L’isola di Laputa può volare?

Paola Magnaghi Delfino, Tullia Norando

L’articolo presenta una proposta di lavoro interdisciplinare pensato per studenti di Scuola Secondaria di Secondo Grado. Si richiede la lettura di un testo di letteratura inglese, una ricerca sulle fonti storiche dello studio dei fenomeni magnetici e infine la valutazione quantitativa delle grandezze coinvolti nei fenomeni, alla luce delle conoscenze attuali.

Nel 1726, Jonathan Swift pubblicò Travels into Several Remote Nations of the World. In Four Parts. By Lemuel Gulliver, First a Surgeon, and then a Captain of Several Ships, conosciuto comune mente in Italia con il titolo i viaggi di Gulliver, una prosa satirica che divenne ben presto popolare e da allora è un classico della letteratura inglese.

L’isola di laputa e la levitazione magnetica

Alcune delle idee scientifiche esposte da Swift sono umoristiche esagerazioni delle idee e degli esperimenti che un suo contemporaneo avrebbe potuto leggere nelle Philosophical Transactions della Royal Society.

Il modo in cui si muove l’isola volante è infatti un adattamento della teoria del magnetismo proposta da William Gilbert. L’isola, la cui base è fatta di un metallo chiamato adamante, assomiglia alla terrella di Gilbert e la calamita gigante, che è nelle sue viscere, è un esempio dell’ago ad immersione di Gilbert.

Nel libro, Swift fornisce dati accurati sull’aspetto fisico dell’isola e sulle sue misure.

Secondo il racconto di Swift, poiché alcuni metalli presenti sulla Terra respingono la calamita e la base adamantina dell’isola, Laputa può volare e il suo movimento è controllato spostando la calamita gigante in una direzione o in un’altra.

Swift propone la propria “teoria” sulla levitazione magnetica di Laputa sulle seguenti motivazioni scientifiche:

- Sia il magnetismo che la gravità possono agire sugli oggetti a distanza ed entrambe le forze diminuiscono con la distanza. Come sostenuto da Isaac Newton nei Principia, pubblicato nel 1687, la forza di gravità diminuisce con l’ inverso del quadrato della distanza, ma ciò non vale per la forza magnetica. Si tratta dunque di due forze diverse sulla cui natura le grandi menti scientifiche dell’epoca non erano in grado di fornire una teoria convincente. Questa situazione proseguì sino alla fine del XVIII secolo quando Charles Coulomb studiò in modo innovativo l’elettricità e il magnetismo e pubblicò i lavori che hanno stimolato lo sviluppo di modelli matematici basati sulla teoria newtoniana.

- Al contrario della gravità, il magnetismo dipende dalle specifiche proprietà degli oggetti. Il magnetismo può avvicinare o allontanare due oggetti, a seconda del loro polo magnetico. La maggior parte dei materiali rientrano molto poco della forza magnetica; altri creano forze abbastanza forti da essere rilevate. L’adamante potrebbe essere un materiale diamagnetico e quindi essere resistito dal campo magnetico applicato.

Ricordiamo che i materiali diamagnetici furono scoperti da Seybold Justinus Brugmans nel 1778, quindi dopo la pubblicazione dei Viaggi di Gulliver. Tuttavia, nel XVIII secolo gli studi sui fenomeni elettrici e magnetici erano diventati una specie di gioco di società; nei salotti aristocratici venivano effettuati esperimenti a scopo di intrattenimento per cui Swift avrebbe potuto conoscere le proprietà diamagnetiche dell’adamante. Non sappiamo cosa esattamente sia l’adamante, l’assonanza con “diamante” non è significativa, anche se il diamante è un materiale diamagnetico, ma possiamo pensare che lo scrittore si riferisse a leggende medioevali che descrivono l’adamante come un particolare magnetite.

Il magnetismo dopo Swift

Gli studi sperimentali sui fenomeni magnetici furono iniziati da Charles Coulomb che è considerato il fondatore della teoria dell’elettricità e del magnetismo; spiegò la legge di attrazione e repulsione tra cariche elettriche e poli magnetici, benché non avesse trovato la connessione tra i due fenomeni. Estese al campo elettrico e al campo magnetico la teoria newtoniana dell’azione istantanea a distanza e stabilì la legge dell’inverso del quadrato della distanza. Per quanto riguarda la misura del campo magnetico terrestre, fin dal 1829 gli scienziati sono stati in grado di eseguirlo e il valore è fissato attualmente fra 0.3 a 0.6 Gauss (3 x 10⁻⁴ - 6 x 10⁻⁴ Tesla). Circa la possibilità di levitazione magnetica, il teorema di Earnshaw (1842), originariamente riferito ai campi elettrostatici, dimostra che non è possibile avere una levitazione stabile usando una combinazione statica di
campi magnetici e cariche elettriche. Per levitazione statica si intende la sospensione stabile di un oggetto contro la forza di gravità. Ci sono tuttavia altri modi per ottenere la levitazione. Per esempio è possibile far levitare materiali diambattici il cui magnetismo sia opposto al campo magnetico in cui sono posti. I materiali diambattici sono comuni in natura e possono levitare se posti in campi magnetici sufficientemente forti. Gocce d'acqua e anche rane sono stati fatti levitare in un laboratorio nei Paesi Bassi (Physics World, April 1997). Questo esperimento richiede però l'utilizzo del campo magnetico più forte che la tecnologia abbia mai prodotto. (Berry, 1997).

Laputa può volare?

È possibile calcolare il peso dell'isola di Laputa sulle base delle misure di Swift, facendo la congettura che l'isola abbia la forma di un disco, come del resto si vede nelle illustrazioni originali del libro e supponendo che gli strati di materiali che costituiscono l'isola siano formati da "minerali nel loro solito ordine" (Stacey, 1719). Riguardo a quest'ultima congettura, si osserva che Swift probabilmente conosceva gli studi sul sottosuolo inglese pubblicati da John Stacey, in *Philosophical Transactions* del 1719. Si ottiene la seguente tabella:

<table>
<thead>
<tr>
<th>Laputa</th>
<th>Yard</th>
<th>m</th>
<th>m²</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro</td>
<td>7837</td>
<td>7166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altezza</td>
<td>300</td>
<td>274,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>11250,62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>3086270</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1: dimensioni di Laputa

Frazionando l'altezza totale di Laputa nel seguente modo: Altezza di Laputa = base di adamante + suolo + minerali = (182,88 + 3,66 + 87,78) m si ottiene:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Peso specifico</th>
<th>Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>adamante</td>
<td>2057513</td>
<td>3550</td>
</tr>
<tr>
<td>suolo</td>
<td>41177,268</td>
<td>1750</td>
</tr>
<tr>
<td>pietra</td>
<td>41177,268</td>
<td>1062</td>
</tr>
<tr>
<td>Peso totale</td>
<td>741996168</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1: dimensioni di Laputa

Quindi Laputa può levitare se il campo magnetico generato da Balnibarbi può contrastare la gravità e sospendere Laputa sopra Balnibarbi di almeno 3 metri, poiché anche Balnibarbi è abitata e ci sono edifici anche se molto modesti. Un oggetto può levitare in un campo magnetico B se si realizza il bilanciamento tra il campo magnetico in cui l'oggetto è immerso, dove \(F = MVB \) e la gravità \(mg = \rho Vg \) dove \(\rho \) è la densità del materiale, \(V \) è il volume e \(g = 9.8 m/s^2 \).

Il momento magnetico è \(M = (\chi \mu_0) V B \) quindi \(F = (\chi \mu_0) B V V B = (\chi 2\mu_0) V VB^2 \).

Il campo gradiente verticale \(V B^2 \) richiesto per la levitazione deve dunque essere maggiore di \(2\mu_0 \rho g/\chi \).

La suscettibilità magnetica \(\chi \) è \(10^3 \) per i materiali diambattici e, poiché \(\rho \) è \(2404 \) kg/m³, e \(\mu_0 = 4 \times 10^{-7} \), la levitazione magnetica richiede un campo gradiente \(\geq 4800 T/m \).

Posendo \(I = 3 \) e stimando \(VB^2 = B^2 I \), si trova che per avere la levitazione di Laputa è necessario un campo di circa 120T.

C'è poi un'altra questione da affrontare e precisamente se sia realmente possibile che Laputa possa muoversi oppure possa restare ferma. La risposta è negativa a tutte e due le domande (Berry, 1997 and Merton, 1996).

In conclusione è impossibile che l'isola di Laputa voli per tre buone ragioni: Laputa è troppo pesante, Laputa vola troppo in alto e i Lapuaziani non hanno gli strumenti scientifici necessari per ottenere le condizioni per stabilizzare il volo.

Del resto si ricorda che Swift manifesta nel suo libro scarsa considerazione per gli scienziati Lapuaziani che descrive come individui lontani dalla realtà, sempre immersi nelle loro elucubrazioni.

L'opinione convenzionale è che gli studenti interessati al pensiero scientifico dovrebbero sviluppare forti competenze matematiche e fisiche. Tuttavia, nella realtà scolastica questa opinione potrebbe non essere corretta. Molti insegnanti pensano che proporre progetti che coinvolgano argomenti di matematica o fisica con temi della letteratura, l'arte o storia della scienza, possa aiutare gli studenti a costruire e utilizzare competenze matematiche o fisiche e rendere l'apprendimento di queste discipline più divertente.

La proposta presentata in questo articolo è uno dei molti progetti del laboratorio FDS dedicati alla valorizzazione delle conoscenze scientifiche, al lavoro di gruppo e alla formazione di competenze interdisciplinari.

Paola Magnaghi – Delfino
Tuilla Norando
Laboratorio FDS-Dipartimento di Matematica
Politecnico di Milano

BIBLIOGRAFIA

