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We demonstrate synchronization between two intrinsically coupled oscillators that are created

from two distinct vibration modes of a single micromachined disk resonator. The modes have a 3:1

subharmonic frequency relationship and cubic, non-dissipative electromechanical coupling

between the modes enables their two frequencies to synchronize. Our experimental implementation

allows the frequency of the lower frequency oscillator to be independently controlled from that of

the higher frequency oscillator, enabling study of the synchronization dynamics. We find close

quantitative agreement between the experimental behavior and an analytical coupled-oscillator

model as a function of the energy in the two oscillators. We demonstrate that the synchronization

range increases when the lower frequency oscillator is strongly driven and when the higher fre-

quency oscillator is weakly driven. This result suggests that synchronization can be applied to the

frequency-selective detection of weak signals and other mechanical signal processing functions.

Published by AIP Publishing. https://doi.org/10.1063/1.4997195

Phase synchronization is a well-known phenomenon used

in several scientific fields.1–4 The first documented reports of

the synchronization phenomenon date back to the seventeenth

century when Huygens5 observed synchronization between

two self-sustained, almost identical, ship navigation clocks

whose motion was coupled through a common suspension

beam. The most basic form of synchronization is based on

unidirectional coupling and is also known as injection lock-

ing:6–8 The frequency of a first oscillator, f1, is caused to syn-

chronize (lock) to the frequency of a second reference

oscillator, f2, by injecting the second oscillator’s output into

the first oscillator. The range of frequencies over which this

locking can occur is called the synchronization range, and this

range increases with the amplitude of the reference oscillator

and with certain types of amplitude-dependent nonlinearities

in the first oscillator.9,10 Synchronization can also occur when

the two frequencies have a harmonic relationship, f2¼ nf1,

where n is an integer, a phenomenon known as subharmonic

synchronization.11–14 Distinct from injection locking, mutual

synchronization and mutual subharmonic synchronization

occur when there is mutual, bidirectional coupling between

the two oscillators.10,15–20 In oscillators based on micro- and

nano-electromechanical systems (MEMS and NEMS) resona-

tors, mutual synchronization is of interest because, assuming

constant strain-energy density, oscillator phase noise increases

as the physical volume of a resonator decreases. As a result,

NEMS and MEMS-based oscillators tend to have greater

phase noise than their macroscopic equivalents. However, it

has been shown that phase noise can be reduced below the

individual-resonator level by mutually synchronizing multiple

resonators.21 Synchronization in these NEMS and MEMS

devices is most commonly demonstrated by coupling two dif-

ferent resonators either electronically17 or mechanically via

electrostatic force,20,22 light,23,24 or flexures.25,26 The need to

use multiple resonators in these demonstrations introduces a

serious flaw in this approach, since the original goal of minia-

turization is reduced size. Here, we consider a different

approach that requires no additional device area: rather than

synchronizing two resonators operating at the same vibration

mode, we start with a single resonator and synchronize two

different vibration modes which have a 3:1 subharmonic fre-

quency relationship. To date, this approach has seen little

attention, in part due to the difficulty of obtaining close 3:1

frequency-matching between the two modes. Antonio et al.27

solved the frequency-matching problem by exploiting a reso-

nator nonlinearity that results in amplitude-frequency (A-f)
dependence—the first vibration mode’s amplitude was

adjusted until the desired 3:1 frequency relationship with the

second mode was achieved. This solution has the disadvan-

tage that the effect of resonator amplitude on the synchroniza-

tion range cannot be studied independently since amplitude

and frequency are coupled. To overcome this limitation, we

study synchronization using a micromachined disk resonator

(MDR) originally designed to operate as a mode-matched

gyroscope.28 Mode-shape specific frequency-tuning electro-

des enable the resonant frequency of the first mode to be

voltage-controlled, independent of the frequency of the sec-

ond mode. This capability enables us to study the synchroni-

zation range as a function of the frequency and amplitude of

the two modes. We observe that the synchronization range

increases as the first mode is driven to larger amplitudes but,

surprisingly, the range decreases as the amplitude of the sec-

ond, higher-frequency mode is increased. This result suggests
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that mutual synchronization may have application to the

detection of weak signals around the frequency of the second

mode, as any perturbation to this mode’s amplitude would

result in loss of synchronization and a corresponding change

in oscillation frequency.

The MDR is a 40 lm thick, 600 lm diameter, single-

crystal Si (Silicon) disk that is perforated by concentric annu-

lar slots and supported by a central anchor, shown in Fig.

1(a). The fabrication process, described elsewhere,29 uses a Si

(Silicon) epitaxy reactor to vacuum seal the released resonator

in an inert gas environment at a pressure of 1 Pa, a process

that results in high quality factor (Q) of the resonance modes

and a high degree of frequency stability, due to the cleanliness

of the resonator surface. The MDR is surrounded by parallel-

plate electrodes that enable electrostatic transduction and fre-

quency tuning of the resonance modes. Two separate elec-

trode pairs are used to drive and sense the motion of the two

resonance modes. Phase-locked loops (PLLs) implemented in

a digital lock-in-amplifier (LIA, Zurich Instruments HF2LI)

are used to operate the two resonance modes as self-sustained

oscillators (e.g., van der Pol self-sustained oscillators30,31) by

locking the oscillation phase at �90� relative to the drive

voltage.32

Figure 1(b) shows the measured frequency sweep of

the two resonance modes of interest along with their

mode shapes simulated via finite element model [(FEM),

Comsol Multiphysics]. As shown in the figure, each mode

shape is described by uðhÞ ¼ un cos ðnhþ /Þ, where un is

the maximum radial displacement, h is the angular coordi-

nate, n is an integer, and / is the rotation of the first anti-

node relative to the electrode coordinates. Note that, while a

perfect disk exhibits degenerate cosðnhÞ, sinðnhÞ mode pairs,

fabrication imperfections split the frequencies of these pairs

such that they are separated by more than the 100 Hz mea-

sured frequency range.28 In this letter, the first mode of inter-

est is an n¼ 3 mode (referred to as 3h mode) and has a

resonance frequency of f1¼ 278 kHz and a quality factor of

Q1 ¼ 15 000. The second mode is an n¼ 9 mode (referred to

as 9h mode) with Q2¼ 60 000 and was selected because it

has a resonance frequency that is nearly a harmonic of the

first frequency (f2� 3 f1). As a result of cubic stiffness-

softening introduced by the parallel-plate electrodes,33 the

two modes exhibit Duffing nonlinear amplitude-frequency

(A-f) dependence.32,34

To effectively study the synchronization range and the

interactions of the two oscillators within this range, it is essen-

tial to be able to change the frequency of one oscillator inde-

pendent from that of the other oscillator. Figure 1(c) presents

measurements to show that the frequency of the 3h oscillator

can be controlled independently from the frequency of the 9h
oscillator using voltage applied to a tuning electrode. When

the tuning voltage is increased, the voltage difference between

the disk (which is biased at 16.5 V) and the tuning electrode

decreases, decreasing this electrode’s electrostatic stiffness

and increasing f1. The increase in frequency is quadratic

because the electrostatic stiffness-constant is proportional to

the square of the voltage difference.35 The same experiment

illustrates that f2 remains unchanged as the tuning voltage is

varied. This independence in tuning of the frequency allows

the interaction of the two modes to be studied as f1 is varied

in the neighborhood of f2/3 in the synchronized and un-

synchronized states. Independent tuning is possible for two

main reasons: first, the selected tuning electrode overlaps both

nodes and anti-nodes of the 9h mode shape, resulting in weak

coupling to this mode;35 and second, the stiffness of the 9h
mode is much higher than that of the 3h mode, and is much

greater than the electrostatic stiffness of the tuning electrode.

Figure 2 illustrates the measured synchronization

between the 3h and 9h modes as the 3h mode’s frequency is

tuned over a 1 V range. In these experiments, the 9h mode

(at frequency f2) is weakly excited with 35 mV and the 3h
mode (at frequency f1) is strongly driven at two different

amplitudes to demonstrate the dependence of the synchroni-

zation range on the oscillator’s amplitude. As the tuning

voltage is increased, f1 increases and approaches f2/3 from

below (upwards frequency sweep). As f1 approaches f2/3, the

amplitude of quasi-periodic oscillation with a frequency of f1
� f2/3 increases until the two frequencies collapse on each

other. At this stage, the 9h mode’s oscillation frequency,

despite being independent from the tuning voltage, will fol-

low 3f1 due to synchronization. As the tuning voltage is

increased further, the modes eventually exit the synchronized

state and quasi-periodic oscillations in both modes reappear.

The same experiment was conducted by decreasing the tun-

ing voltage such that f1 approaches f2/3 from above (down-

wards frequency sweep). A similar behavior is observed in

this experiment as well, with a difference that, when the 3h

FIG. 1. (a) Microdisk resonator and experimental test setup. Two separate

PLLs are used to operate the two selected modes as independent oscillators.

A dc voltage applied to a tuning electrode is used to tune f1, the frequency of

the first mode. (b) Measured frequency response of the 3h and 9h resonance

modes, and their corresponding mode shapes. The response was measured

for four different input amplitudes, showing softening Duffing A-f depen-

dence arising from electrostatic nonlinearity. (c) Frequencies f1 (red) and f2/

3 (black) versus tuning voltage, plotted on the same scale for ease of com-

parison. Inset: close-up of f2 demonstrating independence from tuning

voltage.
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mode is driven at a larger amplitude, the synchronization

range increases but the range when sweeping down is smaller

than when sweeping up. An asymmetric synchronization

range is observed when the resonance modes have nonlinear-

ities and this asymmetry has been previously reported in

injection-locked oscillators9,10 and mutual synchronization.20

To study the theoretical behavior of the coupled oscilla-

tors, we introduce a model which explains this behavior. The

two resonance modes are coupled through linear and nonlin-

ear electromechanical stiffness terms.36 This coupling is

essential to make subharmonic synchronization possible.

The model includes cubic coupling terms because first, as

shown in Fig. 1, both modes exhibit Duffing nonlinearities

and second, in a first-order approximation, only cubic cou-

pling nonlinearities create internal resonance between the

two resonance modes.37,38 Simplified two degree-of-freedom

(DOF) equations of motion can model the behavior of the

resonance modes in the synchronized state

€x1 þ Dx1 _x1 þ x2
1x1 ¼ k1x3

1 þ k2x2
1x2 þ k3x1x2

2 þ k4x3
2 þ k1;

€x2 þ Dx2 _x2 þ x2
2x2 ¼ k5x3

1 þ k6x2
1x2 þ k7x1x2

2 þ k8x3
2 þ k2:

(1)

In these equations, x1 and x2 are the modal amplitudes

of the 3h and 9h resonance modes with resonant frequencies

x1¼ 2pf1 and x2¼ 2pf2, respectively. Dx1 ¼ x1=Q1 and

Dx2 ¼ x2=Q2 are the full width at half maximum (FWHM)

bandwidths of the two modes. k1 and k2 are external forces

applied to the modes. The stiffness terms k1 and k8 are cubic

terms that result in Duffing nonlinearity in single DOF reso-

nators, while k2 through k7 represent the nonlinear coupling

between the two modes. Using a perturbation and multiple

time-scales method with x1 ¼ 1=2X1eiðx1tþh1Þ þ cc, x2 ¼ 1=
2X2eiðx2tþh2Þ þ cc, k1 ¼ 1=2K1eiðX1tþs1Þ þ cc, and k2 ¼ 1=
2K2eiðX2tþs2Þ þ cc, where cc is the complex conjugate, these

equations can be solved by a first-order approximation and

result in the following amplitude and phase equations of

each mode:

_X1 ¼ K1 sin ðc1Þ þ d1X2X2
1 sin ðc3Þ �

Dx1

2
X1

_h1 ¼ �K1 cos ðc1Þ � a1X2
1 � b1X2

2 � d1X1X2 cos ðc3Þ

_X2 ¼ K2 sin ðc2Þ � d2X3
1 sin ðc3Þ �

Dx2

2
X2

_h2 ¼ �K2 cos ðc2Þ � a2X2
2 � b2X2

1 � d2

X3
1

X2

cos ðc3Þ:

(2)

Here, c1 and c2 are the phase-shifts of the external forces

k1 and k2 which are fixed by the PLL, while c3 is associated

with the phase difference between the oscillations of the two

modes. For simplification and to provide an intuitive explana-

tion of coupling, we have introduced four new variables: K, a,

b, and d. These variables are further explained in the supple-

mentary material; here a concise explanation is provided. K1

and K2 represent the external forcing terms. The next four

terms relate to amplitude-frequency dependence: a1X2
1 and

a2X2
2 are the standard terms causing a shift in frequency due

to Duffing nonlinearity, while b1X2
2 and b2X2

1 are terms caus-

ing a shift in frequency due to coupling between the two

modes. Measured values for these four terms are presented in

the supplementary material. Finally, d1 and d2 are the cou-

pling coefficients which cause the internal resonance and con-

sequently synchronization between the two modes. The terms

including d1 and d2 in the equations, depend on the ampli-

tudes of both modes, resulting in amplitude dependence of the

synchronization behavior. For example, d1X1X2 cos ðc3Þ and

8d2
X3

1

X2
cos ðc3Þ, both depend on X1 and X2. The coupling term

8d2
X3

1

X2
cos ðc3Þ decreases as X2 (the amplitude of the 9h mode)

increases; this fact results in decreased coupling from the 3h
mode to the 9h mode and consequently the synchronization

range decreases. On the other hand, all the coupling terms

increase with the amplitude of the 3h mode (X1), resulting in

an increased synchronization range.

Previous studies have shown that in a single nonlinear

oscillator, the synchronization range increases with the oscil-

lator’s energy (amplitude squared).9,10,20 The model in Eq.

(2) predicts similar behavior as the energy of the first oscilla-

tor (3h mode) is increased. More importantly, it also predicts

the surprising result that increasing the energy of the second

oscillator (9h mode) results in a decrease in the synchroniza-

tion range. This observation is in contrast with the reported

behavior of injection-locked oscillators,9,10 and mutually

synchronized oscillators20 in which the synchronization

range always increases with oscillator amplitude. We have

conducted measurements to experimentally prove these pre-

dictions. Figure 3 illustrates a 3D plot of the measured syn-

chronization range compared with the numerical solution

from the model of Eq. (2) for drive voltages ranging from

450 mV to 750 mV for the 3h mode and from 15 mV to

55 mV for the 9h mode. These data illustrate that the syn-

chronization range increases with the energy in the first

mode (X2
1) and has an inverse relationship with the energy in

the second mode (X�2
2 ).

FIG. 2. Synchronization range measured for upwards and downwards fre-

quency sweeps at f2: 35 mV and two different amplitudes for f1: (a) 650 mV

drive and (b) 750 mV drive. When the f1 oscillator’s amplitude is increased,

the downwards sweep shows a smaller synchronization range than the

upwards sweep.
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To further validate the model and understand the syn-

chronization dynamics, we compare the measured behavior

of the oscillators in the synchronized state with the behavior

predicted by the model. While synchronized, the frequency

of the two modes will follow each other. The measured

amplitude, phase, and frequency presented in Fig. 4 show the

behavior as the tuning voltage is varied at the operating point

where the two oscillators are driven at 700 mV (3h mode)

and 35 mV (9h mode). When synchronized, the oscillator

frequency versus tuning voltage deviates from a straight line,

an effect which is also predicted by the model, and is differ-

ent from the behavior of injection-locked oscillators.9,10,12,39

Looking at the oscillator amplitudes in Fig. 4, this frequency

deviation occurs at a point where the bidirectional coupling

results in energy transfer between the two modes: X1 dimin-

ishes and X2 grows. The changing amplitudes in turn affect

the frequency through the amplitude-frequency dependence

produced by the Duffing nonlinearity, a1X2
1 and b1X2

2. The

parameter values needed to reproduce Figs. 3 and 4 are pro-

vided in the supplementary material.

In conclusion, we demonstrated synchronization between

two oscillators based on two distinct resonance modes of a

single resonator. Using a coupled-oscillator model, we

showed that this 3:1 subharmonic synchronization originates

from cubic, non-dissipative electromechanical coupling. In

agreement with the model, the synchronization range for sub-

harmonic frequency entrainment increases with the energy in

the subharmonic oscillator and decreases with the energy of

the higher frequency oscillator. These results illustrate the

previously unexplored dynamics of subharmonic synchroniza-

tion between two intrinsically coupled modes in a single

micromechanical resonator, a phenomenon which may have

applications in weak signal detection, mechanical signal proc-

essing, and frequency stabilization of micromechanical sen-

sors and timing oscillators.

See supplementary material for the model and numerical

analysis along with additional measurements of the MDR’s

characteristics.
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