veracity [53]. Streaming languages natu-
rally handle volume and velocity of the data, since
they are designed to process data in real-time in
a streaming way. Thus, in the following, we focus
on veracity and variety, since there are more open
research challenges in these directions despite much
recent progress in streaming languages. In addition,
we elaborate on the challenge of adoption, which is
an important problem of programming languages in
general and of streaming languages in particular.

4.1 Veracity
With the evolution of the internet of things and

related technologies, many end-user applications re-
quire stream processing and analytics. Stream-
ing languages should ensure veracity of the output
stream in terms of accuracy, correctness, and com-
pleteness of the results. Furthermore, they should
not sacrifice performance either, answering high-
throughput input streams with low-latency output
streams. Veracity in a streaming environment de-
pends on the semantics of the language since the
stream is infinite and new results may be added or
computed aggregates may change. It is important
that the output stream for a given input stream be
well-defined based on the streaming language se-
mantics. For example, if the language o↵ers a slid-
ing time window feature, any aggregate should be
computed correctly at any time point based on all
data within the time window. Stream veracity prob-
lems may occur for di↵erent reasons. For example,
in multi-streaming applications, each stream may
be produced by sensors. Errors may occur either in
the data itself (e.g., noisy sensor readings) or by de-
lays or data loss during the transfer to the stream
processing system. For instance, data may arrive
out-of-order because of communication delays or be-
cause of the inevitable time drift between indepen-
dent distributed stream sources. Ideally, the output
stream should be accurate, complete, and timely
even if errors occur in the input stream. Unfortu-
nately, this is not always feasible.

SIGMOD Record, June 2018 (Vol. 47, No. 2) 35

Why is this important? Veracity of the output
of streaming applications is important when high-
stakes and irreversible decisions are based on these
outputs. In the big-data era, veracity is one of the
most important problems even for non-streaming
data processing, and stream processing makes ve-
racity even more challenging than in the static case.
Streams are dynamic and usually operate in a dis-
tributed environment with minimal control over the
underlying infrastructure. Such a loosely coupled
model can lead to situations where any data source
can join and leave on the fly. Moreover, stream-
producing sensors have limitations such as process-
ing power, energy level, or memory consumption,
which can easily compromise veracity.

How can we measure the challenge? To esti-
mate the robustness of a streaming language imple-
mentation to veracity problems, we define as ground
truth the output stream in the absence of veracity
problems (for example data loss or delayed data).
Then we can quantify veracity. Let error be a func-
tion that compares the produced result of an ap-
proach with and without veracity problems. An
example of an error function is the number of false
positives and false negatives. An approach is robust
for veracity of streaming data if the error scales at
most linearly with respect to the size and the error
rate of the input stream, while the delay in the la-
tency is bounded and independent of the input size.
The streaming language veracity challenge can be
broken down into the following measures C1–C3:

C1 Fault-tolerance. A program in the language is
robust even if some of its components fail. The
language can define di↵erent behaviors, for ex-
ample, at-least-once semantics in Storm [81] or
check-pointing in Spark Streaming [87].

C2 Out-of-order handling. This measure has two
facets. First, the streaming language should
have clear semantics about the expected result.
Second, the streaming language should be ro-
bust to out-of-order data and should ensure that
the expected output stream is produced with
limited latency. Li et al. define out-of-order
stream semantics based on low watermarks [64];
Spark Streaming relies on idempotence to han-
dle stragglers [87]; and Beam separates event
time from processing time [4].

C3 Inaccurate value handling. A program in the
language is robust even if some of its input data
is wrong. The language can help by supporting
statistical quality measures [85].

Why is this di�cult? In stream processing,
data is typically sent on a best-e↵ort basis. As a re-

sult, data can be lost, incorrect, arrive out of order,
or be approximate. This is exacerbated by the fact
that the streaming setting a↵ords limited opportu-
nity to compensate for these issues. Furthermore,
the performance requirements of streaming systems
encourage the use of approximate computing [12],
thus increasing the uncertainty of the data. Also,
machine-learning often yields uncertain results due
to imperfect generalization. An important aspect of
streaming data is ordering, typically characterized
by time. The correctness of the response to queries
depends on the source of ordering, such as the cre-
ation, processing, or delivery time. Stream process-
ing often requires that each piece of data must be
processed within a window, which can be charac-
terized by predefined size or temporal constraints.
In stream settings, sources typically do not receive
control feedback. Consequently, when exceptions
occur, recovery must occur at the destination. This
reduces the space of possibilities for handling trans-
action rollbacks and fault tolerance.

4.2 Data Variety
Data variety refers to the presence of di↵erent

data formats, data types, data semantics, and as-
sociated data management solutions in an infor-
mation system. The term emerged with the ad-
vent of Big Data, but the problem of taming vari-
ety is well known for machine understanding of un-
structured data such as text, images, and video as
well as (syntactic, structural, and semantic) inter-
operability and data integration for structured and
semistructured data. There are multiple known so-
lutions to data variety for a moderate number of
high-volume data sources. But data variety is still
unsolved when there are hundreds of data sources
to integrate or when the data to integrate is highly
dynamic or streaming (as in this paper).

Why is this important? Increasingly, appli-
cations must process heterogeneous data streams
in real-time together with large background knowl-
edge bases. Consider the following two examples
from [41] (where interested readers can find others).

In the first example, we want to use sensor
readings of the last 10 minutes to find electricity-
producing turbines that are in a state similar (e.g.,
Pearson correlated by at least 0.75) to any turbine
that subsequently had a critical failure. Here, data
variety arises from having tens of turbines of 3-4
di↵erent types equipped with di↵erent sensors de-
ployed other many years, where more sensors will
be deployed in the future. Moreover, in many cases,
once an anomaly is detected, the user also needs to
retrieve multimedia maintenance instructions and

36 SIGMOD Record, June 2018 (Vol. 47, No. 2)

annotations to complete the diagnosis process.
In the second example, we want to use the latest

open tra�c information and social media as well as
the weather forecast to determine if the users of a
mobile mobility app are likely to run into a tra�c
jam during their commute tonight and how long
it will take them to get home. Here, data variety
arises from using third-party data sources that are
free to evolve in syntax, structure, and semantics.

How can we measure the challenge? The
streaming language data variety challenge can be
broken down into the following measures C4–C6:

C4 Expressive data model. The data model used
to logically represent information is expressive
and allows encoding multiple data types, data
structures, and data semantics. This is the path
investigated by RSP-QL [41, 82].

C5 Multiple representations. The language can in-
gest data in multiple representations, o↵ering
the programmer a unified set of logical opera-
tors while implementing physical operators that
work directly on the representations for perfor-
mance. An example is the most recent evolution
of the Streaming Linked Data framework [13].

C6 New sources with new formats. The language
allows adding new sources where data are rep-
resented in a format unforeseen when the lan-
guage was released. This might be accom-
plished by extending R2RML2.

Why is this di�cult? Deriving value is harder
for a system that has to tame data variety than
for a system that only has to handle a single well-
structured data source. This is because solutions
that analyze data require homogeneous well-formed
input data, so, when there is data variety, prepar-
ing such data requires a number of di↵erent data
management solutions that take time to perform
their part of the processing as well as to coordinate
among each others. This time is particularly rele-
vant in stream processing, where answers should be
generated with low latency. Even if the time avail-
able to answer depends on the application domain
(in call centers, routing needs to be decided in sub-
seconds, while in oil operations, dangerous situa-
tions must be detected within minutes), traditional
batch pipelines for feature extraction and extract-
transform-load (ETL) may take so long that the
results, when computed, are no longer useful. For
this reason, it is still challenging to tame variety in
stream processing systems.

2
https://www.w3.org/TR/r2rml

4.3 Adoption
Stream processing languages have an adoption

problem. As Section 2 illustrates, there are several
families of streaming languages comprising several
members each. But no one streaming language has
been broadly adopted. The language family receiv-
ing the most attention from large technology com-
panies is big-data streaming, including o↵erings by
Google [3], Microsoft [5], IBM [51], and Twitter [81].
However, they all di↵er. Furthermore, in the pur-
suit of interoperability and expediency, most big-
data streaming languages are not stand-alone but
embedded in a host language. While being embed-
ded gives a short-term boost to language develop-
ment, the entanglement with a host language makes
it hard to o↵er stable and clear semantics. And, if
the history of databases is any guide, such stable
and clear semantics are useful for agreeing on and
consistently implementing a standard. Part of the
reason that the relational model for databases dis-
placed its disparate predecessors is its strong math-
ematical foundation. One of the most-used lan-
guages mentioned in this survey is Scade [34], but it
is designed for embedded systems and not big-data
streaming. Getting broad adoption for a big-data
streaming language remains an open challenge.

Why is this important? Solving the adop-
tion problem for stream processing languages would
yield many benefits. It would encourage students
to build marketable skills and give employers a sus-
tainable hiring pipeline. It would raise attention to
streaming innovation, benefiting researchers, and to
streaming products, benefiting vendors. If most sys-
tems adopted more-or-less the same language, they
would become easier to benchmark against each
other. Other popular programming languages, such
as SQL, Java, and JavaScript, flourished when com-
panies competed against each other to provide bet-
ter implementations of the language. On the down-
side, focusing on a single language would reduce the
diversity of the eco-system, transforming innovation
and competition from being broad to being deep.
But overall, if the problem of streaming language
adoption were solved, we would expect streaming
systems to become more robust and faster.

How can we measure the challenge? The
streaming language adoption challenge can be bro-
ken down into the following measures C7–C9:

C7 Widely-used implementation of one language.
One language in the family has at least one im-
plementation that is widely used in practice, for
instance, Scade for SDF [34].

C8 Standard proposal or standard. There are se-
rious e↵orts towards an o�cial standard, for

SIGMOD Record, June 2018 (Vol. 47, No. 2) 37

Languages Veracity Variety Adoption

Relational C2 C8 C9

Synchronous C4 C7 C9

Big Data C1 C2 C4 C5 C6 C7

CEP C2 C4 C8

XML C4 C6

Stream Reasoning C3 C4 C5 C6 C8 C9

End-user C4

Table 2: Which of the language families from
Section 2 address which of the measures of
streaming language challenges in Section 4.

instance, Jain et al. for StreamSQL [54] or
Match-Recognize for CEP [88].

C9 Multiple implementations of same language.
One language in the family has multiple more-
or-less compatible implementations, for in-
stance, Lustre [25] and Scade [34] for SDF.

Language adoption is driven not just by the tech-
nical merits of the language itself but also by exter-
nal factors, such as industry support or implemen-
tations that are open-source with open governance.

Why is this di�cult? Adoption is hard for
any programming language, but particularly so for
a streaming language. While streaming in general
is not new [79], big-data streaming is a relatively re-
cent phenomenon. And big-data streaming, in turn,
is driven by several ongoing industry trends, includ-
ing the internet of things, cloud computing, and
artificial intelligence (AI). Since all three of these
trends are themselves actively shifting, they provide
an unstable ecosystem for streaming languages to
evolve. Furthermore, innovation often takes place
in a setting where data is assumed to be at rest,
as opposed to streaming, where data is in motion.
For instance, most AI algorithms work over a fixed
training data set, so additional research is necessary
to make them work well online. When it comes to
streaming languages, there is not even a consensus
on what are the most important features to include.
For instance, both the veracity and the variety chal-
lenge discussed previously have given rise to many
feature ideas that have yet to make it into the main-
stream. Since people come to streaming research
from di↵erent perspectives, they sometimes do not
even know each other’s work, inhibiting adoption.
This survey aims to mitigate that problem.

4.4 Challenges Summary
Table 2 summarizes the challenges. Compared to

the coverage of principles in Table 1, the coverage
of challenges is more sparse and spread out over
research prototypes. That is why we tabulated it for

language families instead of individual languages.
There is much space for future work. The measures
highlighted in bold are most covered across all the
languages families. The ability to handle a wide
variety of data formats appears to be a universal
concern. Ultimately, we aim at streaming languages
that are both principled and close the gap on all
challenges.

5. CONCLUSION
This paper surveys recent stream processing lan-

guages. Given their numbers, it appears likely that
more will be invented soon. We hope this survey
will help the field evolve towards better languages
by helping readers understand the state of the art.

Acknowledgements
The idea for this paper was conceived at Dagstuhl Semi-

nar 17441 on “Big Stream Processing Systems”. We thank

our fellow participants of the seminar and the Dagstuhl sta↵.

A. Bonifati’s work was supported by CNRS Mastodons Med-

Clean. S. Sakr’s work was funded by the European Regional

Development Fund via the Mobilitas Pluss program (grant

MOBTT75). A. Vlachou’s work was supported by the dat-

Acron project, funded through the European Union’s Hori-

zon 2020 research and innovation program (grant 687591).

6. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The design of the Borealis stream processing engine. In
Conference on Innovative Data Systems Research
(CIDR), pages 277–289, 2005.

[2] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for data
stream management. Journal on Very Large Data Bases
(VLDB J.), 12(2):120–139, Aug. 2003.

[3] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. MillWheel: Fault-tolerant
stream processing at internet scale. In Conference on
Very Large Data Bases (VLDB) Industrial Track, pages
734–746, Aug. 2013.

[4] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernandez-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. In Conference
on Very Large Data Bases (VLDB), pages 1792–1803,
Aug. 2015.

[5] M. H. Ali, C. Gerea, B. Raman, B. Sezgin, T. Tarnavski,
T. Verona, P. Wang, P. Zabback, A. Kirilov,
A. Ananthanarayan, M. Lu, A. Raizman, R. Krishnan,
R. Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli,
J. Goldstein, S. Bhat, Y. Li, V. Di Nicola, X. Wang,
D. Maier, I. Santos, O. Nano, and S. Grell. Microsoft
CEP server and online behavioral targeting. In Demo at
Conference on Very Large Data Bases (VLDB-Demo),
pages 1558–1561, 2009.

[6] H. C. Andrade, B. Gedik, and D. S. Turaga.
Fundamentals of stream processing: application design,
systems, and analytics. Cambridge University Press,
2014.

38 SIGMOD Record, June 2018 (Vol. 47, No. 2)

[7] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic.
Stream reasoning and complex event processing in
ETALIS. Semantic Web, 3(4):397–407, 2012.

[8] G. Antoniou, P. T. Groth, F. van Harmelen, and
R. Hoekstra. A Semantic Web Primer, 3rd Edition.
MIT Press, 2012.

[9] A. Arasu, S. Babu, and J. Widom. The CQL continuous
query language: semantic foundations and query
execution. Journal on Very Large Data Bases (VLDB
J.), 15(2):121–142, 2006.

[10] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S.
Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts.
Linear road: A stream data management benchmark. In
Conference on Very Large Data Bases (VLDB), pages
480–491, 2004.

[11] A. Arasu and J. Widom. A denotational semantics for
continuous queries over streams and relations. SIGMOD
Record, 33(3):6–11, 2004.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems. In
Symposium on Principles of Database Systems (PODS),
pages 1–16, 2002.

[13] M. Balduini, E. D. Valle, and R. Tommasini. SLD
revolution: A cheaper, faster yet more accurate streaming
linked data framework. In European Semantic Web
Conference (ESWC) Satellite Events, pages 263–279,
2017.

[14] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and
M. Grossniklaus. Incremental reasoning on streams and
rich background knowledge. In Extended Semantic Web
Conference (ESWC), pages 1–15, 2010.

[15] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle,
Y. Huang, V. Tresp, A. Rettinger, and H. Wermser.
Deductive and inductive stream reasoning for semantic
social media analytics. IEEE Intelligent Systems,
25(6):32–41, 2010.

[16] H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive
stream reasoning with Laser. In International Semantic
Web Conference (ISWC), pages 87–103, 2017.

[17] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A
logic-based framework for analyzing reasoning over
streams. In Conference on Artificial Intelligence
(AAAI), pages 1431–1438, 2015.

[18] H. Beck, T. Eiter, and C. Folie. Ticker: A system for
incremental ASP-based stream reasoning. Theory and
Practice of Logic Programming (TPLP),
17(5-6):744–763, 2017.

[19] I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J.
Miller, and N. Tatbul. SECRET: A model for analysis of
the execution semantics of stream processing systems. In
Conference on Very Large Data Bases (VLDB), pages
232–243, 2010.

[20] T. Bourke and M. Pouzet. Zélus: A synchronous language
with ODEs. In Conference on Hybrid Systems:
Computation and Control (HSCC), pages 113–118, 2013.

[21] D. Bricklin and B. Frankston. VisiCalc computer software
program, 1979. Reference Manual, Personal Software Inc.

[22] J. Calbimonte, J. Mora, and Ó. Corcho. Query rewriting
in RDF stream processing. In European Semantic Web
Conference (ESWC), pages 486–502, 2016.

[23] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling
ontology-based access to streaming data sources. In
International Semantic Web Conference (ISWC), pages
96–111, 2010.

[24] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache Flink: Stream and
batch processing in a single engine. IEEE Database
Engineering Bulletin, 36(4):28–38, Dec. 2015.

[25] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice.
LUSTRE: a declarative language for real-time
programming. In Symposium on Principles of
Programming Languages (POPL), pages 178–188, 1987.

[26] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing.
Trill: A high-performance incremental query processor for
diverse analytics. In Conference on Very Large Data
Bases (VLDB), pages 401–412, Aug. 2014.

[27] B. Chandramouli, J. Goldstein, and S. Duan. Temporal
analytics on big data for web advertising. In
International Conference on Data Engineering (ICDE),
pages 90–101, 2012.

[28] B. Chandramouli, J. Goldstein, and D. Maier.
High-performance dynamic pattern matching over
disordered streams. In Conference on Very Large Data
Bases (VLDB), pages 220–231, 2010.

[29] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. In Conference on Innovative Data
Systems Research (CIDR), pages 668–668, 2003.

[30] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A scalable continuous query system for
internet databases. In International Conference on
Management of Data (SIGMOD), pages 379–390, 2000.

[31] J. Chen, F. Lécué, J. Z. Pan, and H. Chen. Learning from
ontology streams with semantic concept drift. In
International Joint Conference on Artificial Intelligence
(IJCAI), pages 957–963, 2017.

[32] J. Clark and S. DeRose. XML path language (XPath)
version 1.0. W3C recommendation, W3C, Nov. 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[33] N. H. Cohen and K. T. Kalleberg. EventScript: An
event-processing language based on regular expressions
with actions. In Conference on Languages, Compiler,
and Tool Support for Embedded Systems (LCTES),
pages 111–120, 2008.

[34] J.-L. Colaco, B. Pagano, and M. Pouzet. Scade 6: A
formal language for embedded critical software
development. In Symposium on Theoretical Aspect of
Software Engineering (TASE), 2017.

[35] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk. Gigascope: A stream database for
network applications. In International Conference on
Management of Data (SIGMOD) Industrial Track,
pages 647–651, 2003.

[36] D. de Leng and F. Heintz. Qualitative spatio-temporal
stream reasoning with unobservable intertemporal spatial
relations using landmarks. In Conference on Artificial
Intelligence (AAAI), pages 957–963, 2016.

[37] E. Della Valle, S. Ceri, D. F. Barbieri, D. Braga, and
A. Campi. A first step towards stream reasoning. In
Future Internet Symposium (FIS), pages 72–81, 2008.

[38] E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel.
It’s a streaming world! Reasoning upon rapidly changing
information. IEEE Intelligent Systems, 24(6):83–89,
2009.

[39] D. Dell’Aglio, J. Calbimonte, E. Della Valle, and

Ó. Corcho. Towards a unified language for RDF stream
query processing. In European Semantic Web Conference
(ESWC) Satellite Events, pages 353–363, 2015.

[40] D. Dell’Aglio, E. Della Valle, J. Calbimonte, and

Ó. Corcho. RSP-QL semantics: A unifying query model
to explain heterogeneity of RDF stream processing
systems. International Journal on Semantic Web and
Information Systems (IJSWIS), 10(4):17–44, 2014.

[41] D. DellAglio, E. Della Valle, F. van Harmelen, and
A. Bernstein. Stream reasoning: A survey and outlook.
Data Science, 1(1-2):59–83, 2017.

[42] A. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. White. Cayuga: A general purpose
event monitoring system. In Conference on Innovative
Data Systems Research (CIDR), pages 412–422, 2007.

[43] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. A query language for XML. Computer
Networks, 31(11):1155–1169, 1999.

[44] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To.
YFilter: E�cient and scalable filtering of XML
documents. In Demo at International Conference on
Data Engineering (ICDE-Demo), pages 341–342, 2002.

[45] Esper. Esper open source software for streaming
analytics, 2018. http://www.espertech.com/esper/
(Retrieved June 2018).

[46] O. Etzion, F. Fournier, I. Skarbovsky, and B. von Halle.
A model driven approach for event processing
applications. In Conference on Distributed Event-Based
Systems (DEBS), pages 81–92, 2016.

[47] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
SPADE: The System S declarative stream processing
engine. In International Conference on Management of
Data (SIGMOD), pages 1123–1134, 2008.

[48] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu. Elastic

SIGMOD Record, June 2018 (Vol. 47, No. 2) 39

scaling for data stream processing. Transactions on
Parallel and Distributed Systems (TPDS),
25(6):1447–1463, June 2014.

[49] M. Hirzel. Partition and compose: Parallel complex event
processing. In Conference on Distributed Event-Based
Systems (DEBS), pages 191–200, 2012.

[50] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa,
M. Mendell, H. Nasgaard, R. Soulé, and K.-L. Wu. SPL
Streams Processing Language Specification. Technical
Report RC24897, IBM Research, 2009.

[51] M. Hirzel, S. Schneider, and B. Gedik. SPL: An
extensible language for distributed stream processing.
Transactions on Programming Languages and Systems
(TOPLAS), 39(1):5:1–5:39, March 2017.

[52] P. Hudak. Modular domain specific languages and tools.
In International Conference on Software Reuse (ICSR),
pages 134–142, 1998.

[53] H. V. Jagadish, J. Gehrke, A. Labrinidis,
Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and
C. Shahabi. Big data and its technical challenges.
Communications of the ACM (CACM), 57(7):86–94,
July 2014.

[54] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom,
H. Balakrishnan, U. Cetintemel, M. Cherniack,
R. Tibbets, and S. Zdonik. Towards a streaming SQL
standard. In Conference on Very Large Data Bases
(VLDB), pages 1379–1390, 2008.

[55] C. S. Jensen and R. Snodgrass. Temporal specialization
and generalization. Transactions on Knowledge and
Data Engineering (TKDE), 6(6):954–974, 1994.

[56] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.
Advances in dataflow programming languages. ACM
Computing Surveys (CSUR), 36(1):1–34, 2004.

[57] S. Komazec, D. Cerri, and D. Fensel. Sparkwave:
continuous schema-enhanced pattern matching over RDF
data streams. In Conference on Distributed Event-Based
Systems (DEBS), pages 58–68, 2012.

[58] J. Kreps. Questioning the lambda architecture, 2014.
http://radar.oreilly.com/2014/07/
questioning-the-lambda-architecture.html (Retrieved
June 2018).

[59] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and
S. Taneja. Twitter Heron: Stream processing at scale. In
International Conference on Management of Data
(SIGMOD), pages 239–250, May 2015.

[60] P. Le Guernic, T. Gautier, M. Le Borgne, and
C. Le Maire. Programming real-time applications with
Signal. Proceedings of the IEEE, 79(9):1321–1336, 1991.

[61] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz,
T. Eiter, and M. Fink. Linked stream data processing
engines: Facts and figures. In International Semantic
Web Conference (ISWC), pages 300–312, 2012.

[62] F. Lécué and J. Z. Pan. Predicting knowledge in an
ontology stream. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 2662–2669, 2013.

[63] M. Lenzerini. Data integration: A theoretical perspective.
In Symposium on Principles of Database Systems
(PODS), pages 233–246, 2002.

[64] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos,
T. Johnson, and D. Maier. Out-of-order processing: A
new architecture for high-performance stream systems. In
Conference on Very Large Data Bases (VLDB), pages
274–288, 2008.

[65] M. H. Linehan, S. Dehors, E. Rabinovich, and
F. Fournier. Controlled English language for production
and event processing rules. In Conference on Distributed
Event-Based Systems (DEBS), pages 149–158, 2011.

[66] E. Meijer, B. Beckman, and G. M. Bierman. LINQ:
Reconciling objects, relations, and XML in the .NET
framework. In International Conference on Management
of Data (SIGMOD), pages 706–706, 2006.

[67] M. Mendell, H. Nasgaard, E. Bouillet, M. Hirzel, and
B. Gedik. Extending a general-purpose streaming system
for XML. In Conference on Extending Database
Technology (EDBT), pages 534–539, 2012.

[68] B. Motik, Y. Nenov, R. E. F. Piro, and I. Horrocks.
Incremental update of datalog materialisation: the
backward/forward algorithm. In Conference on Artificial

Intelligence (AAAI), pages 1560–1568, 2015.
[69] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,

P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In Symposium on Operating Systems Principles
(SOSP), pages 439–455, Nov. 2013.

[70] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2):117–236, 2005.

[71] F. Peng and S. S. Chawathe. XPath queries on streaming
data. In International Conference on Management of
Data (SIGMOD), pages 431–442, 2003.

[72] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies.
Journal of Data Semantics, 10:133–173, 2008.

[73] M. Pouzet. Lucid synchrone, version 3, Tutorial and
reference manual, 2006.

[74] Y. Ren and J. Z. Pan. Optimising ontology stream
reasoning with truth maintenance system. In Conference
on Information and Knowledge Management (CIKM),
pages 831–836, 2011.

[75] A. V. Riabov, E. Bouillet, M. D. Feblowitz, Z. Liu, and
A. Ranganathan. Wishful search: Interactive composition
of data mashups. In International Conference on World
Wide Web (WWW), pages 775–784, 2008.

[76] N. Seyfer, R. Tibbetts, and N. Mishkin. Capture fields:
Modularity in a stream-relational event processing
language. In Conference on Distributed Event-Based
Systems (DEBS), pages 15–22, 2011.

[77] R. Soulé, M. Hirzel, B. Gedik, and R. Grimm. River: An
intermediate language for stream processing. Software –
Practice and Experience, 46(7):891–929, July 2016.

[78] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade,
V. Kumar, and K.-L. Wu. A universal calculus for stream
processing languages. In European Symposium on
Programming (ESOP), pages 507–528, 2010.

[79] R. Stephens. A survey of stream processing. Acta
Informatica, 34(7):491–541, 1997.

[80] W. Thies, M. Karczmarek, M. Gordon, D. Maze,
J. Wong, H. Ho↵mann, M. Brown, and S. Amarasinghe.
StreamIt: A compiler for streaming applications.
Technical Report LCS-TM-622, MIT, 2002.

[81] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy. Storm
@Twitter. In International Conference on Management
of Data (SIGMOD), pages 147–156, June 2014.

[82] E. D. Valle, D. Dell’Aglio, and A. Margara. Taming
velocity and variety simultaneously in big data with
stream reasoning. In Conference on Distributed
Event-Based Systems (DEBS) Tutorial, pages 394–401,
2016.

[83] A. van Wijngaarden, B. Mailloux, J. Peck, C. Koster,
M. Sintzo↵, C. Lindsey, L. Meertens, and R. Fisker.
Revised Report on the Algorithmic Language ALGOL
68. 1975.

[84] M. Vaziri, O. Tardieu, R. Rabbah, P. Suter, and
M. Hirzel. Stream processing with a spreadsheet. In
European Conference on Object-Oriented Programming
(ECOOP), pages 360–384, 2014.

[85] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin.
Complex event processing over uncertain data. In
Conference on Distributed Event-Based Systems
(DEBS), pages 253–264, 2008.

[86] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In International
Conference on Management of Data (SIGMOD), pages
407–418, 2006.

[87] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Symposium on Operating
Systems Principles (SOSP), pages 423–438, Nov. 2013.

[88] F. Zemke, A. Witkowski, M. Cherniak, and L. Colby.
Pattern matching in sequences of rows. Technical report,
ANSI Standard Proposal, 2007.

[89] Q. Zou, H. Wang, R. Soulé, M. Hirzel, H. Andrade,
B. Gedik, and K.-L. Wu. From a stream of relational
queries to distributed stream processing. In Conference
on Very Large Data Bases (VLDB) Industrial Track,
pages 1394–1405, 2010.

40 SIGMOD Record, June 2018 (Vol. 47, No. 2)

