
Enabling Automated Bug Detection for IP-based Designs using High-Level
Synthesis

P. Fezzardi, C. Pilato, F. Ferrandi

P. Fezzardi, C. Pilato, and F. Ferrandi. Enabling automated bug detection for ip-based designs using
high-level synthesis. IEEE Design and Test, pages 1–7, 2018

The final publication is available via http://dx.doi.org/10.1109/MDAT.2018.2824121

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or list, or
reuse of any copyrighted component of this work in other works



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

1

Enabling Automated Bug Detection
for IP-based Designs using High-Level Synthesis

Pietro Fezzardi§, Christian Pilato∗, Fabrizio Ferrandi§
§Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano, Italy
∗Faculty of Informatics – Università della Svizzera italiana (USI), Lugano, Switzerland

pietro.fezzardi@polimi.it, christian.pilato@usi.ch, fabrizio.ferrandi@polimi.it

Abstract—Modern System-on-Chip (SoC) architectures are in-
creasingly composed of Intellectual Property (IP) blocks, usually
designed and provided by different vendors. This burdens system
designers with complex system-level integration and verification.
In this paper, we propose an approach that leverages HLS
techniques to automatically find bugs in designs composed of
multiple IP blocks. Our method is particularly suitable for
industrial adoption because it works without exposing sensitive
information (e.g., the design specification or the component gen-
eration process). This advocates the definition and the adoption of
an interoperable format for cross-vendor hardware bug detection.

Keywords—High-Level Synthesis, Bug Detection, Intellectual
Property, IP Protection

I. INTRODUCTION

As technology scaling is showing its limitations, hetero-
geneous System-on-Chip (SoC) architectures are becoming
very popular [1]. According to ITRS predictions, future SoCs
will be characterized by heavy reuse (more than 90% by
2020) of Intellectual Property (IP) blocks for reducing design
cost and time-to-market [2]. To increase productivity and
tackle design complexity, system designers will increasingly
use High-Level Synthesis (HLS) to automatically generate
specialized IP blocks in a suitable Hardware Description
Language (HDL) [3], while integrating all the components
with Electronic System Level (ESL) methodologies [4].

While IP vendors are specialized in the optimization of
specific IP blocks, system designers must face new threats in
terms of design and verification. First, the HDL descriptions
generated with HLS are not human friendly and system design-
ers may not be aware of many component details. Then, detect-
ing bugs in such complex architectures requires to compare the
behavior of each component with its specification, but also to
verify the interactions among all these components, stressing
the entire functionality to identify corner cases potentially
untested by vendors of each IP block. To this end, the common
practice is to combine formal methods based on sequential
equivalence checking with simulation-based approaches [5].
The first cover the verification of the single IP blocks, but
they are still limited in case of aggressive optimizations
or complex interactions. Therefore, system-level, simulation-
based debugging methods are widely used, but they may
expose sensible details of the component or the generation
process. Due to the high cost of verification (more than 50% of
the overall design time) [6], system designers need automated

IP A design flow

IP B design flow

SoC design flow

IP-spec-A

verification-A HDL-A

HLS-A

IP-spec-B

verification-B HDL-B

manual
design B

SoC-spec

SoC
verification

SoCIP-A IP-B

Fig. 1. Traditional design flow for an SoC composed of multiple IPs.

methodologies to efficiently identify bugs without exposing
any intellectual property in open format.

We promote an approach that extends Discrepancy Anal-
ysis [7], i.e., a state-of-the-art technology for automated bug
detection in HLS-generated circuits. Our solution leverages an
open-source verification engine used by the system designers
to automatically debug the interactions of IP blocks provided
by different vendors. Sensible details and methods for gen-
erating bug reports are encapsulated by the IP providers and
the HLS vendors into proprietary libraries that interact with
such engine through a well-defined and open API. Similarly
to formats for the interoperability of IP blocks [8], an open
format to support cross-vendor automated bug detection would
be a real revolution for hardware design and verification.

After motivating our work (Section II), we present our
approach:

• a methodology based on Discrepancy Analysis for auto-
mated bug detection in HLS-generated components, with
the possibility to trade off the precision of bug detection
and the analysis time (Section III);

• an extension to such Discrepancy Analysis for debugging
complex SoCs composed of multiple IPs; we define three
co-simulation libraries that the IP providers can provide
to enable Discrepancy Analysis internally to their IPs
without exposing internal details (Section IV);

• a set of strategies and a unified vendor-agnostic Ap-
plication Programming Interface (API) for Discrepancy
Analysis, compatible with our composable design flow,
to leverage industrial practices and state-of-the-art tech-
niques for the protection of intellectual property of IP
vendors and HLS developers (Section V).



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

2

We then show how our solution would improve design and
verification with a workflow example (Section VI).

II. MOTIVATION

Fig. 1 shows a design flow for an SoC composed of multiple
IP blocks, where each component is generated starting from a
high-level description of its function. Such generation process
can be done by different IP providers, manually or using high-
level synthesis. During the creation of the components, specific
tests are identified to validate the behavior of the generated
hardware. The system designer then integrates the required IP
blocks to create larger components or the final architecture.

When interacting with other components, an IP block may
behave differently from what expected. In fact, a component
could contain a bug that has not been exercised by functional
testing. These errors can be structural or functional [7].
The former include, for example, errors in the hardware re-
sources used to implement operations or in the interconnection
between components, and bit flips due to aggressive HLS
optimizations. The latter include, for example, errors in the
controller logic that cause the design to execute infinitely.
Even if most of these bugs can be identified at the IP level,
the IP providers cannot know in advance all the execution
scenarios and combinations of input values for the respective
IPs, requiring interaction with system designers [5].

While such IP blocks may feature meta-data to simplify
the integration [8], no clear methods are usually provided
to precisely identify bugs internally to the components. For
instance, IP blocks are usually provided with assertions to no-
tify unexpected behaviors of the components. This information
enables designers to detect the occurrence of a bug, but only
in the specific points of the design where the assertions are
inserted. So, the system designer has to interact with the IP
vendor, who has the necessary knowledge of the component
to isolate the bug. However, this increases the verification
costs with longer time-to-market and higher costs because the
information shared between IP vendors and system designers
is limited. So, many industrial solutions are already available
to verify the entire toolflow for creating an IP block, as well as
its integration into a complete SoC. Example of commercial
verification approaches include accelerated simulations [9] and
functional/structural coverage [10] to properly identify corner
cases. All major players are moving towards a comprehensive
solution for SoC verification, as confirmed by the recent
acquisition of Atrenta by Synopsys. However, a complete and
interoperable methodology for automatic bug identification in
case of several IP blocks is still missing. Our methodology,
instead, adopts a novel approach: system designers do not
need to manually debug the IP blocks because the comparison
is performed automatically, and IP vendors do not need to
disclose the internals of their IP blocks to enable debugging.

III. DISCREPANCY ANALYSIS FOR AUTOMATED
BUG DETECTION IN IP-BASED SYSTEM DESIGNS

To debug a HLS-generated IP block, we rely on Discrepancy
Analysis (DA) [7], a novel technique for automated bug
detection based on the notion of equivalence between the

Original Source Code – High Level Language (HLL)

High Level Syntehsis

custom functions
for HW/SW comparison

instrumentations
for trace generation

HLL + SSA

debug metadata
for simulation

Hardware
Description
Language

(HDL)

execution

SW traces

simulation

HW traces

Discrepancy
Analysis

Fig. 2. Outline of the Discrepancy Analysis debug flow. Above the dashed
line is HLS, with extracted data. Below the dashed line is the functional
verification flow, including trace generation and Discrepancy Analysis. The
two portions of the flow can be executed independently.

execution of the original source code and the corresponding
hardware generated through HLS. The DA flow is depicted
in Fig. 2. The blue part represents the execution of the
software obtained restructuring the original source code into
Static Single Assignment form (SSA)1, to produce the software
execution traces. The orange flow depicts the RTL simulation
of the hardware to generate the hardware execution traces.

These traces can be compared according to the definition
of equivalence, using additional information from the HLS
process. This information can be collected both on the con-
trol flow and on the data operations. DA then analyzes the
execution traces to detect behavioral differences between the
execution of the generated hardware and its software spec-
ification, despite the underlying execution models and their
intrinsic differences. It performs fine-grained checks not only
at the external interfaces of a module but also on the internal
signals, including those generated by compiler optimizations.
It automatically compares the actual values with the expected
behavior generated in software. Any difference is isolated
and back-traced to the high-level source code, automatically
identifying the first point of failure [7].

This technique is attractive to build an approach for auto-
mated bug detection in designs with multiple IP blocks:

1) it is generic and flexible enough to support all the trans-
formations and optimizations performed during HLS;

2) the information used in the comparison is independent
of the given HLS implementation;

3) system designers are not required to know how the HLS
optimizations are performed;

4) it is possible to build an independent and open engine
to perform the comparison offline;

5) control and data can be analyzed independently.

The rest of this section describes how Discrepancy Analysis
extracts execution traces related to control flow and data, and
how it analyzes them to automatically find bugs in an IP block.

1SSA generates a unique identifier for each assignment to the same variable.



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

3

A. Control Flow Traces

The Control Flow is a high-level description of the “paths
of execution”. For software, it is usually represented with a
Control Flow Graph (CFG), whose nodes represent the basic
blocks containing the operations to be executed. HLS compil-
ers first generate the CFG from the input source code. Then,
they elaborate each basic block to apply transformations (e.g.,
loop unrolling) to generate the states of the corresponding
Finite State Machine (FSM). The FSM controls the execution
of the hardware operations in the datapath and it is thus the
natural CFG counterpart.

To perform Discrepancy Analysis, we generate control flow
traces for every software function and its corresponding FSM
in the generated hardware [7]. In software, we instrument the
high-level code to dump the identifiers of the basic blocks
traversed during execution. In hardware, the same information
is represented by the waveforms of the signals representing
the current FSM states. Since the FSM may not be always
in execution, hardware traces do not contain valid values at
every instant and must be integrated with information also on
the control signals (e.g., start and done signals) to determine
the interval of execution.

B. Operation Traces

While control-flow traces allow us to determine errors in
the execution flow, some errors may only affect the data elab-
oration and the corresponding results. To this end, the result
of every software statement must be compared with the value
of the corresponding signal (or set of signals) in hardware.
However, this comparison must be performed only when the
statement is actually executed and this information is provided
by the FSM states. Hence, since several operations can be
executed during the same FSM state, the amount of operation-
level information is usually much higher. This information can
be easily obtained using the scheduling already extracted to
generate control-flow traces.

An operation trace is a fine-grained representation in SSA
form of every statements in the original source code [7].
This greatly simplifies the debugging process and it allows
Discrepancy Analysis to observe temporary variables inserted
during compiler optimizations. For software, we instrument
the code to dump the identifier and the value of each variable
assigned by a statement. The corresponding hardware trace
is represented by the single output signal of the functional
unit (or the block of functional units) used to implement the
right-hand side of the same statement. These signals can be
automatically and unambiguously identified given the HLS
results in terms of resource and interconnection binding.

C. Automated Bug Detection

The key feature of Discrepancy Analysis is that its engine
for automated bug detection can manipulate control-flow traces
and operation traces in the same way. In fact, the bug
detection process aims at correlating the hardware values,
which have intrinsic timing information, with the respective
values computed by the execution of the same function in

software. The same property holds both for control-flow and
operation traces. Therefore, the Discrepancy Analysis engine
works iteratively as follows for every pair of hardware and
software traces:

1) it selects the next value in the software trace, if any;
2) it selects the next available value in the hardware trace,

if possible;
3) it checks if the hardware and software values match.

If any of these steps fails, it means that a misbehavior (i.e., a
discrepancy) has occurred.

Clearly, this process requires access to the HLS information
used for the generation the IP block, potentially exposing
sensible details on its implementation or on the HLS process.
However, this information is not directly handled by the
algorithmic template described above, which can manipulate
the traces transparently, delegating the low-level operations
to a third-party implementation. Hence, this algorithm can
be used as a blueprint for designing an interoperable API
for enabling Discrepancy Analysis in design flows involving
multiple vendors.

IV. COMPOSABLE DISCREPANCY ANALYSIS

We extend Discrepancy Analysis to achieve a composable
workflow for automated bug detection in SoCs composed of
several IP blocks. This approach is orthogonal and entirely
compatible to other works on Discrepancy Analysis, such
as [11]. Consider the scenario shown in Fig. 3. system designer
aims at creating an architecture with two different IP blocks:
(1) an efficient implementation of the floating-point ‘Inverse
Hyperbolic Tangent’(atanh) and (2) a secure cryptographic
module to encrypt the result of the computation (crypto).
This scenario is becoming very popular with design environ-
ments based on IP catalogs, such as Xilinx Vivado Design
Suite, where the IP providers may use HLS to design their
components. We enclose their design flows in a thick dark box
since we assume them to be unknown to the system designer.
The bug detection is performed by comparing the high-level
execution (in software) of the functionality with the RTL
simulation of the generated hardware. By using our automated
bug detection approach, the system designer is then able to
find bugs across the entire design without compromising the
intellectual property of the different IP providers. To this end,
we need three libraries for each IP block, as shown in Fig. 3:

• a software object: this is a library object (blue .so
objects) exposing to the system designer the same API
of the software function it is used to implement (in this
case double atanh(double x) for IP-vendor-A,
and uint64_t crypto(double x) for IP-vendor-
B); the library contains the binary obtained from the
original source code (restructured in SSA form) with
instrumentation for the actual generation of software
traces, but it does not expose the encoding used for the
traces, nor the actual C code of the IP block;

• a hardware object: a HDL description of the IP block
(orange .hdl objects), with meta-data for the generation
of the selected hardware traces during simulation;



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

4

user defined test cases

SoC designer flow

uint64_t user_code(double in) {
double a = atanh(in);
return crypto(a);

}

double
atanh(double x)
{...}

IP-Vendor-A design flow

uint64_t
crypto(double x)
{...}

IP-Vendor-B design flow

HLS-tool-X HLS-tool-YHLS-tool-Z

user_compare.souser.so user.hdlatanh_compare.soatanh.so atanh.hdl crypto_compare.socrypto.so crypto.hdl

Discrepancy
Analysis
Debugger

Hardware
Simulation

Software
Execution

atanh SW traces

user SW traces

crypto SW traces

atanh HW traces

user HW traces

crypto HW traces

Fig. 3. An example of a complex design and debug flow, involving multiple IPs from different vendors, possibly designed with different HLS tools.

• a comparison library with bug detection APIs: a li-
brary object to be linked with the open DA engine of
Section III-C (green .so objects); it contains custom
functions to enable Discrepancy Analysis on the trace
representations generated by the other two objects.

The identification of these three artifacts is a substantial
improvement upon other works on Discrepancy Analysis such
as [7], that were not at all concerned of providing clear
interfaces and isolation between the different components
of the bug detection process. Each one of these artifacts
provides the functionalities to perform Discrepancy Analysis
as described in Section III: the code necessary to generate
the software traces, the information necessary to extract the
hardware traces, and library to compare the traces. To build
our method for cross-vendor bug detection, we only require
uniform and well-defined APIs so that the DA debugging
engine can seamlessly interact with the debugging artifacts
provided by the vendors. In fact, the execution traces can
be generated and compared with no information on the in-
ternal details, which are instead contained inside the isolated
vendor’s objects. In Section V, we provide an example of
the APIs to help understanding and reasoning about how
every component provided by the vendors can be secured.
This is not intended as a definitive product, but more as
prototype, because we believe that an open standardization
process involving multiple players would be the best path to
reach consensus and to fulfill the needs of IP vendors, HLS
developers, and system designers.

Once the vendors provide these objects with a unified format
for debugging, the system designer can perform Discrepancy
Analysis of the entire project as follows. The application rep-
resenting the SoC specification is created and linked with the
software objects describing the functions of the different IPs.
This application is then executed with the user-defined inputs
to generate software traces (blue region in Fig. 3). Similarly,
the hardware description of the SoC is created and simulated
with the same stimuli to generate the hardware traces (orange

region in Fig. 3). Finally, hardware and software traces are
compared using Discrepancy Analysis [7] together with the
comparison libraries (green region in Fig. 3). The granularity
of operation-level debugging can be easily extended to full
statement coverage, including temporary variables inserted
by the compiler for optimizations, but it can be customized
with different levels of precision. In our vision, IP vendors
can offer different debugging packages to trade off execution
time for precision in bug identification. In this scenario, the
system designer can first use a debugging package which
exports a limited subset of symbols for most of the IPs,
limiting the effort (and the higher simulation time) only to
critical components. Alternatively, since our approach is able
to automatically identify the first point of failure, the system
designer may ask only for debug symbols of the specific IP
blocks that do not behave as expected. Using this configurable
granularity for different modules, it is possible to span from
localization of the bug to the faulty IP block (with coarse-
grained debug) up to pinpointing the single wrong operations
(with full operation granularity).

The methodology still works properly even in case of pre-
existing IP blocks with no DA support (e.g., interconnection
subsystems, memory controllers). In this scenario, the respec-
tive IP blocks are used as black boxes in the bug detection,
provided to have high-level models for co-simulation. While
it is not possible to locate internal errors, we can still identify
discrepancies at the input/output ports of these components.

V. ENABLING DISCREPANCY ANALYSIS
WITH PROTECTED IP BLOCKS

Our composable approach requires vendors to provide data
to be used by system designers during DA, potentially endan-
gering their industrial secrets. In fact, Discrepancy Analysis
may reveal partial information on the proprietary algorithm,
the optimizations, and the design trade-offs through the code
instrumentation during the generation of the software traces.
Similarly, the generation of the hardware traces may reveal



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

5

1 for (vendor_iterator v in vendor_comparison_list)
2 {
3 // load software and hardware traces
4 swtraceset_t * swtset = v->load_swtraces();
5 hwtraceset_t * hwtset = v->load_hwtraces();
6 // iterate on the all the software traces
7 for (sw_trace_iterator s = swtset->begin();
8 s != swtset->end(); s++)
9 {

10 // check that there is a hardware trace for s
11 if (not hwtset->has_hw_trace(s))
12 {
13 v->log_mismatch(s, MISSING_HW_TRACE);
14 continue;
15 }
16 // get the equivalent hardware trace for s
17 hw_trace_iterator h = hwtset->get_hw_trace(s);
18 // iterate on s and h together
19 for (sw_val_iterator sv = s->begin(),
20 hw_val_iterator hv = h->begin();
21 sv != s->end() && hv != h->end();
22 sv++, hv++)
23 {
24 // check if the traces are equal
25 if (v->compare(sv, s->type(), hv, h->type()))
26 {
27 v->log_mismatch(s, sv, h, hv, MISMATCH);
28 break;
29 }
30 }
31 }
32 // iterate on all the hardware traces
33 for (hw_trace_iterator h = hwtset->begin();
34 h != hwtset->end(); h++)
35 {
36 // check that there is a software trace for h
37 if (not v->has_sw_trace(h))
38 {
39 v->log_mismatch(h, MISSING_SW_TRACE);
40 }
41 }
42 }

Fig. 4. Pseudocode for Discrepancy Analysis Algorithm.

information on the front-end and architectural optimizations
performed during HLS. We now discuss how the three com-
ponents of Discrepancy Analysis can provide support for auto-
mated bug detection while protecting the Intellectual Property
and making this methodology viable for vendors.

First, we need to protect the co-simulation objects: the RTL
description of the IP, the software object and the hardware
object used for the generation of the traces, and the com-
parison library. Since the DA engine can be provided by a
malicious vendor, the comparison library must be protected
from snooping into the traces. Then, we need to protect also
the data exported during the generation of the traces because
they can be used to extract information on the IP block.

Our key idea is to provide a clearly-defined API that is the
only way to access the data contained in the objects given
to the system designers. Fig. 4 shows the high-level structure
of the DA engine that enables this approach. The blue code
represents the data types exported from the comparison library
while the functions of the open API are depicted in green.
The routine iterates on all the data structures provided by the
vendors (line 1). For every vendor, it loads the hardware and
the software traces (lines 3-5). Then, it iterates over all the

available software traces (lines 6-31). If the software trace has
no corresponding hardware trace, it reports a mismatch (lines
10-15). Otherwise, the algorithm iterates over the software and
hardware traces simultaneously until the end (lines 16-30),
applying the proprietary method compare of the comparison
library and eventually jumping to the next trace if a mismatch
is found (lines 24-29). Finally, an additional sanity check is
performed to identify hardware traces without a corresponding
software trace (lines 32-41).

The algorithm of Fig. 4 has two important properties. First,
the API and the DA engine make no distinctions between
control-flow and operation traces. Control-flow and operation
traces can be handled in the same way because the differ-
ences are only contained in the comparison routines that are
completely enclosed in the comparison library. Second, the
API and the DA engine have no information on the encoding
of the data in the traces or on their relationship with the
high-level source code and the RTL. Again, this is possible
because the manipulation of this data is completely enclosed
in the comparison library and the DA engine can manipulate
them transparently. Thanks to this latter property, hardware
and software traces can encoded from the vendor. In fact,
hardware and software traces are generated by the hardware
object and the software object, respectively. All these libraries
are provided by the same vendor and the output is directly
elaborated by the comparison library, which is the only
element effectively able to access the execution traces [12].

So, every vendor can use its own protection scheme and
no open information is exposed outside these libraries. As an
example, one can imagine to use an asymmetric encryption
scheme like Pretty Good Privacy (OpenPGP standard), where
the software object, the hardware object, and the comparison
library have separate key pairs. The key pairs could be
provided by the vendor through separate channels as part of the
licensing. This would also prevent a malicious system designer
to reverse engineer the encoding on the traces and, in turn, get
proprietary information through the DA engine. Most of the
vendors are already encrypting their IPs and our approach is
compatible with any state-of-the-art encryption method. For
instance, the hardware object for hardware trace generation
can be then embedded in the encrypted RTL design, used
to generate the traces during simulation, and excluded from
synthesis. The software object (for software trace generation)
and the comparison library will be then provided as stripped
dynamic library objects based on a standard API. The former is
linked and executed with the high-level specification to gener-
ate the software traces. The latter, instead, contains primitives
that are called by the DA engine to analyze the traces, as
shown in Fig. 4. Similarly to the RTL of the IPs, it is possible
to use all the available state-of-the-art techniques to protect
libraries from reverse engineering. Some examples include
detecting when the library is executed in a debugger and abort,
or randomizing the binary, or even compressing/encrypting
the library so that it is uncompressed/decrypted on-the-fly.
The only requirement is that the encryption method is shared
among the three libraries, while the rest of the DA engine inter-
acts with them through the public API. This shows that all the
artifacts used to enable Composable Discrepancy Analysis can



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

6

be secured against malicious analysis and reverse engineering,
without compromising the capability of performing automated
bug detection. Note that the implementation of a specific
IP protection strategy for all the components is out of the
scope of this work. There are already numerous contributions
available in this fields, as well as several industrial practices
that are not fully disclosed. However, the proposed debug flow
is completely orthogonal to and compatible with any of the
current industrial practices.

VI. A WORKFLOW EXAMPLE

To validate our composable approach, we reproduced the
multi-vendor design flow described in Section IV as follows.
For atanh we used an implementation based on the GNU
C Library. The code for crypto was based on a custom
implementation of the Keccak sponge function family, se-
lected as the winner of the NIST 2006 competition for a
new SHA-3 standard. We synthesized each original C code
with BAMBU [3] (our HLS tool, based on GCC 4.9, already
supporting DA) to produce the corresponding RTL description
with debug information. Bambu can be used also as a debugger
to automatically compare the traces as post-processing2. We
performed HLS independently on the two cores to mimic
separate IP vendors and we used DA to test each IP block.
Since we expect this process to be performed internally to each
IP vendor (with no risk of exposing intellectual property), we
enable full debugging (both control and operation levels). We
manually inserted structural and functional bugs as in [7], and
BAMBU correctly reported all of them.

We then integrated these IP blocks into a larger SoC that
connects them as described in Fig. 3. So, we performed
verification with different debug granularities for the two IP
blocks. In particular, we wanted to analyze the correlations
between the granularity of the debug information exported by
the IP vendors and the observability of the injected bugs. We
assumed that the maximum granularity is always available
at the system level. Then, to analyze the results of the our
approach when varying the possibilities of debugging, we
analyzed six scenarios, defined as follows:

• S0: the entire design flow is executed without any veri-
fication features;

• S1: the design flow is executed with no software traces,
but exporting all the signals in hardware into a Value
Change Dump (VCD) waveform file;

• S2: control-flow debugging is enabled for both IP blocks;
• S3: full debugging is enabled for atanh (IP1) and no

debugging is enabled for crypto (IP2);
• S4: no debugging is enabled for atanh (IP1) and full

debugging is enabled for crypto (IP2);
• S5: full debugging is enabled for both IP blocks.

The configurations of these scenarios and the corresponding
results are reported in Table I. The table reports the size of
the software objects (Obj Size), the size of the resulting VCD
traces (VCD Size), and the time to perform all debugging
phases, i.e., the generation of the software traces with the

2The software is available at https://github.com/ferrandi/PandA-bambu

TABLE I
DEFINITION OF THE SCENARIOS AND CORRESPONDING RESULTS.

IP
1

IP
2 Size Time (s)

C
F

O
P

C
F

O
P Obj

(MB)
VCD
(GB) SW HW DA Total

S0 7 7 7 7 1.5 - 0.010 15.645 - -
S1 7 7 7 7 1.5 8.224 0.010 266.364 - -
S2 3 7 3 7 1.7 0.208 0.024 20.426 11.432 31.882
S3 3 3 7 7 1.6 0.764 5.423 26.197 152.724 184.344
S4 7 7 3 3 1.8 0.892 6.111 27.352 298.178 331.641
S5 3 3 3 3 1.9 1.506 9.103 31.797 366.431 407.331

object code execution (SW Time), the generation of the hard-
ware traces with simulation (HW Time), and the Discrepancy
Analysis (DA Time). The total time is reported only when
all verification phases are executed because in scenarios S0
and S1 the debugging must be manually performed by the
designer. All experiments have been run on an Intel Core i7-
3630QM running at 2.40 GHz with a 64-bit Linux operating
system and 16 GB of RAM. Simulations of the hardware
designs are performed with Mentor Modelsim SE 10.5c. The
VCD size gives an idea of the debugging complexity that must
be manually performed by the system designer.

At this point, we injected a bug in atanh that breaks the
SoC results when the input is a denormalized float. In fact,
denormalized numbers are a corner case, which is often not
tested thoroughly by developers. Moreover, this kind of bug
does not alter the control flow of the IP block. Hence, it was
not identified with the Discrepancy Analysis performed at the
IP level. On the contrary, a simple simulation of the entire SoC
(scenario S0) shows a misbehavior, but the SoC developer
has no information to identify the problem. Additionally,
when all signals are exported in the VCD (scenario S1), the
simulation time grows significantly, producing more than 8
GB of waveforms. The resulting VCD is then very hard to
debug. So the first possibility was to add only control-flow
debug symbols to both IP blocks (scenario S2). Since full
debugging was enabled for the user code of the SoC, our
method was able to identify a bug as soon as the wrong result
propagates outside atanh, even if it was not able to directly
find any misbehavior on the control flow of the IP block. This
analysis is pretty fast (about 32 seconds) and already gives an
information on which is the faulty IP block. This testcase could
be already provided to the vendor as part of a bug report. At
this point, the SoC designer can also enable full debugging for
atanh (to obtain more precise information), while disabling
all debug symbols in crypto (to save time). In this way
(scenario S3), it was possible to identify the point of failure,
confirming that the bug was inside atanh. In Table I, we also
report the time required to perform the equivalent analysis only
on crypto (scenario S4) and on both IP blocks (scenario
S5). In particular, the latter represents the upper bound of
the analysis for this SoC design and the total execution time
is still reasonable, confirming the validity of our approach
for creating a composable and scalable verification approach.
In fact, in all these three scenarios, the total execution time
is comparable with the time for generating the full VCD



2168-2356 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2018.2824121, IEEE Design
and Test

7

in scenario S2 (266 seconds). However, in these cases the
analysis is totally automated and already includes the time to
identify the bug, while in scenario S2 the identification must
be manually performed by the designer.

VII. CONCLUDING REMARKS

We presented a design flow for the verification of System-
on-Chip (SoC) architectures composed of multiple IP blocks
generated with high-level synthesis. Our approach is based on
Discrepancy Analysis and it can easily identify bugs coming
from IP integration. Since the analysis can be performed
without leaking any information on the IP design, it is suitable
for industrial adoption and it provides advantages for both IP
vendors and system designers. It can improve the productivity
of system designers, allowing them to promptly identify bugs
also in given IP blocks and in their integration. IP providers
and HLS vendors can potentially receive more meaningful bug
reports without compromising their secrets. In this way, part
of the verification effort is shared with the system designers,
leading to better products in a shorter time. The approach is
composable and it also supports pre-existing IP components
without debugging capabilities. All these advantages advocate
the definition of a unified and interoperable standard (to be
included in the HLS tools) for automated bug detection in
systems composed of multiple IP blocks.

REFERENCES

[1] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in ISSCC Digest of Technical Papers, Feb. 2014, pp. 10–14.

[2] “2009 International Technology Roadmap for Semiconductors,” Avail-
able at http://public.itrs.net.

[3] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey
and evaluation of FPGA high-level synthesis tools,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, Oct. 2016.

[4] L. P. Carloni, “The case for embedded scalable platforms,” in Proc. of
the Design Automation Conference (DAC), Jun. 2016, pp. 17:1–17:6.

[5] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L. Wang, “Challenges and
trends in modern SoC design verification,” IEEE Design & Test, vol. 34,
no. 5, pp. 7–22, Oct. 2017.

[6] A. Aboagye, M. Patel, and N. Vig, “Standing up to the semiconductor
verification challenge,” McKinsey on Semiconductors, no. 4, Oct. 2014.

[7] P. Fezzardi, M. Castellana, and F. Ferrandi, “Trace-based automated
logical debugging for high-level synthesis generated circuits,” in Pro-
ceedings of the International Conference on Computer Design (ICCD),
Oct 2015, pp. 251–258.

[8] W. Kruijtzer, P. van der Wolf, E. de Kock, J. Stuyt, W. Ecker, A. Mayer,
S. Hustin, C. Amerijckx, S. de Paoli, and E. Vaumorin, “Industrial IP
integration flows based on IP-XACT standards,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE), Mar.
2008, pp. 32–37.

[9] Cadence, “SoC Verification Using Cadence Verification IP.”
[Online]. Available: https://ip.cadence.com/uploads/150/white-paper
accelerated-vip-approaches-pdf

[10] Mentor Graphics, “Closing functional and structural coverage on
RTL generated by high-level synthesis.” [Online]. Available: http:
//go.mentor.com/4uNG1

[11] P. Fezzardi and F. Ferrandi, “Automated bug detection for pointers and
memory accesses in high-level synthesis compilers,” in Proceedings
of the International Conference on Field Programmable Logic and
Applications (FPL), Aug 2016, pp. 1–9.

[12] J. B. Wendt and M. Potkonjak, “Hardware Obfuscation Using PUF-based
Logic,” in Proceedings of the International Conference on Computer-
Aided Design (ICCAD), Nov. 2014, pp. 270–277.


