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Abstract

Traditionally, the rating of an overhead transmission line is determined under a

set of specified and standardized conditions. However, weather conditions along

the line change during operation. Therefore, the standard rating of the line

might be either underestimated, leading to inefficient utilization of the line, or

overestimated, leading to unsecure operation. This is the major drawback of

the traditional approach: the so-called Dynamic Thermal Rating (DTR), that

takes into account the actual operating conditions along the line to determine

the rating, is today a critical need. In this paper, we develop a comprehensive

methodology for exploring all necessary information about stochastic processes

of environmental variables surrounding and along the line using available data.

The results can be used as input to determine the actual rating of the considered

transmission line to enhance the determination of the rating for transmission

lines.
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1. Introduction and motivation

The rating of an overhead transmission line is the maximum current that

the line is allowed to carry continuously without exceeding the maximum tem-

perature of the conductor. Thus, temperature affects sags between towers and

tensile strength; it depends on the magnitude of current through the line, its5

time duration, and on environmental conditions, such as wind speed, air tem-

perature, solar radiation, and so on [1, 2].

Traditionally, the rating is determined under a set of standard conditions

[1, 2, 3]. However, the actual operating conditions, especially weather condi-

tions along the line, vary during operation. Therefore, the rating of the line10

might be either underestimated, leading to inefficient utilization of the line, or

overestimated, leading to unsecure operation. This is why the so-called Dynamic

Thermal Rating (DTR), that takes into account the actual operating conditions

to determine the rating, is considered today a critical need.

DTR bring us several benefits [4]. It allows the use of existing transmission15

assets efficiently, thus improving economic benefits, allows deferral of new trans-

mission lines, it makes it possible to manage more easily contingency conditions.

The better exploitation of available infrastructure is very useful in the presence

of non programmable Renewable Energy Sources (typically, wind power), that

often cause congestions in the system and wind power curtailment. DTR has20

been much cheaper than storage in solving this kind of problems in Italy. That

is why, in the present paper, DTR is considered with reference to windy areas,

where it can be adopted most profitably.

In order to assess the dynamic rating of the line and to schedule for the best

operation for the next 5-15 minutes, necessary information could be provided25

by Weather Forecast Providers (WFPs); however, the forecast required for an

efficient power system operation are not available from WFPs, especially for

mountainous areas, where conditions might change very significantly and quickly

and for each span of the transmission line. For this reason, Terna investment

plans include the installation of several sensors along many electrical lines to30
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integrate information coming from WFPs with data coming in real-time by its

own sensors.

Environmental variables such as wind, temperature, solar radiation, and so

on can be considered as random variables that cover a wide geographic area

and evolve over time, determining the stochastic process. Hence, in order to ob-35

tain future information about it, a suitable space-time modeling method which

can explore and capture all necessary information in the processes needs to be

developed.

Future information on stochastic processes can be provided by forecast tech-

niques such as point forecast and probabilistic forecast [5]. However, such tech-40

niques do not capture temporal correlation between forecast errors (i.e., un-

certainty) of different time-steps. In a different way, scenario forecasts [6] can

capture such information, especially temporal correlation, and give forecasting

results in the form of a set of discrete scenarios. So far, several techniques

have been used for scenario generation. Reference [7] discusses on using various45

techniques including conditional sampling, property-matching methods, opti-

mal discretization, and step-wise growing and cutting methods for generating

scenarios for stochastic programming.

Scenario forecasts have been applied to several research areas in practice. In

[8], the authors generate arrival capacity scenarios for each airport in United50

States based on non-parametric methods (in [9]) using only historical data.

Clustering techniques are also used in that study, so that the scenarios generated

are the averages of clusters of similar profiles.

The technique for scenario construction using both historical data and fore-

casted data is discussed in [10]: it shows a better performance compared to55

[8]. In another field, reference [11] uses the daily pattern of change from Global

Climate Models to generate rainfall scenarios. However, those methods are only

suitable for generating scenarios for a single stochastic process (e.g., wind speed

process at a single location).

In order to produce scenario forecasts for multiple stochastic processes which60

are cross-correlated, e.g., wind speed processes at multiple locations, space-time
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modeling techniques are needed including non-stationarity, non-Gaussianity,

temporal and spatial correlation.

A careful analysis on the existing methods in this field is provided in [12],

where the Authors use orthogonal Markov chain; however, in the paper the65

Authors assume spatio-temporal covariance stationarity, i.e., that the auto-

covariance function of each time series at each location and the spatial cor-

relations among time series of different locations do not change.

In the field of wind power studies for generating space-time wind scenarios,

in order to characterize interdependence structure of multivariate stochastic70

processes, Gaussian copula method [13] is widely used. In [14], the Authors

build the model for multi-site wind speed using a noise vector deriving a vec-

tor auto-regressive process. This model accounts for both spatial and temporal

correlations of wind speed and assumes joint Gaussian distribution and station-

arity. In [14] and [15], the problem is simplified by the assumption that the75

matrix of auto-regressive coefficients is diagonal, which implies that the multi-

variate time series model can be decoupled into different univariate time series

model for each wind site.

This paper presents a new approach based on a space-time model that, using

both weather historical data and real-time measurement data with different80

temporal resolutions, provides good forecasting for DTR of transmission lines.

Specifically, the space-time model uses the analysis of current wind situation

provided by a WPF (available every 12 hours with space resolution of 2km x

3km) integrated with real-time measurements available every 5 minutes at a

significant number of different specific locations.85

The paper is organised as follows: Section 2 motivates the proposed method-

ology. In Section 3 the Space-Time Model is presented, while Section 4 describes

the real-time operation of the proposed procedure. Section 5 reports the results

of the procedure developed, comparing wind forecasting data and real measure-

ment data to check the accuracy of the methodology. Concluding remarks are90

given in Section 6.
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2. Integration of weather data for the DTR of transmission line

In Italy, windy areas show a high penetration of wind power generation that,

in windy conditions, are currently limited by the presence of transmission con-

gestions. However, depending on the wind speed and direction, wind can itself95

contribute to increase the actual rating of the line, thus alleviating congestions.

The goal of the present paper is to estimate the wind speed (magnitude and

direction) along the spans of an electrical line: the estimated values are then

transferred to a line rating model in order to complete the DTR of the line and

possibly avoid wind generation curtailment.100

The proposed approach aims at integrating the available information sources,

which are very different in terms of time and space resolution:

• Weather Forecast Provider (WFP) information: they are high level weather

data analysis based on a mathematical-physical model computed accord-

ing to a very refined spatial mesh for the whole continent. Data are105

available every 12 hours (at 00:00 and 12:00 every day) for many layers in

height;

• Real-time (RT) weather stations data: the Italian TSO, Terna, has been

installing for some years many sensors that can measure weather data

(temperature, wind, etc.) and transfer such information to the control110

centre. Typically, such devices are installed on top of quite a few towers

along some transmission lines (TL). They provide real-time measurements

at their location only at a 5 minute rate; of course, they are scattered on

the territory, not on a regular basis, unlike WFP information.

The problem is how to integrate such two set of data: WFP data, given for a115

very large area with a refined mesh, available with a very poor time resolution,

with the RT measurements immediately available for scattered locations along

some electrical lines with very good time resolution. The goal is to make it

possible to determine reliably the wind conditions along a chosen electrical line

for the next 5 minutes to 2 hours, in order to make it possible to keep the rating120
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of the lines updated and redispatch in real-time, if possible, some power that

should be curtailed if the DTR were not available.

2.1. WFP data

WFP data are supposed to provide a general picture of how the wind streams

are moving in a large scale. As shown in Fig. 1a, where an area in the Centre-125

South of Italy is shown, weather data are provided for a selected rectangular

area with a resolution of 2 km for the longitude and 3 km for the latitude.

Data on all the points of the mesh, marked with yellow triangles, are computed

by the WFP in two snapshots are at 00:00 and 12:00 UTC. Hence, WFP data

have a high spatial resolution but a poor temporal resolution, and are related130

to a mathematical-physical model, not to measured data. Therefore, they are

useful to extract a time-space model, but not to be used immediately for the

DTR. In the proposed approach, the WFP data are used to create and char-

acterize a database of past long-term scenarios, to be used to predict future

long-term scenarios. A scenario derived by WFP data includes weather features135

at every point in the mesh, with time resolution equal to 12 hours. It should

be considered as useful to learn weather behavior on a larger-scale area. Such

characteristics will be integrated with data coming from RT stations.

As it is clear, WFP dataset is very huge. In order to reduce its size, the

following criteria are adopted:140

• for WFP mesh points surrounding the considered TL, the highest available

resolution (3 km x 2 km) is kept;

• for WFP mesh points far from the transmission line, the resolution is

decreased (6 km x 4 km);

• at any rate, the four closest WFP mesh points around each RT stations145

are always kept, independent of their distance from the TL, with the goal

of identifying and exploiting as much as possible the correlation between

WFP and RT data.
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In Fig. 1a, areas with a higher space resolution can be observed around both

RTs and the considered TL.150

(a) WFP mesh on Southern Italy (b) RT stations

Figure 1: WFP mesh and RT station locations

The vector of wind speed data can be expressed in terms of orthogonal speed

components, where:

• u is the Zonal speed, the component of the horizontal wind towards East;

• v is the Meridional speed, the component of the horizontal wind towards

North.155

Wind data are given for each point of the mesh and for 6 different heights

above the ground (layers 10m, 30m, 50m, 70m, 100m). Based of the specific TL

architecture, suitable height is considered.

WFP data are given by the WFP in GRIB format (GRIdded Binary) a data

format standardized by the World Meteorological Organization’s Commission.160

2.2. Real-time data

Real-time (RT) measurements recording is carried out, with a temporal res-

olution of 5 minutes, at 43 weather stations installed on a TL tower or in a

substation. Geographical locations of the RT measurement stations considered

in this paper, marked with red squares, are shown in Fig. 1b.165

RT data including, for each sensor, time-stamped wind magnitude and di-

rection, are transferred every 5 minutes to the TSO control centre. Like any

real-time data flow, RT data can be affected by missing or erroneous values
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in the RT dataset. This issue must be taken into account in the time-space

modelling.170

2.3. TL considered for DTR

In order to select data for the time-space model, it is necessary to define

the TL subject to DTR. Fig. 2 shows the TL located in the Southern Italy

considered for DTR with its 124 towers. This TL is also equipped with 4 RT

stations marked with red squares in Fig. 2. TL has average height above ground175

of 25 m (height of the lowest conductor and sensors, when installed).

Figure 2: TL path, in the WFP mesh

3. Space-Time Model

The core of the forecasting approach to enhance DTR assessment is an ex-

tension of the space-time modeling presented in [16]. It combines Principal

Component Analysis (PCA) with clustering/selection, extrapolation, interpola-180

tion techniques. It can capture all salient features of wind speed from multiple

locations: non-Gaussianity, non-stationarity with temporal and spatial correla-

tions thanks to PCA, which also provides an excellent tool for approximating a

large data set by reducing its size.
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3.1. Principal Component Analysis185

PCA is an orthogonal transformation of a generic data set into an set of

uncorrelated data [17, 18]. It is based on the eigenanalysis of the covariance

matrix (or the correlation matrix) of a set of data, that determines a transfor-

mation matrix such that transformed data Z show diagonal covariance matrix.

The new variables are called Principal Components (PCs) and the technique is190

used to reduce as much as possible redundancy in the data set, while keeping

only the first PCs.

Wind data are stored in a matrix W whose elements wh
s are the wind speed

at site s ∈ {1, 2, ..., S} and at time h ∈ {1, 2, ..., N}. We assume that all con-

sidered wind sites have the same number of observations N and that they are195

synchronized and equally spaced in time.

W =


w1

1 w2
1 · · · wN

1

w1
2 w2

2 · · · wN
2

...
...

. . .
...

w1
S w2

S · · · wN
S

 (1)

At first, data are centered [17] in matrix Wc by subtracting the mean µs

of each time series at each site. In the following, the covariance matrix Σ is

considered, for the sake of simplicity [17], whose elements are, in the diagonal,

the variance σ2
i and, off-diagonal, the covariance between the time series at site200

i and the time series at site j σ2
i,j .

Its eigenvalues λi, i = 1, 2, ..., S, real positive, and the associated eigenvec-

tors ui are considered and form the matrix U:

U =
[
u1 | u2 | · · · | uS

]
(2)

Its elements are also known as PC coefficients or loadings. Finally, PCs are

derived [17] as205

Z = UTWc (3)
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where Z is a S × N matrix. The i-th row of matrix Z, zi, is the i-th PC,

that is, a time series univariate and uncorrelated with other PCs [19].

The reconstruction of wind data from PCs is implemented inversely:

W = µ+ UZ =µ+
[
u1 | u2 | · · · | uS

]
(4)

.
[
zT1 | zT2 | · · · | zTS

]T
It is worth noting that if the distribution considered is multivariate Gaussian,

resulting PCs will be independent. Otherwise, PCs will be uncorrelated but still

dependent (the diagonal covariance matrix of PCs only implies that they are210

uncorrelated). In the present paper, we adopt pre-processing and transforma-

tion techniques to obtain approximately stationary and Gaussian data sets to

improve PCA.

PCA is an excellent tool to approximate a large data set by reducing its

dimension [18]. This function makes PCA a powerful tool for high-dimensional215

data analysis. Each PC zl holds an amount of information which is represented

by its variance, i.e., by λl. Therefore, the contribution of the l-th PC to total

variance of the data [18] can be computed as:

γl =
λl

S∑
i=1

λi

× 100% (5)

Hence, the first row vector z1, corresponding to the largest eigenvalue λ1, is

the most dominant component, which contains most of the variance in the data220

set, followed by the second component z2, and so on. This makes it possible

to approximate the initial data set by a few PCs, based on the total amount

of information. This makes it possible to describe most of the features of the

data set by a reduced number of variables. PCA is used in this paper to reduce

the number of variables without losing important information and to carry out225

time series analysis and scenario generation on a few PCs instead of trying to

do the same working on longer data sets.
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3.2. Time series analysis

A time series is a sequence of observations ordered in time, usually at equally-

spaced intervals. There are several methods for fitting to a time series, if it is230

stationary. For a stationary stochastic process, the joint probability distribu-

tion do not change over time. The typical linear model for a stationary time

series is ARMA [19], which can be used to characterize a stationary process and

for prediction as well. To build a time series model, we follow the procedure

proposed by Box-Jenkins.235

It should be noted that stationarity is a necessary condition in building an

ARMA model. However, this condition may not always hold with real time

series data. In such a case, data must be pre-processed. In this paper, we carry

out various pre-processing and transformation techniques. At first, input data

(usually non-stationary and non-Gaussian) are pre-processed and transformed240

to obtain stationary and Gaussian data as required. The input for space-time

model is matrix W; all time series must span the same time horizon with equal

intervals (12 hours for WFP mesh and 5 minutes for RT measurements). After

that, PCA is carried out and a few (depending on their variance) PCs are fitted

by a time series model (to include variability content), and used to generate an245

adequate number of time series for future time. The generated time series in

terms of PCs are back transformed into non-Gaussian data [14, 15] to obtain

scenarios obeying all the characteristics of the observed wind data for each site.

Hence, the space-time modeling method can capture most of the main char-

acteristics of the input data and gives the output results in terms of scenarios250

of future values (with a certain future time frame, e.g., 12 hours ahead) for

each input quantity with the same temporal resolution as the input data. The

novelty of the proposed approach is that it can explicitly capture the main

features of stochastic processes of multi-site wind data: marginal distribution,

spatial correlation, temporal correlation, diurnal and seasonal non-stationarity255

and non-Gaussianity.

It is also worth noting that PCA allows a significant reduction of the size of

the input data set without losing significant information. This feature is very
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useful because the size of data set used in this research is very large, due to a

large number of input data.260

An important issue is how to deal with missing or erroneous input data. The

procedure set up includes the possibility to adopt Probabilistic PCA (PPCA)

[20]. However, PPCA needs much more computation time than PCA, espe-

cially for a large input data set. In such case, PCA combined with an effective

technique for missing data and outliers treatment is preferred.265

Based on the distribution curve of historical wind speed data and once set up

a significance level considered (5%, 2.5%, 1%, etc.), the procedure detects gross

errors, thus filtering wind speed data [21]. Values that deviate significantly are

considered as outliers. To avoid the risk of eliminating extreme but possible

conditions, the only way is choosing suitable threshold for significant levels (in270

this paper, significance level of 0.5% is used).

A particular case of gross errors is when values remain constant or nearly

constant (for long time). This can occur when an RT station measurement

device is out of service. This issue needs to be detected and the relevant RT

station data should not be considered.275

Missing data can be long consecutive or randomly distributed. Randomly

missing values is well fixed by both missing data procedure and PPCA. A dif-

ferent story is for long consecutive missing data. In case long consecutive data

are missing, the RT station or the WFP mesh data are not used at all, because

it is too difficult to correct data in such case.280

4. The proposed methodology

As mentioned, the most challenging issue faced is the integration of data

coming from different sources, to identify the most probable values of wind

speed along the TL to be used for the DTR. In this Section, we present a

comprehensive framework proposed for exploiting available wind data along a285

TL to provide useful information for improving DTR assessment. The goal is to

get, for each point along the electrical line, reliable forecast of the wind (speed
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and direction) for the next couple of hours with a time resolution of 5 minutes.

This is obtained by generating a number of scenarios with different space and

time resolution making use of the PCA approach. The whole structure of the290

procedure implementation is depicted in Fig. 3.

Two main databases have to be created, with different time resolution:

• DB1 contains wind data with 12 hours time resolution, coming from both

WFP model, relevant to each point considered in the mesh, and additional

data synchronized in time with WSP data (i.e., every 12 hours), coming295

from all RT sensors available. PCA working on data from DB1 generates

12-hour resolution scenarios.

• DB2 contains data coming every 5 minute from the RT measurements.

They are used to generate scenarios with 5-minute time resolution at RT

locations using PCA.300

Both databases are created initially by InputWFP an InputRT and updated

by blocks Update WFP and UpdateRT as soon as new data are available, i.e.,

either every 12 hours or every 5 minutes, respectively. Actually, the same pro-

cedure is carried out for two components, namely u and v, of wind separately.

The generation of 12-hour scenarios is carried out within Block1, every 12305

hours, when new analysis data from the WFP are available in DB1. It includes

the Space-Time Modeling (STM1) presented in Section 3 which aims at cap-

turing all main features of the wind stochastic processes at points on both the

WFP mesh and the RT stations and then at generating scenario forecasts at

all these points, but in particular around the TL under DTR, over a predefined310

future time frame (for example 12 or 24 hours) and with time resolution of 12

hours. In Block1, due to high computation times that would be needed by the

PPCA (PSTM1), the choice has been made for an efficient technique for missing

data and outliers treatment combined with PCA. Moreover, since WFP data

come from a model and it is assumed to be reliable, this issue is less significant315

than for the RT data treatment. N1 scenarios are generated by the space-time

model and stored in database SDB1.
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Figure 3: Block diagram of the proposed methodology

In the same way, in Block2, the same is done by STM2 for RT data in DB2,

in order to generate scenarios to be stored in SDB2. Data are those relevant

to RT measurement locations, with 5-minute time resolution. This block is run320

every hour, when a set a new data from the RT measurements is newly available

and generates N2 scenarios over a predefined future time frame of 2 hours with

time resolution of 5 minutes. Since data come from real-time measurements,

thus being affected by missing values and outliers, and since the RT stations

are fewer than mesh nodes, the procedure uses PPCA (PSTM2) to deal with325

missing or bad data.

The goal of Block3 is to pick up a few scenarios closest to the actual weather

conditions. This is done by a clustering/selection procedure (i.e., block CS in

Fig. 3). Block3 is in turn divided into two blocks: Block3a, which works with

SDB1 and, using CS1, selects NS1 scenarios among N1 12-hour scenarios (it330
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is run every 12 hours), and Block3b, which works with SDB2 and using CS2

selects NS2 scenarios among N2 5-minute scenarios (it is run every hour). In

fact, during the real-time operation, online measurement data at RT stations

(online data in Fig. 3) are collected. These data are combined with SDB1

and SDB2 to select NS2 most probable scenarios (5-min resolution) for each335

quantity at RT stations.

12:00
29/11

0:00
30/11

12:00
30/11

0:00
01/12

12:00
01/12

0:00
02/12

run 
STM1

obtain 
SDB1

run 
STM2

obtain 
SDB2

t=0

CS2(1)
EX,IN

CS1

WFP data
online data
scenarios in SDB1

scenarios in SDB2
range determined by CS1

LV2
LF2

CS2(2)
EX,IN

. . .

Day n+1 Day n+2 (Future)Days 1 ... n

CS2(n)
EX,IN

LV1

LF1

Figure 4: Example of choosing suitable time instances to start running each block

For the sake of clarity, Fig. 4 describes an example of choosing suitable time

instances to start running each block. The schedule is made based on both the

running time needed to perform each block and the availability of updated input

data. Focusing on block CS of Fig. 3, two stages of selection (corresponding to340

two sub-blocks CS1 and CS2 ) are needed:

• CS1 : selection of NS1. In the example of Fig. 4, STM1 uses data collected

up to 29/11 to generate N1 scenarios for four steps ahead (i.e., 0:00 and

12:00 on 30/11, 0:00 and 12:00 on 01/12). With CS1, the procedure

selects NS1 scenarios whose paths are most similar to WFP data at 0:00345

and 12:00 on 30/11 and 0:00 on 01/12 (i.e., latest known data used as

validation set - LV 1 = 3). Once NS1 scenarios are identified, they also

provide information on most likely range of values for each variable at
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12:00 01/12 (unknown/forecasted data, range in red in Fig. 4);

• CS2 : selection of NS2 scenarios among N2 scenarios in SDB2. Following350

the same idea of CS1, CS2 selects NS2 scenarios which fulfill both follow-

ing constraints: their paths are most similar to the latest and current RT

measurements, and their values at 12:00 on 01/12 are within the range

determined by CS1. Based on the need of forecast for the next 2 hours,

CS2 is implemented in real-time: every hour, when a set of new twelve355

5-minute data at RT measurement stations are available, CS2 is run to

select the best NS2 scenarios in SDB2 for the next 2 hours (2 hours in-

tervals correspond to LF2 = 24 time-steps of 5 minutes in the future).

In Fig. 4, LF2 and LV 2 are number of forecasted values and number of

values in validation set. The process is repeated (called CS2(2), ...) until360

the next PSTM2 is carried out.

To select the best NS2 scenarios (time series) among N2 scenarios in SDB2,

the similarity between each time series i in N2 {wk
i } and time series of the

validation set {ykv} is computed:

Dwi,yv
=

1

K

√√√√ K∑
k=1

(wk
i − ykv )2 (6)

where:365

{ykv} (k = 1, 2, ...,K) includes LV 2 latest online measurement data and one

point determined by CS1 (i.e., K = LV 2 + 1);

{wk
i } (k = 1, 2, ...,K; i = 1, 2, ..., N2) is i in SDB2 where {wk

i } is synchro-

nized with {ykv}.

NS2 scenarios are selected, corresponding to the NS2 smallest values of370

Dwi,yv
.

Similarly, as shown in Fig. 4, for CS1 we considers K = LV 1 = 3 (latest

three set of data in DB1 ).

At this point we have, for each RT station, a 5-minute resolution forecast

included in the NS2 scenarios selected. The last step is then to move to 5-375
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minute resolution scenarios at points along the line; this is done in Block 4

which includes Extrapolation and Interpolation.

Extrapolation aims at computing, on the grounds of both the current RT

measurements and NS1 and NS2 scenarios selected, 5-minute forecasted scenar-

ios at points (called query point), on the mesh, surrounding the TL. First the380

relationship between data associated with the wind at this query point and the

wind at RT stations needs to be characterized; then, the obtained relationship

makes it possible to determine data at any query point for future instances from

forecasts at RT locations included in NS2 scenarios. The method of bins [16, 22]

is used; the range of data of the wind speed at a known point (RT stations) is385

divided into different bins and, for each bin, the average values at known point

and query point are computed. Consequently, after obtaining relationship be-

tween data at known point and query point, if any value at known point is newly

available, the corresponding value at query points can be deduced accordingly.

Finally, Interpolation is used to compute wind speed trajectories over time390

with 5-minute resolution along the line, which is the final goal for DTR. For

obtaining future data for points along the line from future data of surrounding

points on the mesh, spatial interpolation techniques are applied. Two main

groups of spatial interpolation can be used: deterministic and geostatistical

techniques [23]. While deterministic interpolation is based on creating surfaces395

from surrounding measured points (e.g., a popular method in this group is

Inverse Distance Weighted-IDW), geostatistical interpolation is based on the

statistical properties of the measured points. For this work, IDW has been

used to obtain future data for points along the line from forecasted data of

surrounding points on the mesh, which have been already obtained as output400

of block EX.

5. Computational experiments and results

In this section, some selected results related to the space-time model applied

to the TL shown in Fig. 2 are reported. As WFP analysis, we considered wind
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speed data (12-hour resolution) at the 3325 points on the mesh shown in Fig. 1a405

for the month of November 2016. Regarding RT measurements, we considered

wind speed data at the 43 weather stations shown in Fig. 1b.

To check the accuracy of the model forecast, we took out from the input

dataset the last day (i.e., 2 samples at 00:00 and 12:00 for each point of the

mesh and 288 samples - 12 samples/h x 24h - for each RT) comparing estimated410

and measured values. In Fig. 5, estimated and measured values (2 hours ahead,

24 x 5 minutes) for the RT station 4 are shown. The pictures depict the 20 best

scenarios identified (light curves) and the final estimation carried out, as the

mean values of the 20 best scenarios, in dashed blue line. For this RT station,

both estimated values (i.e., u and v components of wind) are close to measured415

data.

(a) Forecasting for RT station 4 - u

component

(b) Forecasting for RT station 4 - v

component

Figure 5: Output of the forecasting process for RTs

To access quantitatively the capabilities of the method, the Average Root

Mean Square error (ARMS) and Mean absolute error (MAE) are calculated, for

all the RT stations, as the distance between actual and estimated data.

As shown in Fig. 6 and 7, the average ARMS errors is around 0.3 m/s while420

the average MAE is around 1 m/s.

An example of the output of the methodology is shown in Fig. 8. It depicts

the 20 best scenarios interpolated from the 4 closest WFP mesh points sur-

rounding TL tower 1 and, again in dashed blue line, the mean values of those
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(a) ARMS - u component (b) ARMS - v component

Figure 6: RT stations ARMS

(a) MAE - u component (b) MAE - v component

Figure 7: RT stations MAE

scenarios (which is considered as the wind forecast for TL tower 1). The accu-425

racy of the wind forecasting at tower 1 cannot be assessed because no measured

data are available at tower 1. The methodology gives a similar wind forecasting

for all the other 123 TL towers as well as for any point of the TL.

6. Concluding remarks

In this paper, a methodology for exploring main characteristics of stochastic430

processes (e.g., non-Gaussianity, non-stationarity with distinct diurnal and sea-

sonal patterns, temporal and spatial correlations) of wind speed along a TL is

presented. All available data (both historical and RT data from a WFP and RT

stations) are used to provide as much information about wind speed as possible

for a desired future time horizon for dynamic rating assessment. In particular,435
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(a) Forecasting for the TL tower 1 - u

component

(b) Forecasting for the TL tower 1 - v

component

Figure 8: Online forecast for TL towers

no simplifying assumptions are used for building the proposed model and the

proposed procedure is very powerful for dealing with a high-dimensional data

set due to a large number of variables associated with numerous points on the

mesh.

For practically testing the proposed methodology, real data related to a TL440

in the province of Benevento (Italy), the WFP mesh surrounding it and RT

stations included in the selected mesh have been considered. Simulation results

are presented to show that the methodology proposed can improve the wind

speed forecast and consequently the DTR of TL.
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