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A B S T R A C T

Neurodegenerative diseases, as Parkinson’s disease (PD), involve irreversible neural cell damage and impair-
ment. In PD, there is a selective degeneration of the dopaminergic neurons leading to motor symptoms. A
common finding in PD neurodegeneration is the increase of reactive oxygen species (ROS), leading to oxidative
stress. To date there are only interventions to relieve PD symptoms, however progress has been made in the
development of therapies that target the immune system or use its components as therapeutic agents; among
these, mesenchymal stem cells (MSCs), which are able to express neuroprotective factors as cytokines, chemo-
kines and angiogenic molecules, collectively named secretome, that accumulate in MSC culture medium.
However, lasting cell-free administration of secretome in vitro or in vivo is challenging. We used the conditioned
media from rat adipose tissue-derived MSCs (RAA-MSCs) to check for neuroprotective activity towards pro-
oxidizing agents such as hydrogen peroxide (H2O2) or the dopaminergic selective toxin 6-hydroxydopamine (6-
OHDA) that is commonly used to model PD neurodegeneration. When neuroblastoma SH-SY5Y cells were pre-
conditioned with 100% RAA-MSC media, then treated with H2O2 and 6-OHDA, mortality and ROS generation
were reduced. We implemented the controlled release of RAA-MSC secretome from injectable biodegradable
hydrogels that offer a possible in situ implant with mini-invasive techniques. The hydrogels were composed of
type I bovine collagen (COLL) and low-molecular-weight hyaluronic acid (LMWHA) or COLL and polyethylene
glycol (PEG). Hydrogels were suitable for RAA-MSC embedding up to 48 h and secretome from these RAA-MSCs
was active and counteracted 6-OHDA toxicity, with upregulation of the antioxidant enzyme sirtuin 3 (SIRT3).
These results support a biomaterials-based approach for controlled delivery of MSC-produced neuroprotective
factors in a PD-relevant experimental context.

1. Introduction

Neurodegenerative diseases such Parkinson’s disease (PD) involve
the progressive loss of one or more functions of the nervous system. So
far this disorder is treated with symptomatic drugs, with limited results.
There are several causes of neurodegeneration, such as genetic muta-
tions, intracellular accumulation of toxic proteins, or mitochondrial
dysfunction, resulting in cell death and increasing reactive oxygen
species (ROS). Progress has been made in the development of therapies
using immunoregulatory strategies, including recombinant proteins,
immune suppression, gene therapy or cell therapy [1]. In the latter area

stem cells (SCs) offer a new frontier for immunomodulation and re-
generation of damaged tissue.

Depending on the stage of development and differentiation poten-
tials, SCs are divided into embryonic or adult, including mesenchymal
SCs (MSCs). MSCs are multipotent, with self-renewal capacity, and are
obtained from several tissues such as bone marrow, umbilical cord,
adipose tissue, or spleen. These cells are easily isolated and expandable
in vitro where they carry out paracrine secretion of anti-inflammatory
and neuroprotective factors [2–4]; the combination of these factors is
known as secretome [5]. However, the therapeutic application of se-
cretome in neurodegenerative disorders is challenging, mainly because
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the damaged tissues are not easily targeted by systemic administration
and direct infusion of MSCs can arouse safety concerns, with limited
therapeutic window. We have characterized the neuroprotective action
of a RAA-MSC derived secretome and its controlled release from a
biocompatible hydrogel, that may help overcome the limitations.

2. Materials and methods

2.1. Cell culture

2.1.1. Human neuroblastoma SH-SY5Y
Cell were cultured in polypropylene flasks (T25, Falcon) in DMEM

medium (Invitrogen) supplemented with fetal bovine serum (10% v/v)
(Gibco), L-glutamine 2 mM, penicillin 100 IU/mL and streptomycin
100 μg/mL (Invitrogen). Cells were maintained in an incubator at 37 °C,
with 5% CO2. For treatments, cells were detached from the support with
0.05% trypsin (500 μL/25 cm2) for 5 min at 37 °C, counted through a
Burker chamber and seeded at a density of 20,000 cells/well.

2.1.2. Mesenchymal stem cells (MSCs)
Commercially available mesenchymal stem cells (NeuroZone,

Bresso, Italy) isolated from adipose tissue of adult CD-1 rats (RAA-
MSCs) were used. Cells were grown in adhesion in polypropylene flasks
(T25, Falcon), in αMEM medium (Lonza) supplemented with fetal bo-
vine serum at 10% (v/v) (Gibco), 0.5 mM L-glutamine, penicillin
100 IU/mL and streptomycin 100 μg/mL (Invitrogen). Cells were kept
in an incubator at 37 °C, with 5% CO2. When required, cells were de-
tached from the support using 0.05% trypsin (500 μL/25 cm2) for 5 min
at 37 °C, centrifuged at 900 rpm for 5 min and seeded.

2.2. Conditioned medium from mesenchymal stem cells

RAA-MSCs (up to passage 6) were cultured in T25 flasks until 80%
confluence. Cells were then washed with 1X D-PBS and complete fresh
αMEM without FBS was added. After 24 h the secretome-enriched
conditioned medium (CM) was collected, briefly centrifuged at 13,000
rpm and used immediately or frozen at −80 °C until required [6].

2.3. Oxidative stress challenge

SH-SY5Y cells were seeded in quadruplicate at a concentration of
20,000 cells/well in 96-well plates (Iwaki) and incubated overnight.
The next day, the CM was added at different dilutions (10, 30, 50, 70
and 100%) and left for 24 h. The following day, the CM was removed
and the pre-conditioned cells were incubated with H2O2 (50–150 μM)
or 6-OHDA (50–100 μM) (Sigma) for a further 18–24 h. Then cell via-
bility was assessed by a colorimetric assay (MTS, Promega), in which
the reagent (10% v/v) is added directly to the culture medium, in-
cubating for 3–4 h at 37 °C and recording the absorbance directly
proportional to the number of viable cells at 490 nm.

2.4. Reactive oxygen species

Reactive oxygen species (ROS) were detected by 2′,7′-dichloro-
fluorescein diacetate (DCFDA) assay. After cell internalization, DCFDA
is deacetylated by cellular esterases to a non-fluorescent compound,
which is then oxidized by ROS to 2′,7′-dichlorofluorescein (DCF). This
fluorescence is recorded (Infinite M200, Tecan) at wavelengths of 485
and 535 nm. DCFDA was used at the concentration of 10 μM in D-MEM
without phenol red.

2.5. Mitochondrial protein

Mitochondria were isolated from SH-SY5Y cells by mechanical cell
disruption followed by differential centrifugation using a dedicated kit
according to the manufacturer’s instructions (Abcam). Briefly, after two

centrifugations at low speed (1000g for 10 min, 4 °C) a third cen-
trifugation (12,000g for 10 min at 4 °C) isolates the mitochondrial
fraction, that can be lysed for mitochondrial protein collection.

2.6. Western blotting

Protein extract (20 μg) was separated by electrophoresis on dena-
turing polyacrylamide gels (SDS-PAGE) and transferred to a ni-
trocellulose membrane (BioRad). Nonspecific binding sites were
blocked and the membrane was incubated overnight at 4 °C with the
primary antibody (anti-α-tubulin 1:5000 Abcam; anti-Sirt3 1:1000
ThermoFisher Scientific; anti-SOD2 1:1000, Santa Cruz Biotechnology;
anti-VDAC 1:1000 ThermoFisher Scientific; anti-Hsp70 1:200 Santa
Cruz Biotechnology; anti-SIRT1 1:1000 Origen). The secondary anti-
body was conjugated to the enzyme horseradish peroxidase (HRP). For
visualization of immunoreactive bands on the membrane a peroxide
and luminol solution was applied (Millipore). After development of the
photographic film, the reactive bands were quantified densitometrically
using ImageJ software.

2.7. Hydrogels

We used semi-interpenetrated polymer systems (semi-IPNs) based
on bovine collagen (COLL) (Sigma-Aldrich) and polyethylene glycol
(MW 2000, PEG2000) or COLL and low-molecular weight hyaluronic
acid (LMWHA, MW 100 kDa) (Table 1).

All matrices were prepared from a 2.4 mg/mL COLL solution, dis-
solved in phosphate buffered saline solution (PBS) and NaOH 0.1 M.
PEG2000 (Sigma-Aldrich) 2.4 mg/mL in saline was autoclaved (121 °C,
20 min). The LMWHA (Altergon Italia) 5 mg/mL was obtained by dis-
solving the polymer in MilliQ water and sterilized by autoclaving
(121 °C, 20 min).

COLL/PEG2000 (1.8 mg COLL/mL; PEG2000 0.6 mg/mL) was ob-
tained by mixing 3:1 2.4 mg/mL COLL and 2.4 mg/mL PEG2000.
COLL/LMWHA (COLL 1.2 mg/mL; LMWHA 2.5 mg/mL) was obtained
by mixing 1:1 2.4 mg/mL COLL and 5 mg/mL LMWHA. Rheological
properties and injectability were characterized beforehand [7]. For
experimental purposes, we prepared 500 μL samples in 48-well plates
(Costar Corning) that were incubated at 37 °C for 1 h to promote fi-
brillogenesis.

2.8. RAA-MSC encapsulation and conditioned medium

RAA-MSCs were resuspended in medium at a density of 2.5
× 106 cells/mL and mixed 1:10 (v/v) in PEG2000/COLL or COLL/
LMWHA, 500 μL of this suspension were dispensed into 48-well plates
and incubated at 37 °C for 1 h. After that, 500 μL of complete culture
medium were added and replaced after overnight incubation with
αMEM without FBS for secretome collection. After a further 24–48 h,
the conditioned medium containing the secretome was removed and
immediately frozen at −80 °C; cellular metabolic activity was eval-
uated by a colorimetric test (MTS, Promega).

Table 1
Hydrogel composition.

Hydrogel Type I
Collagen
(COLL) (mg/
mL)

Polyethylenglycole
(PEG) 2000 (mg/mL)

Low molecular
weight hyaluronic
acid (LMWHA)
(mg/mL)

COLL/LMWHA 1.2 0.0 2.5
COLL/PEG2000 1.8 0.6 0.0

A. Chierchia et al. European Journal of Pharmaceutics and Biopharmaceutics 121 (2017) 113–120

114



2.9. Proliferative effect of RAA-MSC conditioned medium

To evaluate cell proliferation, we calculated cell number using a
DNA content quantification assay [8]. SH-SY5Y cells were seeded at a
density of 5.5 × 105 cells/cm2 in 100 μL of culture medium and grown
overnight. The next day, culture medium was replaced with 100 μL/
well of CM or standard culture medium (with and without FBS) as
control. The next day, the medium was replaced with 100 μL/well of
complete αMEM without FBS. Twenty-four hours later the medium was
removed, and cells were lysed by adding sterile water (200 μL/well)
and running four cycles of freezing at −80 °C and thawing at 37 °C.
Then 50 μL of lysate were mixed with 50 μL of Hoechst 33258 (1 μg/μL,
Thermo Fisher Scientific), dispensed in 96 well-plates (Costar Corning),
and shaken for 1 min before fluorescence assessment (λexc 360 nm, λem

460 nm). DNA content was calculated from a standard curve and the
number of cells in each sample was calculated by assuming that a di-
ploid human cell contains 6.4 pg DNA [9], applying the following
formula:

=
⎡
⎣

⎤
⎦Cell number

DNA concentration ·volume [μL]

6.4 [pg]
·10

μg
μL 6

2.10. Statistics

The experimental data were analyzed by one-way analysis of var-
iance (ANOVA) and Dunnett's test, two-way ANOVA and post hoc tests,
or with Student’s t-test for a direct comparison of two groups.
Associations with p < 0.05 were considered significant. Statistical
tests were done using GraphPad Prism 6.0 software.

3. Results

3.1. SH-SY5Y cells are protected from oxidative damage by RAA-MSC
conditioned medium

To assess whether the conditioned medium (CM) from RAA-MSCs
had cytoprotective action against oxidative stress, we measured the SH-
SY5Y response to increasing concentrations of H2O2 or 6-OHDA. Cells
were pre-conditioned with RAA-MSC CM for 24 h and then exposed to
oxidative challenge (Fig. 1). The CM exerted a protective effect against
the toxicity induced by H2O2 or 6-OHDA for every concentration, with
full recovery of cell viability.

As dilutions of CM may be cytoprotective [10], we then examined
the antioxidant effect of serial dilutions of RAA-MSC CM against

Fig. 1. Dose-response patterns of SH-SY5Y cells to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA). Cells were exposed to the oxidant stimulus without (A–C) or after (B–D)
pre-conditioning with RAA-MSC conditioned media (CM) for 24 h. Cell viability was quantified by MTS assay. **p<0.01 vs. control group; ***p< 0.001 vs. control group; ****p<0.0001
vs. control group; ns: not significant (one-way ANOVA and Dunnett's test).
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100 μM 6-OHDA (Fig. 2A). Cell viability was recovered only with un-
diluted CM. The result was similar for H2O2 (data not shown). To verify
the specificity of the protective effect of the RAA-MSC, as negative
control we used conditioned media from dermal fibroblasts (HuDe),
which share mesenchymal phenotypes with MSCs, but lack the differ-
entiation and colony-forming potential [11]. We used undiluted HuDe
conditioned medium, but there was no recovery of cell viability
(Fig. 2B).

After proving that the CM from RAA-MSC had protective action
against oxidative stress, we measured ROS by DCFDA assay in the same
experimental setting (Fig. 2C). There was a slight reduction in the ROS
level in SH-SY5Y pre-conditioned with CM compared to control, sup-
portive of an antioxidant response.

3.2. Neuroprotective effect of conditioned medium collected from hydrogel-
embedded RAA-MSCs

Once it was clear that RAA-MSC CM promoted an antioxidant re-
sponse in SH-SY5Y cells, we implemented secretome release from hy-
drogel-embedded RAA-MSCs. First, we assessed the cytocompatibility
of hydrogel-embedded RAA-MSC CM (Fig. 3A). There were no dele-
terious effects due to the hydrogel matrices. Then we measured the
metabolic activity of SH-SY5Y cells treated for 24 h with the CM ex-
posed for 24 or 48 h to RAA-MSCs encapsulated in COLL/PEG2000 or
COLL/LMWHA. As a reference, we used the CM from RAA-MSCs grown
in standard conditions (Flask) without the hydrogel matrices
(Fig. 3B and C). When SH-SY5Y cells were exposed to CM enriched for

24 h (Fig. 3B), the medium containing secretome from RAA-MSCs en-
capsulated in PEG2000/COLL allowed recovery of metabolic activity,
ranging from 50 to 62% of the reference condition (SH-SH5Y cells ex-
posed to 6-OHDA only). Recovery in cell viability was comparable also
in CM exposed for 24 h to RAA-MSCs included in COLL/LMWHA gel.

We repeated the experiment using the CM containing secretome
produced by RAA-MSCs encapsulated in the hydrogels for 48 h
(Fig. 3C). The CM from COLL/PEG2000 embedded cells had a protec-
tive effect, leading to an increase of cell viability ranging from 60 to
75% of 6-OHDA alone, similarly to the CM from COLL/LMWHA.

3.3. Conditioned medium from hydrogel-embedded RAA-MSCs counteracts
oxidative damage even after correction for its proliferative effect

The findings illustrated in Fig. 3 indicate that the secretome from
RAA-MSCs embedded in hydrogels has a complete protective effect on
SH-SY5Y cells exposed to 6-OHDA. However, others have reported a
proliferative capacity of MSCs secretome on neuron-like cells [12].
Consequently, the protection may depend partly on an underlying in-
crease in the number of cells compared to the control unexposed to CM.
To test this, we measured DNA content as a marker of cell proliferation
(Fig. 4). Samples treated with CM had a significantly higher DNA
content than the reference (αMEM medium without FBS). Otherwise,
SH-SY5Y cells treated with CM gave values not dissimilar from samples
grown in αMEM with FBS (p > 0.05). We then replicated the experi-
ment depicted in Fig. 3, correcting for the increased number of cells by
weighting cell viability for the corresponding DNA concentration. This

Fig. 2. Concentration-dependent effect and
specificity of RAA-MSC conditioned media
(CM) against oxidative stress. (A). Dose-re-
sponse to 6-hydroxydopamine (6-OHDA)
100 μM of decreasing dilutions of RAA-
MSCs CM. SH-SY5Y were pre-conditioned
for 24 h before challenge with the toxin for
a further 24 h. Cell viability was quantified
by MTS assay. (B) The CM from dermal fi-
broblasts was unable to prevent the oxida-
tive damage triggered by 6-OHDA.
****p < 0.0001 vs. control group; ns: not
significant (one-way ANOVA and Dunnett's
test). (C) Dose-response pattern to H2O2

and ROS generation. SH-SY5Y cells were
pre-conditioned for 24 h with RAA-MSC
CM 100% and treated with DCFDA 10 μM
to measure intracellular ROS levels. The
fluorescence was quantified using a fluor-
escence reader. *p < 0.05 vs. control
group; ns: not significant; two-way ANOVA,
Tukey's post hoc test.
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corrected analysis is reported in Fig. 4B. We were able to replicate a
reduced but still significant effect of CM with secretome from RAA-
MSCs encapsulated in COLL/PEG2000 or COLL/LMWHA hydrogels.
There was a 26% recovery, compared with the reference in the case of
CM produced from COLL/PEG2000 and 24% for COLL/LMWHA.

3.4. Expression of antioxidant proteins after exposure to conditioned
medium

To seek the molecular mediators of the antioxidant response in SH-
SY5Y cells exposed to hydrogel-embedded RAA-MSCs CM, we examined
the expression of key proteins linked to oxidative stress, such as Hsp70,
SOD2 and sirtuins-1 (Sirt1) and 3 (Sirt3) (Fig. 5) [13–15]. Quantitative
analysis of Hsp70 and SOD2 did not show any difference between
control SH-SY5Y cells and secretome pre-conditioning (Fig. 5A and B).
Sirt-1 was equally unchanged (Fig. 5C), while Sirt3 was overexpressed
in CM-exposed cells (Fig. 5D).

4. Discussion

MSCs regulate neuroinflammation and regeneration through action
on microglia and secretion of specific bioactive factors, including
growth factors, chemokines, cytokines and hormones [3,16]. There are
numerous applications of the medium conditioned by MSCs. In vivo, it
increases neurogenic activity, reduces cognitive impairment and oxi-
dative stress in mouse models of Alzheimer's disease [17]; in vitro it
boosts the resistance to oxidative stress in cells of patients suffering
from Friedreich ataxia [18], has antioxidant effects in skin aging pro-
cesses [19] and in the protection of neurons exposed to glutamate ex-
citotoxicity [10]. We assessed the antioxidant capacity of the CM ex-
posed to the metabolic activity of RAA-MSCs in an in vitro model
relevant for neurodegeneration. CM contrasted oxidative stress caused
by the dopaminergic-selective toxin 6-OHDA [20]. CM reduced cell
death in a concentration-dependent manner, with optimal protective
effect when undiluted. This is partly in line with the literature, as others
have described a CM dilution of 50% as optimal [10], while 100%

Fig. 3. Cytocompatibility and antioxidant effect of condi-
tioned media (CM) from hydrogel-embedded RAA-MSCs. (A)
Metabolic activity of SH-SY5Y cells after 24 h incubation with
CM from RAA-MSCs cells included in hydrogels. Statistical
analysis was done considering αMEM without FBS as control.
One-way ANOVA followed by Tukey's multiple comparisons
test (mean± SD, n = 5). *p = 0.0226 and 0.025, and ns: not
significant. (B) Metabolic activity of SH-SY5Y cells exposed to
hydrogel-embedded RAA-MSC CM, collected after 24 h con-
ditioning followed by 24 h challenge with 6-OHDA. Results
are mean± SD (n = 12). Statistical analysis was done using
two-way ANOVA followed by Tukey's multiple comparisons
test: *p = 0.012; ****p < 0.0001. (C) Metabolic activity of
SH-SY5Y cells exposed to hydrogel-embedded RAA-MSC CM
collected after 48 h of conditioning. Cells were then chal-
lenged for 24 h with 6-OHDA. The results are mean± SD
(n = 12). Statistical analysis was done using two-way ANOVA
followed by Tukey's multiple comparisons test:
****p < 0.0001. Flask: CM from RAA-MSCs grown in stan-
dard conditions without the hydrogel matrices.
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appears even to be deleterious [21]. This probably depends on different
sources of the cells (rat or human adipose tissue) and on the different
cell type used (neuroblastoma or primary culture of rat neurons).
Nevertheless, the cytoprotective action is specific to this CM, as CM
from human fibroblasts (HuDe) did not lead to any recovery in cell
viability.

As previously stated, one limitation of possible MSC-based thera-
pies, particularly in the field of chronic neurodegeneration, is the need
for repeated treatment with the secretome, generally preferred to direct
infusion of MSCs, although the latter is a possible option [22–24]. To
help solve this, local injection of hydrogel-embedded MSCs may be a
strategy combining long-lasting secretome production with increased
control over the cell fate. This has already been explored in several
fields, for instance bone or cartilage regeneration [25,26], but also
acute neurodegeneration as in traumatic brain injury [27], but there is
no information in the field of chronic neurodegenerative disorders such
as Parkinson’s disease. We have developed biocompatible hydrogels
that may be valuable in this area. They have proved able to host RAA-
MSCs in a 3D environment and at the same time do not alter the pro-
tective effect of the MSCs CM. The hydrogels showed no degradation in
vitro up to 48 h, which is positive in terms of lasting control of the
encapsulated cells. The secretome produced by gel-embedded cells
sustained recovery of viability at all concentrations of the 6-OHDA
tested, with no obvious inferiority in comparison to the CM collected
from RAA-MSCs cultured in standard conditions.

An important added value of culturing MSCs in 3D may be a qua-
litative improvement of their secretome. Huang et al. suggested that
mimicking the extracellular 3D structure led to a more physiologic
behavior of MSCs, which in turn affects the phenotype [28]. In addi-
tion, Suri et al. reported that Schwann cells encapsulated in a 3D matrix
based on hyaluronic acid retained their viability and were capable of

releasing larger amounts of nerve growth factor (NGF) and brain-de-
rived neurotrophic factor (BDNF) [29]. This requires further analysis,
for instance by measuring the 3D secretome content of BDNF, NGF or
antioxidant proteins such as Hsp70.

Finally, we can also suggest some molecular pathways that may
contribute to the neuroprotective effect. First, we measured the re-
ported proliferative effect of MSC CM [12]. Quantification of the pro-
liferative effect of secretome from hydrogel-embedded RAA-MSCs
confirmed that there is a partial increase in cell number when exposed
to secretome both in standard and 3D conditions. However, the neu-
roprotective effect is not entirely due to proliferation, though this must
be taken into account to avoid over-estimating the effect in our models.

We were able to link the CM protective effect to a reduction of
oxidative stress in terms of ROS generation. As for the molecular
players underlying this, Dey et al. showed that the MSC CM acts on
PI3K/Akt signaling by increasing the phosphorylation levels of Akt and
reducing the levels of phospho-p38 and phospho-JNK, while raising the
basal levels of superoxide dismutase 1 (SOD1) and 2 (SOD2) by about
75% [18]. Since in our experiments SOD2 levels appeared similar in
SH-SY5Y pre-conditioned and control cells, we examined the expression
of other proteins active in oxidative stress, such as heat shock protein
70 (Hsp70) and two members of the sirtuin family, sirtuin 1 (Sirt1) and
sirtuin 3 (Sirt3) [13–15]. The levels of expression of Hsp70 and Sirt1
appeared unchanged after CM exposure, while an expression of Sirt3
increased. Sirt3 is considered the key mitochondrial deacetylase [30]
and this enables it to regulate subunits of the mitochondrial complex of
the electron transport chain (ETC), directly linked to ROS generation.
Sirt3 also deacetylates and positively regulates ROS detoxifying en-
zymes such as SOD2 or Idh2 [31]. In this respect, even if the increased
Sirt3 expression was not paralleled by SOD2 upregulation, this does not
exclude a role for SOD2 in the antioxidant response, as its level of

Fig. 4. Contribution to neuroprotection of the proliferative
effect of conditioned medium (CM) of hydrogel-embedded
RAA-MSCs (A). Concentration of DNA in the SH-SY5Y cells
treated with CM quantified by Hoechst. One-way ANOVA
followed by Tukey's multiple comparisons test (mean± SD,
n = 6). **p = 0.0011. (B) Metabolic activity of SH-SY5Y
cells exposed to CM from hydrogel embedded RAA-MSCs
collected after 48 h of conditioning. Cells were the exposed
for 24 h to oxidative stress triggered by 6-OHDA 75 μM. The
results are weighted on the relative cell proliferation com-
pared to the control without FBS (mean± SD, n = 5). One-
way ANOVA followed by Tukey 's multiple comparisons
test: ****p < 0.0001; **p = 0.0024 and 0.0023.
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Fig. 5. Western blotting to assess expression of antioxidant proteins. (A) Analysis of the expression of Hsp70. SH-SY5Y cells were pre-conditioned with RAA-CM 100% for 24 h. The bar
graph shows the densitometric analysis of the bands relative to the expression levels of α-Tubulin; ns: not significant. (B) Expression of mitochondrial SOD2. SH-SY5Y cells were pre-
conditioned as above. The densitometric quantification reported was normalized to the mitochondrial protein VDAC; ns: not significant. (C) Expression of Sirt1. SH-SY5Y cells were pre-
conditioned as described. Densitometric analysis relative to α-Tubulin was ns: not significant. (D) Expression of mitochondrial Sirt3. SH-SY5Y cells were pre-conditioned with RAA-CM
100% for 24 h, then mitochondrial proteins were extracted and analyzed. The bar graphs show the densitometric quantification, relative to the expression levels of VDAC; **p< 0.01,
unpaired Student’s t-test. Each experiment was independently replicated twice.
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acetylation may be lower at an equal level of expression. Further ana-
lysis of the level of acetylation of SOD2 is therefore needed to support
this possible molecular link.

5. Conclusions

Our findings demonstrate the feasibility of a biomaterials-based
approach coupling MSC neuroprotective action to injectable hydrogels,
that may increase the controlled release of RAA-MSCs CM in models
relevant for Parkinson’s disease toxicity mechanisms, first in vitro and
then in vivo.
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