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Abstract—Centralized Radio Access Network (C-RAN) is a
promising mobile network architecture designed to support the
requirements of future 5G mobile networks. In C-RAN, the
“centralization” of baseband units enables substantial savings
of computational resources (what we call “multiplexing gain” in
this paper) and significant power savings. On the other hand,
the deployment of C-RAN requires high capacity and imposes
strict latency requirements on the fronthaul transport-network.
To address these issues, various alternative architectures, known
as “RAN functional splits”, have been introduced to relax
these strict fronthaul requirements. In this paper, we perform
a quantitative analysis of the computational savings and the
resulting power savings enabled by C-RAN, considering different
RAN functional splits. To this end, we analytically model RAN
computational resources to evaluate the multiplexing gain for
different RAN functional splits. This model allows to calculate the
processing reduction occurring in each RAN functional split. We
then use this model to estimate the power savings of the various
functional splits, considering different assumptions in terms of
geographical areas, users distribution and number of aggregated
cell sites. We find that up to 28% computational resources savings
and 24% power savings can be achieved through functional splits
in comparison to Distributed RAN.

Index Terms—C-RAN, multiplexing gain, computational effort,
functional splits, GOPS.

I. INTRODUCTION

To satisfy growing users’ demands, operators are forced to
continuously increase their mobile network capacity. Maintain-
ing the current network architecture will lead to an unsustain-
able network-cost increase as well as to a dramatic expansion
in the network power consumption [2]. Hence, minimization of
network cost and energy consumption have become a necessity
for mobile network operators. Moreover, in the context of
impending 5G communications, the design and operation of
the radio access network is expected to be challenged by very
stringent constraints in terms of tolerable latency and required
data rate [3], e.g., with end-to-end latency requirements below
1 ms for future 5G services such as tactile Internet [4]. In
addition to this, 5G networks will have to support more than
250 Gb/s/km2 in dense-urban areas, with devices’ density in
the order of several hundreds -or even thousands- per km2 [5].

In a traditional Distributed Radio Access Network (D-
RAN), the Base Station (BS) comprises two modules, (i) the
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Remote Radio Head (RRH) for transmission and reception of
radio signals, Digital-to-Analog/Analog-to-Digital Conversion
(DAC/ADC) of the baseband signals, frequency up/down-
conversion and power amplification, and (ii) the Baseband
Unit (BBU) performing the digital processing functions of
layer 1, 2 and 3 (L1, L2, L3). As shown in Fig. 1(a) every BS
hosts its “local BBU” and has a dedicated housing facility,
which is not shared with other BSs. Hence, in D-RAN,
power consumption as well as investment and maintenance
costs increase linearly with the number of BSs. Given the
rapid traffic growth envisioned for the next years, simply
increasing BSs density in D-RAN does not represent a scalable
solution. A novel network architecture, called Centralized
Radio Access Network (C-RAN), has been proposed as a
more scalable alternative to D-RAN in terms of both power
and cost efficiency [2]. The main idea of C-RAN is that
multiple BBUs are placed in a single physical location (BBU
pool), which is connected to several RRHs through a high
capacity “fronthaul” network, as shown in Fig.1(b). Thanks to
this centralization, the baseband resources in the BBU pool
can also be virtualized and shared among several BSs, and
significant reduction in the overall computational resources can
be achieved due to multiplexing gain [1]. BBU centralization
also allows to share maintenance costs and power consumption
among several BSs, and promotes the utilization of advanced
interference-cancellation techniques such as the Coordinated
Multipoint (CoMP) [6].

On the other hand, despite the advantages of C-RAN, the
fronthaul network must be able to support very high bit
rates with very low latency [7], leading to high transport
network cost. This has motivated researchers to investigate an
compromise solution that mitigates the fronthaul requirements
while enjoying the centralization benefits, through a flexible
distribution of the processing functionalities. This class of
solutions is referred to as “RAN functional splits” and consists
in splitting the processing functionalities between RRHs (that
are referred as, Radio Units, RUs, in the context of functional
splits) and BBU pool (that are referred as, Digital Unit, DUs,
in the context of functional splits). Based on the multiplexing
gain model we developed in [1], the objective of this paper
is to quantify the multiplexing gain, and the resulting power
savings, obtained by adopting different RAN functional splits.
To this end, we first provide an analytical model that quantifies
the amount of processing operations required by each of the
elementary functions that need to be implemented in RANs.
Then, to calculate the computational savings, we provide a
model to estimate the multiplexing gain that arises in the DUs
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Fig. 1: Distributed RAN VS Centralized RAN.

under four different functional RAN split architectures. Our
multiplexing-gain model takes into account several factors,
namely: i) the different geographical areas that can be served
by cell sites (geotypes), ii) spatial distribution of users, iii)
users-eNB association strategy, iv) the scheduling algorithm
adopted for the eNBs’ physical resource blocks assignment to
users. Finally, to estimate the power savings -resulting from
reduction in the computational resources- for the various cases,
we identify the main power consumption contributors in a BS
and provide a power consumption model for the different RAN
split options.

The remainder of this paper is organized as follows. Section
II discusses related work regarding RAN functional splits,
mobile-network power consumption and multiplexing-gain
modeling. Section III discusses the local BBU architecture,
the BBU pool architecture and the four considered RAN
functional split architectures. Section IV presents a detailed
model to capture the multiplexing gain for these four splits.
Section V introduces our power modeling approach, based on
the multiplexing gain model developed in the previous section.
Section VI shows the illustrative numerical results. Section VII
concludes the work.

II. RELATED WORK

Several works have been conducted on functional splits.
In [8] the authors discuss the different functional-splits re-
quirements in terms of capacity and latency, and show how
different functional splits could be implemented according to
the transport-network characteristics. Similar studies can be
found in [9], [10] and [11]. In [12], the authors present a model
to calculate the fronthaul bandwidth and the computational
resources required for different functional RAN splits. In [13],
authors present a comparison of the achievable pooling and
CoMP gains for different RAN splits. Ref. [14] quantifies
experimentally the transport-network capacity requirements of
three different RAN splits, in terms of control plane and
user plane data. Ref. [15] proposes a RAN split architecture
called split-PHY that reduces the fronthaul bandwidth while
keeping CoMP transmission and reception performance close
to the C-RAN solution. Ref. [16] proposes a genetic algorithm
to properly split and place the baseband functions with the
objective of reducing the transport network cost. Note that
none of the aforementioned works specifies the exact baseband

functions implemented at the RUs side and the DUs side for
each split case.

Energy consumption of mobile networks has been subject
of intensive research. Ref. [17] estimates the daily energy
consumption of a 5G radio access technology (denoted as 5G-
NX). The authors consider a typical European country, and
reveal that, by using 5G technology, 55% of energy savings
can be achieved while providing up to 15 times more capacity
and 9 times higher peak rate compared to LTE network.
Ref. [18] identifies a significant power saving by introducing
two different downlink transmission strategies (namely, data-
sharing and compression strategy) in C-RAN. Ref. [19] models
the power savings achieved by applying dynamic BBU-RRH
mapping, showing that, compared to D-RAN, 70% power
savings can be achieved. Ref. [20] evaluates the power savings
achieved in C-RAN by applying a cooperative transmission
scheme with low computational complexity to mitigate in-
terference. In [21], authors propose and solve a Virtual BS
Formation (VF) optimization problem in C-RAN, and quantify
the energy savings achieved by C-RAN with VF compared to
D-RAN and C-RAN without VF.

Multiplexing gain that arises from the aggregation of mul-
tiple BBUs in a central pool has also been investigated. Ref.
[22] presents a multi-dimensional Markov model to derive the
multiplexing gain. Ref. [23] estimates the multiplexing gain
based on a simulation study in the case of multiple sectors
aggregated into a single cloud BS. Ref. [24] presents traffic
simulation experiments to evaluate the multiplexing gain in
WiMAX BSs under different traffic conditions. In [25], based
on realistic data profile, the authors show that the centralized
architecture can save at least 22% in computational resources
compared to a distributed architecture by taking advantage of
the variations in traffic and processing loads among the BSs. A
similar study in [26] shows that reduction in the computation
resources is up to 70%. Ref. [27] proposes a model to
analyze the fronthaul statistical multiplexing gain brought by
the spatial randomness of the traffic when aggregating several
remote radio units as a cluster to share a fronthaul link.

To date, very few works considering power consumption
and multiplexing gain of different RAN functional splits
have appeared. Ref. [28] discusses the multiplexing gain in
different RAN splits considering different traffic models. The
author show the trade-off between the multiplexing gain and
the cost of transport network. Ref. [29] presents a mixed-
integer-constraint optimization problem to optimally split the
baseband functions between the RUs and the DUs while
minimizing the network power consumption and the transport
network bandwidth.

So far, no study has evaluated the power consumption of the
different RAN functional splits considering the multiplexing
gain arising in each split option. To the best of our knowledge
this is the first work that discusses the computational and
power savings arising from different RAN functional splits and
that specifies the exact baseband functionalities implemented
at the RUs side and at the DUs side in each split.
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Fig. 2: Local BBU architecture.

III. OVERVIEW OF CENTRALIZED RADIO ACCESS
NETWORK ARCHITECTURE

A. Local BBU and C-RAN BBU Pool

In this subsection we discuss our models for local BBU and
BBU pools. The schematic model of a local BBU architecture
(taken from [30]) is shown in Fig. 2. The local BBU is
composed by two main parts, namely a baseline unit and
system-specific unit. The baseline unit comprises components
for control, alarms, cooling or fans, and power supply, while
the system-specific unit includes the backhaul interface (S1-
X2), the fronthaul interface, (e.g., Common Public Radio
Interface (CPRI) [31]), and the processing cards.

The architecture of a BBU pool is shown in Fig. 3. Here,
BBUs share some portions of their hardware resources. The
rack in the example of Fig. 3 comprises two shelves, each
one containing multiple processing cards. Processing cards are
interconnected by a low-latency switch. Note that the amount
of processing cards compared to the D-RAN case is reduced
due to the arising multiplexing gain (we will elaborate on
the meaning of multiplexing gain in Section IV). Finally, a
baseline unit is mounted per shelf, while the main power
supply is shared through the rack.

B. Functional RAN Splits

Mobile operators are seeking new solutions for a more
flexible distribution of baseband functionalities between RUs
and DUs [32]. Based on this more flexible distribution (i.e.,
the “RAN functional splits”) some functionalities of the 3GPP
LTE RAN protocol stack are executed at the RUs and others
at the DUs.

In principle the separation of the functions (or in other
words, the “splitting of the protocol stack”) can be applied
on any protocol layer, or on the interfaces between layers.
To clarify how this splitting is performed, before introducing
the different RAN functional splits we overview the various
functions, grouped according to the protocol layer, as defined
in 3GPP LTE RAN [33].

(i) Physical layer (PHY layer) is responsible for prepar-
ing the bit stream for transmission by executing some
baseband functionalities:
• Filtering limits the signal bandwidth using lowpass

filter (LPF), and then sampling the signal at Nyquist
sampling rate.

Fig. 3: BBU pool architecture.

• Fast Fourier Transform (FFT) is a digital signal
processing technique by which the sampled symbols
are transferred to the frequency domain.

• Resource demapping allocates the subframes to
their subcarriers.

• Channel estimation estimates the channel state in-
formation (CSI) using the pilot reference symbols in
the received signal.

• Predistortion drives the power amplifier to work in
the linear operating region.

• MIMO precoding constructs the spatial mapping
matrix using the CSI of the users.

• Equalization compensates the effects of interchan-
nel interference in a multipath fading channel.

• OFDM demodulation represents the binary data
stream of the users with one of the following
schemes: BPSK, QPSK 16QAM and 64 QAM.

(ii) Medium Access Control (MAC) layer is responsible
for the channel coding through hybrid automatic repeat
request (HARQ) and connects the radio link control layer
to the PHY layer.

(iii) Radio Link Control (RLC) layer implements channel
coding through automatic repeat request (ARQ). Also it
implements the time-domain estimation/compensation of
non-idealities which occur due to carrier frequency offset
and sampling frequency offset.

(iv) Packet Data Convergence Protocol (PDCP) layer
performs ciphering, integrity protection and IP header
compression.

Fig. 4 shows the four possible functional splits considered
in this paper.

CPRI split: Fig. 4(a) shows the CPRI split, where all
baseband functionalities are located at the DUs (in CPRI
split we can refer to the DUs as the BBU pool), while only
power amplification and radio-frequency processing remain
decentralized at the cell site (RU). This split maintains all the
advantages of C-RAN as it enables highest multiplexing gain
and maximum reduction of the complexity at RRH. On the
other hand, this architecture should meet very strict latency
requirements (in the order of 0.25ms [10]) for physical layer
processing.

PHY split: Fig. 4(b) depicts the PHY split option, which
splits the physical-layer functions into two parts, lower and
upper physical layer. For this split, the latency requirement
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Fig. 4: RAN split options and corresponding mapping of network functions.

is relaxed to 2ms [10]. PHY split enables centralization of
the upper PHY, MAC, RLC and PDCP functions, while the
lower PHY functions (such as filtering, sampling, FFT/IFFT,
resource mapping/demapping, and channel estimation as well
as RF processing, A/D conversions and power pre-processing)
are distributed.

PHY-MAC split: PHY-MAC split is shown in Fig. 4(c).
The RAN architecture is split between the physical and the
MAC layer. In this option, PHY layer functions are distributed,
while, MAC, RLC and PDCP functions remain centralized at
the DUs and impose 2ms latency requirement [10].

RLC-PDCP split: RLC-PDCP split is shown in Fig. 4(d).
This split option applied the functional separation between
the RLC and the PDCP layers. PDCP functions such as data
packets header compression, ciphering, integrity remain cen-
tralized, while PHY, MAC and RLC functions are distributed.
The centralized functions are not sensitive to latency (require-
ments are in the order of 30ms) [10] since all the scheduling
functions (e.g., MIMO precoding and OFDM modulation) are
distributed at the cell site.

IV. AN ANALYTICAL MODEL FOR MULTIPLEXING GAIN
EVALUATION

In this section, we present an analytical model to evaluate
the multiplexing gain as function of users distribution, users-
eNBs association strategy and resource-blocks scheduling al-
gorithm. First, we choose a statistical distribution (namely,
normal or uniform) to model the spatial distribution of mo-
bile users in a given serving area. Then we allocate the
users to their serving eNBs according to a realistic user-
eNB association strategy. After that, we apply a scheduling
algorithm to distribute the physical resource blocks of the eNB
among its users. Then, we calculate the computational effort
(expressed in Giga Operations Per Second (GOPS)) per user
after knowing channel condition, used resources, modulation,
code rate and MIMO mode. Finally, starting from the statistical
properties of the computational effort of the entire cell, we are

able to estimate the multiplexing gain. All the variables used
in our model are summarized in Table I.

The various steps to build our model are detailed below.
User-eNB Association Strategy: We assume |U | users are

distributed (normally or uniformly) over an area covered by
|K | cell sites. Given transmitted power PTk of site k, distance
duk between site k and user u, and a Rayleigh-distributed
fading, the received power of user u can be defined as in [34],
[35]1, i.e.:

PRuk
= PTk − (128.1 + 37.6 log (duk)) (1)

Then, user u will be allocated to site k∗ with the highest
received power where, k∗ = arg maxk PRuk .

Scheduling Algorithm: We consider an LTE wireless sys-
tem [36] in which the smallest scheduling allocation unit
comprises two Physical Resource Blocks (PRBs), which are
referred to as Scheduling Block (SB). Let us assume that each
site k has S scheduling blocks with NSB adjacent subcarriers
each. Note that, in LTE, one Transmission Time Interval (TTI)
equals the scheduling block duration (TSB) and one frame
consists of 10 TTIs. Let Y = {1, 2, . . . n, . . . N} be the set
of indices associated to the possible Modulation and Coding
Schemes (MCS) in the system.

Consider user u uses the modulation scheme mn with an
associated code rate cn over SB s, then the rate of user u over
SB s can be calculated as follows [36]:

rus =
cn log2 mn

TSB
NSB (2)

The highest possible MCS which can be used by user u
over SB s is determined if the Signal to Noise Ratio (SNR) of
user u over SB s (SNRus) is greater than a predefined SNR

1Note that the pathloss equation is given by: L(dB) = 40(1 − 4 ×
10−3)log(duk )−18log(Dhb)+21log( f )+80dB where duk is the distance
between the user and cell site in kilometers, f is the carrier frequency in MHz
and Dhb is the BS antenna height in meters. Considering a carrier frequency
of 2000 MHz and a BS antenna height of 15 meters, the formula becomes
L(dB) = 128.1 + 37.6log(duk ).
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TABLE I: Multiplexing Gain Model Variables.

Parameter Description
U Set of users where u ∈ U
K Set of cell sites where k ∈ K
S Set of scheduling blocks where s ∈ S

duk Distance between user u and site k
PTk Transmitted power of site k
PRuk

Power received by user u from site k
NSB Number of subcarriers per scheduling blocks
N Index of the highest MCS in the system where n ∈ N
Mu Index of the highest MCS could be used by user u

SNRus Signal to noise ratio of user u over SB s
rus Data rate of user u over SB s
mn Modulation scheme with index n
cn Code rate with index n

wusn set to 1 if SB s is allocated to user u using MCS n
TSB Scheduling block duration

threshold (SNRThreshold) as stated in [37]. Mu is the index of
the highest MCS that can be used by user u over all the SBs.
For SNRus calculation, Effective Exponential SNR Mapping
(EESM) is used [38]. Then, the sets of allocated SBs and used
MCSs for user u are obtained by maximizing the following
quantity

|U |∑
u=1

|S |∑
s=1

Mu∑
n=1

wusn
cn log2 mn

TSB
NSB (3)

where wusn is an assignment variable, which is set to 1 if
SB s is allocated to user u using MCS n and set to 0 otherwise.

To perform the user-MCS association and the allocation of
SB to users as stated in (3), we impose that a given user u
can only use the same MCS over all his allocated SBs s in
a given TTI, and a given SB s can only be allocated to one
user in a given TTI [36]. Maximization of Eq. (3) is obtained
as presented in [36]. MIMO mode and spatial streams are
obtained knowing MCSs index [39]. Hence, in a given TTI,
we know the SBs allocated to user u, used MCSs, MIMO
mode and spatial streams.

A. Computational Effort and Multiplexing Gains for CPRI
Split Option (C-RAN)

The computational effort for user u at TTI t can be defined
as [23]:

CE(u, t) =
(
3Au,t + A2

u,t +
1
3

Mu,tCu,tLu,t

)
Ru,t

10
(4)

where Au,t is the number of used antennas for user u at TTI
t, Mu,t is the modulation bits for user u at TTI t (log2 mn),
Cu,t is the code rate for user u at TTI t, Lu,t is the number
of spatial MIMO-layers for user u at TTI t, and Ru,t is the
number of SBs for user u at TTI t. CE is expressed in Giga
Operations per Second (GOPS).

The computational effort for the whole network can now be
calculated for both distributed RAN CEDRANtot al

and central-
ized RAN CECRANtot al

, by summing up the computational
efforts for all the users in all the TTIs as follow

CEDRANtot al
=

∑
u

∑
t

CEDRAN (u, t) (5)

CECRANtot al
=

∑
u

∑
t

CECRAN (u, t) (6)

where CECRAN (u, t) is computational effort computed by Eq.
(4) for a user served by centralized RAN and CEDRAN (u, t)
is computational effort computed by Eq. (4) for a user served
by distributed RAN.

In a D-RAN, we calculate the computational effort sep-
arately for each cell. Each cell is expected to have a very
different number of served users, which leads to a high
variance in the computational effort of cells. In C-RAN,
computational effort is calculated for the whole centralized
pool resulting in lower variance in computational effort of the
covered zone compared to the distributed one. Hence, in C-
RAN it is more likely that the computational effort will not
exceed a certain threshold with a certain probability p. The
multiplexing gain β represents the percentage of savings in
Computational Effort (CE) in the case of C-RAN with respect
to the D-RAN case. CE is first calculated for both D-RAN
(as in Eq. 7) and C-RAN (as in Eq. 6) for each TTI. Then,
we draw two Cumulative Distribution Functions (CDF): 1- the
first CDF for the CE values of the D-RAN 2- the second CDF
for the CE values of the C-RAN. Finally, the multiplexing gain
is calculated as the normalized difference between the CE of
D-RAN and C-RAN at a given probability p as follows

β =
CEDRANtot al

− CECRANtot al

CEDRANtot al

(7)

B. Computational Effort and Multiplexing Gains for Other
RAN Functional splits

The calculation of computational effort for the other three
functional RAN splits, i.e., PHY split, PHY-MAC, RLC-
PDCP, differs from the CPRI split option seen above, as the
overall computational effort at the DU is reduced. Note that,
the highest multiplexing gain is achieved in the CPRI case,
and it reduces gradually when fewer functions are centralized
in the DUs. Hence, to model the multiplexing gain in the three
different functional RAN splits (i.e., PHY, PHY-MAC, RLC-
PDCP splits), we consider a scaling factor that represents the
share of functions that are centralized in each specific split
option with respect to the CPRI option. In other word, the
user complexity is still calculated as in Eq. (4), but now a
complexity factor σ is added to account only for the functions
that are actually centralized. We calculate the complexity
factor σ for each RAN split, based on the number of functions
accommodated in the DUs as follows

σ =
GOPSDU

GOPST
(8)

where GOPSDU is the GOPS of the baseband functionalities
implemented in the DUs and GOPST is the GOPS for the
fully-centralized CPRI option.

For example, in PHY split , the user-processing function-
alities are all implemented in the DUs; hence, by applying
Eq. (8) we have a complexity factor σ of 0.6. In PHY-MAC
split, where fewer functions are implemented in the DUs,
complexity factor σ goes down to 0.3. In RLC-PDCP split,
only core PDCP functions remain centralized at the baseband
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pool and complexity factor σ equals to 0.1. In conclusion, the
computational effort CErs for user u at TTI t in the RAN split
rs can be defined as

CErs(u, t) = σCE(u, t) (9)

And, the multiplexing gain for the different RAN splits can
be calculated again as in Eq. (7) but considering the compu-
tational effort as in Eq. (9).

V. ANALYTICAL MODEL FOR RAN POWER CONSUMPTION

A. Local BBU Power Consumption

As already mentioned in Section III, C-RAN introduces
significant power savings, which come from the centralization
of BBUs.

The power consumption of a local BBU2 PBB can be
calculated as

PBB = (PBL + PFH + PS1−X2 + PPC) (1 + αPS) (10)

where, PBL is the power consumption of baseline unit, PFH

is the power consumption of fronthaul interface, PX1−S2 is
the power consumption of S1-X2 (backhaul) interface, PPC

is the power consumption of the processing card, αPS is the
power supply loss factor which is equivalent to the amount of
dissipated power.

The power consumption of each of the mentioned compo-
nents is evaluated as follows.

Processing Cards: The power consumption of the pro-
cessing card depends on the complexity of the implemented
functions (FFT, channel coding, modulation, etc) and on the
processed traffic load. We use the power model in [40] to
evaluate the power consumption of the processing cards.

This model is based on the complexity values, which
estimate the number of GOPS for each baseband processing
function. To calculate the power consumption of a baseband
function Pi , the complexity value Ci of this baseband function
must be converted into watts by using a technology dependent
factor T , i.e.:

Pi =
Ci

T
(11)

This technology-dependent factor indicates the hardware
complexity according to the year of deployment and the
system configuration. Values for these factors can be found
in [41]. Note that, the complexity values of any baseband
function are referred to a specific scenario (reference sce-
nario), where bandwidth is 20 MHz, system is fully loaded
(no hardware deactivation), antennas are single-input-single-
output, and a spectral efficiency of 6 bps/Hz is achieved with
a 64-QAM (Quadrature Amplitude Modulation) modulation
scheme and a coding rate of 1.

For any other scenarios, Pi is scaled using factor Γi (Γi = 1
for reference scenario). This factor is determined according to
the following parameters: 1) bandwidth, 2) spectral efficiency,
3) number of antennas, 4) system load in terms of hardware
activation and deactivation (sleep-states), 5) number of spatial

2Note that, since analogue front-end and power amplification remain always
at cell site, we exclude them from our analysis as they have no contributions
in power savings.

streams that are relevant to the number of antennas, and 6) the
quantization (e.g., 4 bits, 16 bits and 24 bits).

Finally, the power consumption of the processing card is
obtained through the summation of power consumed by each
implemented baseband function as:

PPC =
∑
i

PiΓi (12)

A more detailed explanation of the model used for the
processing cards power consumption can be found in [40].

Baseline Unit: The baseline unit usually comprises com-
ponents responsible for system powering, power conversion
(AC/DC and DC/DC), alarm unit, control unit, cooling unit
(fans), and power supply. For simplicity, the baseline unit
power is considered as a fixed value here, which linearly
depends on the total power of the BS (power amplifier,
analogue front-end, and baseband processing) [41]. Some
efficiency factors for cooling, and power conversion (DC/DC,
AC/DC) are introduced. Since we exclude the power amplifier
and the analogue front end from our model, we consider
the baseline unit power which linearly depends only on the
baseband processing cards power as:

PBL = PPC (1 + ηcool)
(
1 + ηdc/dc

) (
1 + ηac/dc

)
(13)

where ηcool is an efficiency factor for the cooling unit, and
ηdc/dc & ηac/dc are the efficiency factors for DC/DC, AC/DC
power conversions.

Fronthaul: In the different RAN split options, BSs are
connected via fronthaul links towards the DUs. We assume
a power consumption of a fronthaul interface PFH = 18.2 W3

[42].
Backhaul: Backhaul network performs traffic aggregation

and transport between the RAN and the core network. In a
typical macro BS, the backhaul interface power consumption
is PS1−X2 = 10 W [40].

Power Supply: The efficiency of power supply is influenced
by many factors. The exact efficiency numbers depend on the
system configuration including system load and the year of
deployment. For simplicity, we assume a fixed power loss αPS

= 5% in Local BBUs and αPS = 10 % in different RAN splits
[30].

B. DUs Power Consumption

The total power consumption PT of a centralized digital unit
(as depicted in Fig. 3) is calculated as:

PT = (s (PBL + PLS) + sν (PFH + (1 − β) PPC) + sγPX1−S2) (1 + αPS)

(14)
where PLs is the power consumption of low latency switch, s
is number of shelves, ν number of aggregated sites per shelf,
β is multiplexing gain (β < 1) and γ is number of S1-X2
interfaces per shelf.

Moreover, the number of fronthaul interfaces per shelf is
equal to ν the number of cells aggregated per shelf. The

3Although the required transport capacity depends on the considered RAN
split, for simplicity we assume constant power consumption in the different
functional RAN splits.
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Fig. 5: Cumulative distribution function for computational
effort in dense urban area considering normal and uniform
users’ distributions.

number of processing cards per shelf equals the number of
fronthaul interfaces per shelf multiplied by the multiplexing
gain (ν(1 − β)). The ratio between the number of S1-X2
interfaces per shelf to the number of processing cards per
shelf is assumed to be 1:6, i.e., γ = ν(1 − β)/6. The number
of shelves is calculated as the minimum number of shelves
that supports a given number of cells, i.e., Number of shelves
=d(No. of Cells)/(No. of Cells per Shelf)e.

VI. ILLUSTRATIVE NUMERICAL RESULTS

In this section, we compare multiplexing gain and power
consumption for a C-RAN considering the different functional
RAN splits.

A. Evaluation Settings

We consider three different geographical type areas (geo-
types), namely, Dense urban (D), Urban (U), and Sub-urban
(S). The number of cell sites per unit area and number of
users per unit area are taken from [42] and [43], respectively,
and reported in Table II. In this study, we assume a particular
scenario where a BS with 20 MHz bandwidth, 2x2 MIMO
antenna configuration, 6 bps/Hz spectral efficiency, 64 QAM
modulation scheme, coding rate of 1, and a full system load
(no hardware deactivation).

B. Multiplexing Gain Assessment

We start observing the statistical properties of the com-
putational effort calculated using Eq. (4) to calculate the

TABLE II: Features of the Considered Geotype.

Dense Urban Urban Suburban
Number of Sites

per Km2 4 1.5 0.2

Total Area
to Accommodate

12 site [km2 ]
3 8 60

Number of User
per km2 3000 1000 500

Total Number
of Users 9000 8000 30000

Fig. 6: Cumulative distribution function for computational
effort considering three different geotypes with normal users’
distribution.

multiplexing gain and show the impact of the users distri-
bution, different geotypes and the different pool dimension,
for different functional RAN splits.

Fig. 5 shows the cumulative distribution function (CDF) of
the computational effort (CE) in a dense-urban area, where
users are distributed normally (N) and uniformly (F) for the
case of C-RAN (CPRI split) and the case of D-RAN. We
run the simulation for 80 TTIs, and a different GOPS value
in each TTI is obtained. So, we draw a graph where y-axis
represents the cumulative probability of achieving a certain
number of GOPS in a TTI averaging over 80 trials (80 TTIs).
We calculate the multiplexing gain as follows. We assume a
network operator designs a baseband pool with enough CPUs
to serve the requested amount of GOPS with 99% probability
(in other words, we only admit blocking of 1% of requested
computational effort). So, multiplexing gain can be calculated
as the percentage difference between the amount of GOPS
required to achieve 99% of the CDF in the case of one single
(distributed) eNB (D-RAN) and when aggregating 12 eNBs
(C-RAN). In Fig. 5 for example, multiplexing gain for normal
distribution is calculated as follows

β =
2720 − 2397

2720
× 100 = 11.8% (15)

while multiplexing gain for uniform distribution is calculated
as

β =
2523 − 2397

2523
× 100 = 5% (16)

The multiplexing gain is lower in case of uniform distri-
bution. In fact, when users are normally distributed, they are
more concentrated closer to the eNBs and this results in higher
computational effort with respect to the uniform case, which
leads to higher multiplexing gain.

Fig. 6 compares the computational effort in the different
geotypes (considering CPRI split, 12 eNBs and normally dis-
tributed users). Surprisingly, sub-urban area has the maximum
computational effort while the dense urban has the lowest one.
This can be logically explained if we consider that users’ SNR
in sub-urban area is higher since the number of users per unit
area is lower, hence; users can more likely transmit with high
air-interface configuration, and hence, the computational effort
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Fig. 7: Cumulative distribution function for computational ef-
fort in dense urban area considering different pool dimensions
with normal users’ distribution.

per user is higher with respect to urban and dense urban.
Moreover, a large number of SBs will be occupied in sub-
urban area as the total number of users is high4 leading to
highest computational effort. On the contrary, the dense urban
area has the lowest computational effort. Accordingly, sub-
urban area has the maximum multiplexing gain while the
dense urban has the lowest one. In summary, gain is 11.8% in
dense urban area, 13% in urban area, and 28.2% in sub-urban
area. Note that our comparison is referred to a fixed number
of aggregated eNBs per pool, which is constant for all the
considered geotypes. This might not be necessarily the case
and depends on mobile operators planning choices. Note also
that, even if multiplexing gains are the highest in the suburban
area, the high cost of the fronthaul network to cover such a
large area might anyway discourage operators from adopting
C-RAN in suburban areas (considerations regarding cost of
the fronthaul are out of scope in this paper).

Fig. 7 shows that increasing the pool dimensions, i.e. the
number of aggregated eNBs, for a given geotype area results in
higher multiplexing gain. We consider CPRI split option and
a dense urban area with different pool dimensions: 8 eNBs,
12eNBs and 20s eNB per pool. The obtained gain in the case
of aggregating 20 eNBs is 19%, 11.8% when aggregating 12
eNBs and 7% when aggregating 8 eNB.

Finally, in order to capture the multiplexing gains obtained
for different RAN functional splits in the different geotypes,
we apply Eq. (7) and Eq. (9) considering 12 eNBs with
normally distributed users. The results shown in Fig. 8 quantify
the decrease of the multiplexing gain due to the adoption of
less aggressive functional splits.

C. Power Consumption Assessment

This subsection compares the BBU pool power consumption
estimated using the power model in Section V, for different
functional RAN splits. We show the power savings in each
split option compared to D-RAN. We refer to CPRI split, PHY
split, PHY-MAC split and RLC-PDCP split as S1, S2, S3 and
S4, respectively.

4Note that the area dimension in sub-urban is very high to accommodate
12 eNBs as in Table II.

Fig. 8: Multiplexing gain for different RAN splits considering
different geotypes with normal users’ distribution.
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Fig. 9: Power consumption for 12 aggregated cell sites con-
sidering different RAN splits in three different geotypes with
normal users’ distribution.

Fig. 9 shows the power consumption of 12 aggregated
cell sites considering the different functional RAN splits and
full distributed solution in dense-urban, urban, and sub-urban
scenarios. In dense urban scenario, we obtain a power savings
of 24% with respect to distributed RAN (Dis) in CPRI split,
a 7.6% in PHY split, a 4.8% in PHY-MAC split, and 3.1%
in RLC-PDCD split. In urban scenario, we obtain a power
saving of 25.5% with respect to distributed RAN in CPRI
split, a 8.1% in PHY split, a 5% in PHY-MAC split, and
3.2% in RLC-PDCD split. In sub-urban scenario, we obtain
a power savings of 38.5% with respect to distributed RAN
in CPRI split, a 12.7% in PHY split, a 6.35% in PHY-
MAC split, and 3.4% in RLC-PDCD split. Note that the more
centralized functionalities in the baseband pool the less total
power consumed, due to the fact that the higher consolidation
the less computational resources are required, leading to higher
power savings.

In Fig. 10 we show power consumption of 20 aggregated
cell sites considering four different functional RAN splits
in dense-urban scenario. Compared to distributed RAN, we
obtain a power saving of 12% in PHY split, 9.2% in PHY-
MAC split, and 7.32% in RLC-PDCD split. As expected power
savings increase when centralizing more cells.
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Fig. 10: Power consumption for 20 aggregated cell sites
considering different RAN splits in dense urban area with
normal users’ distribution.

VII. CONCLUSION

In this work, we propose a multiplexing gain model to
capture the processing savings arising from consolidation
of compute resources, considering four different functional
RAN splits: CRPI, PHY, MAC-PHY and RLC-PDCP. We also
propose a power consumption model to quantify the savings
associated with each split option compared to the traditional
one (D-RAN).

Results prove that the highest multiplexing gains (accord-
ingly, the lowest power consumptions) are obtained for CPRI
split in all different geotypes, and show how multiplexing gain
decreases significantly when adopting less aggressive splits,
as RLC-PDCP split. For 12 aggregated sites in dense urban
area, we estimate savings up to 11.8% in CPRI, 6% in PHY,
3.8% in MAC-PHY and 1.32% in RLC-PDCP. Under our
assumptions, we found that the highest multiplexing gain is
obtained in a suburban scenario. We also show that a higher
multiplexing gain is achieved as the number of aggregated cell
sites increases for a given geotype.
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[37] D. Lopez-Perez, A. Ladanyi, A. Jüttner, H. Rivano, and J. Zhang, “Opti-
mization method for the joint allocation of modulation schemes, coding
rates, resource blocks and power in self-organizing LTE networks,”
in Proc. IEEE International Conference on Computer Communications
(IEEE INFOCOM 2011), Shanghai, China, Apr. 2011, pp. 111–115.

[38] S. Mumtaz, A. Gamerio, and J. Rodriguez, “EESM for IEEE 802.16
e: WiMaX,” in Proc. 7th IEEE/ACIS International Conference on
Computer and Information Science (ICIS), Portland, OR, USA, May
2008, pp. 361–366.

[39] R. Van Nee, V. Jones, G. Awater, A. Van Zelst, J. Gardner, and G. Steele,
“The 802.11 n MIMO-OFDM standard for wireless LAN and beyond,”
Wireless Personal Communications, vol. 37, no. 3, pp. 445–453, May
2006.

[40] B. Debaillie, C. Desset, and F. Louagie, “A flexible and future-proof
power model for cellular base stations,” in Proc. IEEE 81st Vehicular
Technology Conference (VTC Spring), Glasgow, UK, May 2015, pp. 1–7.

[41] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp,
W. Wajda, D. Sabella, F. Richter, M. J. Gonzalez et al., “Flexible power
modeling of LTE base stations,” in Proc. IEEE Wireless Communications
and Networking Conference (WCNC), Shanghai, China, Apr. 2012, pp.
2858–2862.

[42] “Deliverable 3.3: Analysis of Transport Network Architectures for
Structural Convergence,” COnvergence of fixed and Mobile BrOadband
access/aggregation networks- COMBO Project, Tech. Rep., Jul. 2015.
[Online]. Available: https://www.ict-combo.eu

[43] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson,
M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume et al., “How
much energy is needed to run a wireless network?” IEEE Wireless
Communications, vol. 18, no. 5, pp. 40–49, Oct. 2011.

10


